JPH0348109A - Electromagnetic acoustic transducer - Google Patents

Electromagnetic acoustic transducer

Info

Publication number
JPH0348109A
JPH0348109A JP7938989A JP7938989A JPH0348109A JP H0348109 A JPH0348109 A JP H0348109A JP 7938989 A JP7938989 A JP 7938989A JP 7938989 A JP7938989 A JP 7938989A JP H0348109 A JPH0348109 A JP H0348109A
Authority
JP
Japan
Prior art keywords
coil
waves
transmission
electromagnetic
acoustic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7938989A
Other languages
Japanese (ja)
Inventor
Kazuo Fujisawa
藤沢 和夫
Riichi Murayama
村山 理一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7938989A priority Critical patent/JPH0348109A/en
Publication of JPH0348109A publication Critical patent/JPH0348109A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect and measure a damage with high sensitivity and high resolution by generating electromagnetic acoustic waves of transverse waves formed in a spherical shape and having the collecting effect of a magnetic flux. CONSTITUTION:A transmission coil 8 and a receiving coil 9 are printed concentrically on a film base so that the winding direction of the coils adjacent to each other on a plane are opposed. When the acoustic wave from each group of coil has a wavelength lambda, a transverse spherial wavy is formed by Fresnel zones having radii differently by lambda/2. When checking, a magnetic field is generated between a material 1 to be checked an permanent magnets 6,7. Then, a pulse signal is impressed to the coil 8, so that the magnetic flux is collected at a predetermined position in the material 1. The electromagnetic acoustic waves from the coil 8 are current-converted and reach the coil 9. The time necessary for the transmission/receipt of the acoustic eaves is detected. While the phase of the incident waves is changed, the acoustic waves are transmitted and received in the same manner as above. Accordingly, the damage and thickness of the material 1 are detected and measured from the time difference in the transmission/receipt of the acoustic waves and amplitude.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、鋼、アルミニウム、銅等の導電性材料の探傷
、肉厚測定等の検査を行うEMAT(Electro−
magnetic Acoustic Transdu
cer)、電磁超音波探触子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to EMAT (Electro-Technology Testing System), which conducts inspections such as flaw detection and wall thickness measurement of conductive materials such as steel, aluminum, and copper.
magnetic acoustic transdu
cer), relating to electromagnetic ultrasound probes.

〔従来の技術〕[Conventional technology]

電磁超音波探触子(EMAT)により被検材の検査を行
う場合、まず、磁石により発生させた静磁場内で、被検
材に対向させて配置したコイルにパルス電流を印加し、
これにより発生する渦電流と静磁場との相互作用(ロー
レンツ力)により超音波を住せしめる。そしてこの超音
波により生じる材料表面上の超音波振動と静磁場とによ
り誘起される渦電流を検出する。更にこの送受信間の時
間を計時し、その振動及び時間差から探傷、肉厚測定を
行う。
When inspecting a specimen using an electromagnetic ultrasound probe (EMAT), first a pulsed current is applied to a coil placed opposite the specimen in a static magnetic field generated by a magnet.
The interaction between the eddy current generated by this and the static magnetic field (Lorentz force) generates ultrasonic waves. Then, eddy currents induced by the ultrasonic vibrations on the material surface and the static magnetic field generated by the ultrasonic waves are detected. Furthermore, the time between transmission and reception is measured, and flaw detection and wall thickness measurement are performed based on the vibration and time difference.

電磁超音波探触子は、被検査材である材料に接触するこ
となしに超音波を送信、検出することが可能であるため
、接触状況が悪い粗面材、熱間材の厚み測定、内部欠陥
の検査に適用できる。また石油タンク底板等の塗料上か
らの探傷、肉厚計測が可能である。更に静磁場の方向及
びコイルの形状を変化させることにより、縦波、横波1
表面波等種々の波動様式(モード)の電磁超音波を送受
信できるという利点を有する。
Electromagnetic ultrasonic probes are capable of transmitting and detecting ultrasonic waves without coming into contact with the material to be inspected, so they can be used to measure the thickness of rough surfaces, hot materials, and internal materials with poor contact conditions. Applicable to defect inspection. It is also possible to detect flaws and measure wall thickness from the paint on oil tank bottom plates, etc. Furthermore, by changing the direction of the static magnetic field and the shape of the coil, longitudinal waves, transverse waves 1
It has the advantage of being able to transmit and receive electromagnetic ultrasonic waves of various wave modes (modes) such as surface waves.

