JPH0347950A - Iron-base sintered alloy for valve seat - Google Patents

Iron-base sintered alloy for valve seat

Info

Publication number
JPH0347950A
JPH0347950A JP18213189A JP18213189A JPH0347950A JP H0347950 A JPH0347950 A JP H0347950A JP 18213189 A JP18213189 A JP 18213189A JP 18213189 A JP18213189 A JP 18213189A JP H0347950 A JPH0347950 A JP H0347950A
Authority
JP
Japan
Prior art keywords
iron
sintered alloy
valve seat
elements
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18213189A
Other languages
Japanese (ja)
Other versions
JP3105509B2 (en
Inventor
Akiyoshi Ishibashi
章義 石橋
Kazutoshi Takemura
和俊 武村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP01182131A priority Critical patent/JP3105509B2/en
Publication of JPH0347950A publication Critical patent/JPH0347950A/en
Application granted granted Critical
Publication of JP3105509B2 publication Critical patent/JP3105509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the iron-base sintered alloy improved in wear resistance and strength by providing a composition containing respectively prescribed amounts of C and one or more elements among W, V, Nb, and Ta and also providing a structure in which most of the above elements W, V, Nb, and Ta are uniformly distributed in the form of solid solution in an iron matrix. CONSTITUTION:An iron-base sintered alloy for valve seat which has a composition consisting of, by weight, 0.8-2.5% C, 3-14% of one or more kinds among W, V, Nb, and Ta, and the balance Fe with inevitable impurities and also has a structure in which most of W, V, Nb, and Ta are uniformly dispersed in the form of solid solution in an iron matrix is provided. Further, it is necessary to use an Fe-X type (where X means one or more elements among W, V, Nb, and Ta or contains Mo other than the above) powder as an iron powder to be the principal component of powdery raw materials in order to disperse W, V, Nb, and Ta uniformly into the matrix. The resulting powder mixture of respective elements mentioned above is sintered at 1100-1200 deg.C, by which the desired iron-base sintered alloy for valve seat can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関のバルブシート用鉄基焼結合金の改
良に係り、更に詳しくは、耐摩耗性と強度の改良された
バルブシート用鉄基焼結合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in iron-based sintered alloys for valve seats of internal combustion engines, and more particularly, to improvements in iron-based sintered alloys for valve seats of internal combustion engines, and more particularly, to improve wear resistance and strength of valve seats. Regarding iron-based sintered alloys.

〔従来の技術〕[Conventional technology]

近年、内燃機関の小型高出力化、無鉛ガソリンの使用に
伴い、従来にも増して高回転、高温、高面圧等の過酷な
条件が課せられ、バルブシートもより一層の耐摩耗性の
向上が要求されている。その上、過給機の採用によりバ
ルブシートの受ける熱的、機械的負荷は更に増大する傾
向にある。
In recent years, as internal combustion engines have become smaller and have higher output, and the use of unleaded gasoline, harsher conditions such as high rotation, high temperature, and high surface pressure have been imposed than before, and valve seats have also become more wear-resistant. is required. Furthermore, with the adoption of a supercharger, the thermal and mechanical loads placed on the valve seat tend to further increase.

+−’1m関川バルブ用−トは、こうした内燃機関の趨
勢に対応するため、溶製材から焼結合金材に変換しつつ
ある。即ちバルブシートの耐摩耗性、高温強度、耐酸化
性を向上する目的で、C「、N11Co、 W、 Mo
、 V、 Nb、 Ta等の元素を合金用として添加す
るか、あるいはフェロアロイ、炭化物、又は複合合金粉
として添加することで、硬質粒子として基地中に分布さ
せていた。例えば、MOを添加した場合、それはFe−
Mo (フェロモリブデン)粒子として添加されていた
In order to meet the trend of internal combustion engines, the materials for +-'1m Sekigawa valves are being changed from molten lumber to sintered alloy materials. That is, for the purpose of improving the wear resistance, high temperature strength, and oxidation resistance of the valve seat, C', N11Co, W, Mo
By adding elements such as , V, Nb, Ta, etc. for alloying purposes, or as ferroalloy, carbide, or composite alloy powder, they were distributed as hard particles in the matrix. For example, when adding MO, it becomes Fe-
It was added as Mo (ferromolybdenum) particles.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記合金元素の添加によって、耐摩耗性は改善され向上
するものの、コストの高騰をもたらすという欠点がある
。又こうした合金元素の添加が、それに見合うだけの効
果があるかどうかについては不明の点が多い。また、そ
れらが硬質粒子として使われた場合には、基地鉄中に拡
散しにくいこともあって、硬質粒子の周囲は強化される
ものの、他の部位は強化されないため、分散強化による
基地強化が主体となり、合金元素が基地に固溶・合金化
することによる強化はさほど期待できなかった。
Although the addition of the above-mentioned alloying elements improves and improves the wear resistance, it has the drawback of increasing costs. Furthermore, there are many unknown points as to whether the addition of such alloying elements has a commensurate effect. In addition, when they are used as hard particles, they are difficult to diffuse into the base iron, so although the area around the hard particles is strengthened, other parts are not strengthened, so the base is strengthened by dispersion reinforcement. It was not expected that the alloying elements would be strengthened by solid solution and alloying with the base.