このような電磁超音波探触子は、本発明者らが開発した
、熱間継目無鋼管の肉厚測定計(r鉄と鋼1第9号、別
刷、 1984. PP、147〜154)、また連続
鋳造鋼片の凝固厚測定針(r製鉄研究1第310号、 
1982. PP、374〜387)に応用されている
Such an electromagnetic ultrasonic probe is a wall thickness measuring meter for hot seamless steel pipes (r Tetsu to Hagane 1 No. 9, reprint, 1984. PP, 147-154) developed by the present inventors. Also, a needle for measuring the solidification thickness of continuously cast steel slabs (r Steel Research 1 No. 310,
1982. PP, 374-387).

更に特開昭58−5089号公報では、管内面に対して
垂直な横波成分を有する板波により管全周に効率よく超
音波を発させる電磁超音波探触子について提案されてい
る。
Furthermore, Japanese Patent Application Laid-Open No. 58-5089 proposes an electromagnetic ultrasonic probe that efficiently emits ultrasonic waves around the entire circumference of a tube using a plate wave having a transverse wave component perpendicular to the inner surface of the tube.

また、補償用コイルにて電磁結合による影響を除去し、
不感帯部を低減する電磁超音波探触子が特開昭57−2
08451号公報に開示されている。また特開昭57−
203949号、特開昭57−203950号公報にお
いては、静磁場強度を向上せしめる構造の電磁超音波探
触子により、送受信効率、感度等の性能の改良が図られ
ている。
In addition, the influence of electromagnetic coupling is removed with a compensation coil,
An electromagnetic ultrasonic probe that reduces the dead zone was published in Japanese Patent Application Laid-open No. 57-2.
It is disclosed in Japanese Patent No. 08451. Also, JP-A-57-
No. 203949 and Japanese Unexamined Patent Publication No. 57-203950 attempt to improve performance such as transmission/reception efficiency and sensitivity by using an electromagnetic ultrasonic probe having a structure that improves the static magnetic field strength.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、電磁超音波探触子による探傷、計測を更に高
感度、高分解能で行うために、材料表面の曲率を、利用
して円筒面状の波面を発生させ、波動の集束効果を利用
して探傷、計測を行う方法(1977Br1tish 
Journal of NDT、 P178〜184)
、また送受信コイルを曲面状に形成した表面波電磁超音
波探触子(特開昭53−106086号公報)が提案さ
れている。
By the way, in order to perform flaw detection and measurement using an electromagnetic ultrasonic probe with even higher sensitivity and resolution, the curvature of the material surface is used to generate a cylindrical wavefront, and the wave focusing effect is used. Method of flaw detection and measurement (1977Br1tish
Journal of NDT, P178-184)
Furthermore, a surface wave electromagnetic ultrasonic probe (Japanese Unexamined Patent Application Publication No. 106086/1986) has been proposed in which the transmitter/receiver coil is formed into a curved surface.

しかしながら、上述の方法では縦波、横波等の体積波を
球面または円筒面状に形成し、集束させることができな
い、このため材料内部の探傷、肉厚変化が大きな材料の
肉厚測定等に不可欠な体積波による電磁超音波探傷また
は計測が十分に感度よく、高性能に行えないという問題
があった。
However, with the above method, it is not possible to form and focus volume waves such as longitudinal waves and transverse waves on a spherical or cylindrical surface, which is essential for flaw detection inside the material and thickness measurement of materials with large thickness changes. There has been a problem in that electromagnetic ultrasonic flaw detection or measurement using volume waves cannot be performed with sufficient sensitivity and high performance.

本発明者は上述の如き問題を解決するために種々の実験
、研究を行ったところ、送受信コイルを、フレネルゾー
ンを形成し得るピッチで平面上にその隣り合う巻線又は
巻線群の巻回方向が逆方向になるように形成した構造に
することにより、体積波である横波を球面状に発生させ
て集束させることができ、しかも静磁場強度が大きくと
れ、高感度であることを知見した。
The present inventor conducted various experiments and research to solve the above-mentioned problems, and found that the transmitter/receiver coil is wound by winding adjacent windings or winding groups on a plane at a pitch that can form a Fresnel zone. It was discovered that by creating a structure in which the directions are opposite to each other, transverse waves, which are volume waves, can be generated and focused in a spherical shape, and the static magnetic field strength can be increased, resulting in high sensitivity. .

本発明は斯かる知見に基づいて成されたものであり、球
面状に形成され、集束効果を有する横波の電磁超音波を
発生させることにより、従来に比してより高感度、高分
解能に探傷、計測を行う横波を発生させる電磁超音波探
触子を提供することをその目的とする。
The present invention was made based on this knowledge, and by generating transverse electromagnetic ultrasonic waves formed in a spherical shape and having a focusing effect, flaw detection can be performed with higher sensitivity and higher resolution than in the past. The object of the present invention is to provide an electromagnetic ultrasonic probe that generates transverse waves for measurement.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る電磁超音波探触子は、渦電流と静磁場との
相互作用により被検材に生ぜしめた超音波を、その逆作
用で受信する電磁超音波探触子において、前記被検材に
対向するN、S両磁極面を有し、前記静磁場を生ぜしめ
る磁石と、前記両磁極面と被検材表面との間に共に配設
してあり、フレネルゾーンを形成し得るピッチで、平面
上にその隣り合う巻線又は巻線群の巻回方向が逆方向に
なるように形成してある前記超音波の送信コイル及び受
信コイルとを具備することを特徴とする。
The electromagnetic ultrasonic probe according to the present invention is an electromagnetic ultrasonic probe that receives ultrasonic waves generated in a test material by the interaction of an eddy current and a static magnetic field by the reverse action of the test material. A magnet that has both N and S magnetic pole faces facing the material and generates the static magnetic field, and a pitch that is arranged between both the magnetic pole faces and the surface of the material to be inspected and that can form a Fresnel zone. The ultrasonic transmitting coil and the receiving coil are formed such that the winding directions of adjacent windings or winding groups are opposite to each other on a plane.

〔作用〕[Effect]

本発明の電磁超音波探触子においては、前記相互作用に
より前記送信コイルの各巻線又は巻線群から生ずる超音
波は、隣り合う巻線又は巻線群から発する超音波でその
位相差がπずつ異なる横波であり、コイルの巻線形状に
より決定される所定の集束位置に集束する。またこの逆
作用により前記球面波は電流に変換され、前記受信コイ
ルの各巻線又は巻線群にて受信される。これにより横波
で集束効果を利用した探傷または肉厚測定が実現できる
In the electromagnetic ultrasound probe of the present invention, the ultrasonic waves generated from each winding or winding group of the transmitting coil due to the interaction are ultrasonic waves emitted from adjacent windings or winding groups, and the phase difference between them is π. Each wave is a different transverse wave and is focused at a predetermined focusing position determined by the winding shape of the coil. Also, due to this reverse action, the spherical wave is converted into a current, which is received by each winding or winding group of the receiving coil. This makes it possible to perform flaw detection or wall thickness measurement using the focusing effect of transverse waves.

〔実施例〕 以下、本発明をその実施例を示す図面に基づき具体的に
説明する。第1図は本発明の電磁超音波探触子の構造を
示す模式的縦断面図である。
[Examples] Hereinafter, the present invention will be specifically explained based on drawings showing examples thereof. FIG. 1 is a schematic vertical sectional view showing the structure of the electromagnetic ultrasound probe of the present invention.

本発明に係る電磁超音波探触子は、検査されるべき被検
材lに対し、夫々の下側の磁極面を適宜の距離を隔てて
略平行をなして対向配置させた磁石6.7と、該磁石6
.7の夫々の下側の極面6a。
The electromagnetic ultrasonic probe according to the present invention includes magnets 6 and 7, each of which has a lower magnetic pole face facing a material 1 to be inspected, with its lower magnetic pole face being substantially parallel to the material 1 to be inspected. and the magnet 6
.. 7, each of the lower pole surfaces 6a.

7aと夫々平行をなし、前記磁石6,7と被検材1との
間に厚さ方向に積層して配設された送信コイル8、受信
コイル9とを備えてなる。
A transmitting coil 8 and a receiving coil 9 are provided in parallel with 7a, respectively, and are stacked in the thickness direction between the magnets 6, 7 and the specimen 1.

前記磁石6,7は、矩形棒状をなす2個の永久磁石であ
り、前者のN極(正極)、後者のS極(負極)とを同一
面内にて隣り合わせた態様にて構成されたものである。
The magnets 6 and 7 are two permanent magnets in the shape of a rectangular bar, and are constructed in such a manner that the former's N pole (positive pole) and the latter's S pole (negative pole) are adjacent to each other in the same plane. It is.

また、送信コイル8.受信コイル9はグラスファイバー
強化プラスチック製のフィルム台上にプリントされたプ
リントコイルであり、前記両磁極面6a、 7aと対向
させて送信コイル8.受信コイル9の順にまたはその逆
に積層された構成を有する。
Moreover, the transmitting coil 8. The receiving coil 9 is a printed coil printed on a film stand made of glass fiber reinforced plastic, and the transmitting coil 8 is placed opposite the magnetic pole surfaces 6a and 7a. It has a configuration in which the receiving coils 9 are stacked in this order or vice versa.

上述の如き構成を有する磁石6.7及び送受信コイル8
.9は開閉自在な平板状の蓋2と、該蓋2と略平行に対
向する天面3を有する角筒状のケース本体5とからなる
ケース内に納められている。
A magnet 6.7 and a transmitting/receiving coil 8 having the configuration as described above.
.. 9 is housed in a case consisting of a flat plate-shaped lid 2 that can be opened and closed, and a rectangular cylindrical case main body 5 having a top surface 3 facing substantially parallel to the lid 2.

具体的には磁石6.7は天面3の裏面中央部に、夫々の
磁石の磁極面6a、 ?aを、蓋2裏面と略平行に対向
させた態様にて固着されており、送受信コイル8.9は
蓋2裏面中央部に前述の如く積層されて配されている。
Specifically, the magnets 6.7 are placed in the center of the back surface of the top surface 3, and the magnetic pole faces 6a, ? A is fixed to the back surface of the lid 2 in a manner substantially parallel to and opposed to the back surface of the lid 2, and the transmitter/receive coils 8.9 are arranged in a stacked manner as described above at the center of the back surface of the lid 2.

そして送信コイル8は蓋2裏面のN極側に設けられた送
信コネクタメス8bと、受信コイル9は同じく負極側に
設けられた受信コネクタメス9bと夫々連なっている。
The transmitting coil 8 is connected to a female transmitting connector 8b provided on the N-pole side of the back surface of the lid 2, and the receiving coil 9 is connected to a female receiving connector 9b similarly provided on the negative-pole side.

更に送信コネクタメス8bは天面3の表面の正極側に設
けられた送信コネクタ8cと、受信コネクタメス9bは
同゛dく負極側に設けられた受信コネクタメス9cと夫
々電気的に接合するようになっている。
Furthermore, the transmitting connector female 8b is electrically connected to the transmitting connector 8c provided on the positive side of the top surface 3, and the receiving connector female 9b is electrically connected to the receiving connector female 9c also provided on the negative side. It has become.

送信コネクタ8cは図示しないパルス発信回路と接続し
ており、送信コイル8にパルス電流を通流せしめ、被検
材lにフレネルゾーンにて構成された電磁超音波を入射
するようになっている。一方、受信コネクタ9cは計時
回路と接続した受信増幅回路(共に図示せず)にて前記
電磁超音波により誘起される被検材1上の渦電流を検出
し、計時回路に与えるようになっている。
The transmitting connector 8c is connected to a pulse transmitting circuit (not shown), and allows a pulse current to flow through the transmitting coil 8, so that an electromagnetic ultrasonic wave composed of a Fresnel zone is incident on the test material l. On the other hand, the reception connector 9c detects the eddy current on the test material 1 induced by the electromagnetic ultrasonic waves using a reception amplifier circuit (both not shown) connected to the timekeeping circuit, and supplies the detected eddy current to the timekeeping circuit. There is.

第2図は本発明の電磁超音波探触子により形成されるフ
レネルゾーンの説明図である。図中Aは送信コイル8又
は受信コイル9の配設面であり、送信コイル8又は受信
コイル9は、平面上で隣り合う巻線群a1〜a%の巻回
方向が逆になるようにして同心的に前記フィルム台上に
プリントされたプリントコイルであり、例えば送信コイ
ル80巻線群a1〜asに、送信コネクタ8cがらパル
ス電流が通電された場合、隣り合う巻線群から生ずる超
音波の位相差はπとなる。これにより巻線群a、〜a、
、から生ずる超音波は、すべて点Rに集束し、超音波の
波長がλである場合、半径がλ/2ずつ異なる第1〜第
5フレネルゾーンにて構成される横波の球面波が形成さ
れる。また同様にして点Rから発信される前記横波の球
面波が受信コイル9が配設されている位置の前記第1〜
第5フレネルゾーンに対応した部位に到達すると、渦電
流が生じ、この渦電流を受信コイル9が検出する。
FIG. 2 is an explanatory diagram of a Fresnel zone formed by the electromagnetic ultrasonic probe of the present invention. A in the figure is a plane on which the transmitting coil 8 or the receiving coil 9 is arranged, and the transmitting coil 8 or the receiving coil 9 is arranged so that the winding directions of adjacent winding groups a1 to a% are opposite on the plane. These are printed coils that are printed concentrically on the film stand. For example, when a pulse current is applied to the winding groups a1 to as of the transmitting coil 80 through the transmitting connector 8c, ultrasonic waves generated from the adjacent winding groups are The phase difference is π. As a result, winding groups a, ~a,
The ultrasonic waves generated from Ru. Similarly, the spherical wave of the transverse wave transmitted from point R is transmitted to the first to
When the portion corresponding to the fifth Fresnel zone is reached, an eddy current is generated, and the receiving coil 9 detects this eddy current.

なお、上記プリントコイルのフィルム台をグラスファイ
バー強化プラスチック製等の音響伝達性が低い材料にす
ることにより送信コイルに生ずるローレンツ力による振
動が、受信コイルに伝播することが防止され、不感帯が
低減され、送受信効率が向上する。
In addition, by making the film base of the printed coil made of a material with low acoustic transmission such as glass fiber reinforced plastic, vibrations caused by the Lorentz force generated in the transmitting coil are prevented from propagating to the receiving coil, and the dead zone is reduced. , transmission and reception efficiency is improved.

更に、本発明の電磁超音波探触子にて例えば探傷を行う
場合、送信コイル8から発生される超音波の集束位置と
受信コイル9から発生される超音波の集束位置とを同一
点にすると高感度な探傷が行えるが、集束位置近傍から
はずれると急激に感度が低下し分解能も低下する。
Furthermore, when performing flaw detection using the electromagnetic ultrasonic probe of the present invention, for example, if the focusing position of the ultrasonic waves generated from the transmitting coil 8 and the focusing position of the ultrasonic waves generated from the receiving coil 9 are set to the same point. Although highly sensitive flaw detection can be performed, the sensitivity and resolution drop sharply when moving away from the vicinity of the focused position.

そこで送信コイル8,9の集束位置を被検材lの厚さ方
向に相異させることにより集束位置の範囲を拡大し、集
束位置近傍の探傷範囲を拡大することができる。
Therefore, by making the focusing positions of the transmitting coils 8 and 9 different in the thickness direction of the material to be inspected 1, the range of the focusing positions can be expanded, and the flaw detection range in the vicinity of the focusing positions can be expanded.

而して本発明の電磁超音波探触子を用いて被検材の検査
を行う場合は、永久磁石6.7により被検材1との間に
磁場を発生させる。次いでパルス発信回路から送信コネ
クタ8c送信コネクタメス8bを通じて、送信コイル8
にパルス信号が印加される。これにより生じるローレン
ツ力の作用で、送信コイル8から被検材l内に入射され
る電磁超音波は、送信コイル8が隣り合う巻線群から生
ずる超音波の位相差がπになるように構成されているの
で、各々の巻線群から生ずる超音波は第2図に示した如
く、第1〜第5フレネルゾーンにて構成される球面波に
形成され、被検材l内の所定位置に集束する。
When inspecting a specimen using the electromagnetic ultrasonic probe of the present invention, a magnetic field is generated between the permanent magnet 6.7 and the specimen 1. Next, the transmission coil 8 is connected from the pulse transmission circuit through the transmission connector 8c and the transmission connector female 8b.
A pulse signal is applied to. Due to the Lorentz force generated by this, the electromagnetic ultrasonic waves are incident from the transmitting coil 8 into the test material l.The transmitting coil 8 is configured so that the phase difference between the ultrasonic waves generated from adjacent winding groups is π. As shown in Fig. 2, the ultrasonic waves generated from each winding group are formed into a spherical wave composed of the first to fifth Fresnel zones, and are transmitted to a predetermined position within the specimen l. Focus.

一方、上述の如く送信コイル8から発せられた球面状の
電磁超音波は電磁誘導により電流に変換されて受信コイ
ル9に到達し、受信コネクタメス9b、送信コネクタ9
Cを通じて受信増幅回路に入力され、この送受信に要し
た時間を計時回路が検出する。そして被検材lに入射せ
しめる電磁超音波の位相を変化させて、同様に送受信を
行い、送受信に要する時間差と振幅により被検材1の探
傷。
On the other hand, as mentioned above, the spherical electromagnetic ultrasonic waves emitted from the transmitting coil 8 are converted into electric current by electromagnetic induction and reach the receiving coil 9, which connects the receiving connector female 9b and the transmitting connector 9.
The signal is input to the reception amplifier circuit through C, and the timer circuit detects the time required for this transmission and reception. Then, by changing the phase of the electromagnetic ultrasonic waves incident on the test material 1, transmission and reception are performed in the same manner, and the test material 1 is flaw-detected based on the time difference and amplitude required for transmission and reception.

肉厚測定が実施される。Wall thickness measurements are taken.

〔試験例〕[Test example]

本発明の電磁超音波探触子の寸法諸元、並びにフレネル
ゾーンを形成させる試験例における試験条件は次の通り
である。
The dimensions of the electromagnetic ultrasonic probe of the present invention and the test conditions in the test example for forming a Fresnel zone are as follows.

第3図は送信コイル8の寸法及び構造を示す平面図であ
り、第4図は同じ(受信コイル9の平面図である。送受
信コイル8及び9は、図に示す如く、巻線群a1〜as
が磁石6.7の各磁極の並設方向と夫々直交すると共に
、送信コネクタ8c側がN極に、受信コネクタ9c側が
S極に、両磁極間の境界近傍を外れた位置にて夫々重畳
するように同心的に配されている。破線で示す磁石6.
7が配されている部位は長さL23閣、幅WIO−であ
る。
FIG. 3 is a plan view showing the dimensions and structure of the transmitting coil 8, and FIG. 4 is a plan view of the same (receiving coil 9). as
are perpendicular to the juxtaposition direction of each magnetic pole of the magnet 6.7, and the transmitting connector 8c side is the N pole, and the receiving connector 9c side is the S pole, so that they overlap at a position away from the vicinity of the boundary between the two magnetic poles. are arranged concentrically. Magnet 6 indicated by broken line.
The part where 7 is placed has a length of L23 and a width of WIO-.

また、第3図に示す送信コイル8のコイル線径は0.2
閣、コイル線間隔dは0.4閣、各巻線群a。
Further, the coil wire diameter of the transmitting coil 8 shown in FIG. 3 is 0.2
The coil spacing d is 0.4, and each winding group a.

〜asの巻数は3とした。第4図に示す受信コイル9の
コイル線径は0.1閣、コイル線間隔dは0.2閣、各
巻線群a、〜a !lの巻数は5とした。
The number of turns of ~as was set to 3. The coil wire diameter of the receiving coil 9 shown in FIG. 4 is 0.1 mm, the coil spacing d is 0.2 mm, and each winding group a, ~a! The number of turns of l was 5.

表1は2)IHzの球面状の超音波を送信側の集束位置
を15 tm 、受信側の集束位置を10m5+として
形成せしめた場合のフレネルゾーン配置を示すものであ
る。
Table 1 shows the Fresnel zone arrangement when 2) IHz spherical ultrasonic waves are formed with a transmitting side focusing position of 15 tm and a receiving side focusing position of 10 m5+.

表  1 パルス発信回路は5周期のバースト波(30App)が
流れるように送信コイル8にパルス信号を送る。
Table 1 The pulse generator circuit sends a pulse signal to the transmitting coil 8 so that a burst wave (30 Apps) of 5 cycles flows.

送、信増幅回路は受信コイル8に到達した電流を、広帯
域で増幅した後、1〜3 MHzの帯域幅で増幅して、
100db増幅させた。その結果、送信側、受信側とも
フレネルゾーンは7〜17mmの範囲内に、4關以下の
大きさで集束した。
The transmitting and receiving amplifying circuit amplifies the current that has reached the receiving coil 8 in a wide band, and then amplifies it in a bandwidth of 1 to 3 MHz.
It was amplified by 100db. As a result, the Fresnel zones were converged within the range of 7 to 17 mm, with a size of 4 degrees or less, on both the transmitting and receiving sides.

なお、本発明の電磁超音波探触子にて例えば丸棒材の探
傷を行う場合、フレネルゾーンの集束方向を軸方向とし
、周方向は従来通り材料表面の曲率を利用して探傷を行
い、軸方向と周方向が重畳する部位の欠陥を一層高感度
、高分解能で探傷することができる。
In addition, when performing flaw detection on, for example, a round bar material with the electromagnetic ultrasonic probe of the present invention, the focusing direction of the Fresnel zone is the axial direction, and the flaw detection is performed in the circumferential direction using the curvature of the material surface as before. Defects in areas where the axial and circumferential directions overlap can be detected with even higher sensitivity and resolution.

〔効果〕〔effect〕

以上詳述した如く本発明の電磁超音波探触子にあっては
、簡略な構成により、球面状に形成され、集束効果を有
する横波の電11音波を発生させることができ、材料内
部の探傷、肉厚変化が大きな材料どの肉厚測定等に不可
欠な体積波による電磁超音波探傷または計測を高感度、
高性能で送受信効率良く行える。更に他の構成はそのま
まで送受信コイルの巻線形状を変えるだけで容易に、集
束位置及び集束範囲を変更させることができる等優れた
効果を奏する。
As described in detail above, the electromagnetic ultrasonic probe of the present invention has a simple structure and is formed into a spherical shape, and can generate transverse electric waves having a focusing effect, making it possible to detect flaws inside the material. Highly sensitive electromagnetic ultrasonic flaw detection or measurement using volume waves, which is essential for wall thickness measurement of materials with large thickness changes.
High performance and efficient transmission and reception. Furthermore, excellent effects such as being able to easily change the focusing position and focusing range by simply changing the winding shape of the transmitter/receiver coil without changing the other configurations are achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電磁超音波探触子の模式的縦断面
図、第2図は本発明のt磁超音波探触子により形成され
るフレネルゾーンの説明図、第3図は本発明の電磁超音
波探触子の送信コイルの寸法及び構造を示す平面図、第
4図は同じく受信コイルの寸法及び構造を示す平面図で
ある。 6.7・・・磁石 8・・・送信コイル 9・・・受信
コイル
FIG. 1 is a schematic vertical cross-sectional view of the electromagnetic ultrasound probe according to the present invention, FIG. 2 is an explanatory diagram of the Fresnel zone formed by the t-magnetic ultrasound probe of the present invention, and FIG. FIG. 4 is a plan view showing the dimensions and structure of the transmitting coil of the electromagnetic ultrasound probe of the invention, and FIG. 4 is a plan view similarly showing the dimensions and structure of the receiving coil. 6.7... Magnet 8... Transmitting coil 9... Receiving coil

Claims (1)

【特許請求の範囲】 1、渦電流と静磁場との相互作用により被検材に生ぜし
めた超音波を、その逆作用で受信する電磁超音波探触子
において、 前記被検材に対向するN、S両磁極面を有し、前記静磁
場を生ぜしめる磁石と、 前記両磁極面と被検材表面との間に共に配設してあり、
フレネルゾーンを形成し得るピッチで、平面上にその隣
り合う巻線又は巻線群の巻回方向が逆方向になるように
形成してある前記超音波の送信コイル及び受信コイルと
を具備することを特徴とする電磁超音波探触子。
[Scope of Claims] 1. An electromagnetic ultrasonic probe that receives ultrasonic waves generated in a specimen material by the interaction of an eddy current and a static magnetic field, with the reverse effect thereof, which is opposed to the specimen material. a magnet having both N and S magnetic pole faces and generating the static magnetic field; and a magnet disposed between both the magnetic pole faces and the surface of the material to be inspected;
The ultrasonic transmitting coil and the receiving coil are formed such that the winding directions of adjacent windings or winding groups on a plane are opposite to each other at a pitch that can form a Fresnel zone. An electromagnetic ultrasonic probe featuring:
JP7938989A 1989-03-28 1989-03-28 Electromagnetic acoustic transducer Pending JPH0348109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7938989A JPH0348109A (en) 1989-03-28 1989-03-28 Electromagnetic acoustic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7938989A JPH0348109A (en) 1989-03-28 1989-03-28 Electromagnetic acoustic transducer

Publications (1)

Publication Number Publication Date
JPH0348109A true JPH0348109A (en) 1991-03-01

Family

ID=13688510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7938989A Pending JPH0348109A (en) 1989-03-28 1989-03-28 Electromagnetic acoustic transducer

Country Status (1)

Country Link
JP (1) JPH0348109A (en)

Similar Documents

Publication Publication Date Title
JP4392129B2 (en) Method and apparatus for long range inspection of plate-type ferromagnetic structures
US4127035A (en) Electromagnetic transducer
CN107064289B (en) Method, device and system for multi-mode electromagnetic ultrasonic and magnetic leakage detection and sensor
US6920792B2 (en) Transducer guided wave electromagnetic acoustic
Hirao et al. An SH-wave EMAT technique for gas pipeline inspection
US6424150B2 (en) Magnetostrictive sensor rail inspection system
Salzburger et al. EMAT pipe inspection with guided waves
CN110220974B (en) SV ultrasonic body wave single-side focusing transducer suitable for aluminum plate defect detection
CN107790363B (en) Array type multi-angle spiral SH guided wave electromagnetic ultrasonic transducer
CN104090034B (en) A kind of electromagnetic acoustic Lamb wave transducer for guided wave tomography
Tu et al. An external through type RA-EMAT for steel pipe inspection
CN109470774B (en) Ultrasonic guided wave focusing transducer based on aluminum plate defect detection
JPH0587780A (en) Method and apparatus for nondestructive inspection of metal pipe
RU187205U1 (en) Device for ultrasonic inspection of the pipeline
JP4465420B2 (en) Magnetostrictive ultrasonic element and nondestructive inspection method using the same
JPH0348109A (en) Electromagnetic acoustic transducer
WO2004106913A1 (en) Guided wave electromagnetic acoustic transducer
JP3673392B2 (en) Electromagnetic ultrasonic flaw detector
Gori et al. Guided waves by EMAT transducers for rapid defect location on heat exchanger and boiler tubes
CN110806446A (en) Oblique incidence SV wave double-point focusing transducer based on aluminum plate defect detection
JPH11125622A (en) Sh wave electromagnetic ultrasonic transducer and measuring method
KR102203609B1 (en) Electromagnetic acoustic transducer and pipe inspection apparatus comprising the same
JPS58179305A (en) Electromagnetic ultrasonic measuring device
Sasaki et al. Pipe-Thickness Measurement Technology Using EMAT and Fiber Optic Sensors
CN211426354U (en) Sensor for detecting defect of fillet area