本発明は、このような従来の課題に着目してなされたも
ので、内燃機関の高出力化、高回転化による熱的及び機
械的負荷の増大に対応できる高負荷エンジン用の高性能
バルブシート素材として好適なバルブシート用鉄基焼結
合金を提供することを目的とする。
The present invention was made in view of these conventional problems, and provides a high-performance valve seat for high-load engines that can cope with increased thermal and mechanical loads due to higher output and higher rotation speeds of internal combustion engines. The purpose of the present invention is to provide an iron-based sintered alloy for valve seats that is suitable as a material.

〔課題を解決するための手段〕[Means to solve the problem]

以上に鑑み、本発明者らは、先に、均一にMoが固溶し
た鉄粉を焼結することにより得られるFeMo−C系材
料について提案したが(特開昭63−161144号)
、その後の研究により、Moに代り、W、V、 N’b
STaあるいは、Moと、Wl V、Nb、 Taの1
種類以上との同時添加によっても、同様な効果が得られ
ることを見出した。
In view of the above, the present inventors previously proposed a FeMo-C-based material obtained by sintering iron powder in which Mo is uniformly dissolved in solid solution (Japanese Patent Application Laid-Open No. 161144/1982).
, subsequent research revealed that instead of Mo, W, V, N'b
STa or Mo, Wl V, Nb, Ta 1
It has been found that similar effects can be obtained by simultaneous addition of more than one type of compound.

上記発見に基づき、本発明は、C:0.8〜2.5重量
%、W、 V、 Nb、 Taのいずれか1種又は2種
以上、またはこれとMoとの合計:3〜14重量%、残
部Fe及び不可避不純物よりなり、前記W、V、Nb、
 Ta、 Mo元素の大部分が鉄基地中に均一に固溶し
て分布した組織を有していることを特徴とするバルブシ
ート用鉄基焼結合金を提供する。
Based on the above discovery, the present invention provides C: 0.8 to 2.5% by weight, any one or more of W, V, Nb, Ta, or the total of these and Mo: 3 to 14% by weight %, the balance consists of Fe and unavoidable impurities, and the W, V, Nb,
Provided is an iron-based sintered alloy for a valve seat, characterized in that it has a structure in which most of Ta and Mo elements are uniformly distributed in solid solution in an iron matrix.

すなわち本発明においては、W、 V、 Nb、 Ta
又はこれらとMoとを鉄基地中に均一に分布、固溶させ
た合金粉末材料を使用することにより、これらの元素を
均一に分散させ、これらの元素の持つ耐摩耗性向上効果
を最大限に活用したものである。
That is, in the present invention, W, V, Nb, Ta
Alternatively, by using an alloy powder material in which these and Mo are uniformly distributed and dissolved in the iron base, these elements can be uniformly dispersed and the wear resistance improvement effect of these elements can be maximized. It was utilized.

次に、本発明に係るバルブシート用鉄基焼結合金の成分
及び組織の限定理由について説明する。
Next, the reasons for limiting the components and structure of the iron-based sintered alloy for valve seats according to the present invention will be explained.

W、 V、 Nb5Taは、周期律表の5属又は6属の
元素で、Crと同様に鉄に固溶し、強度、耐熱性を高め
ると共に、炭素と化合し、炭化物を作ることで耐摩耗性
を高める作用がある。その量としては3重量%以下では
摩耗性改善効果が十分でなく、また14重量%を超える
と、粉末成形時の成形性が低下すると共に、材質が硬く
脆くなり好ましくない。従って、W、 V、 Nb、 
Taは合計で3〜14重量%であることが必要であり、
特に5〜10重量%であるのが好ましい。なお、これら
の元素はいずれも同様な耐摩耗性改善効果をもつので、
2種類以上を複合して含んでも良い。
W, V, Nb5Ta are elements from Group 5 or 6 of the periodic table, and like Cr, they form a solid solution in iron, increasing strength and heat resistance, and combining with carbon to form carbides, which improves wear resistance. It has the effect of increasing sex. If the amount is less than 3% by weight, the abrasion improving effect will not be sufficient, and if it exceeds 14% by weight, the moldability during powder molding will decrease and the material will become hard and brittle, which is not preferable. Therefore, W, V, Nb,
Ta needs to be 3 to 14% by weight in total,
In particular, it is preferably 5 to 10% by weight. Furthermore, since all of these elements have similar effects on improving wear resistance,
A combination of two or more types may be included.

また、これらの元素の1種又は2種以上とともに、Mo
を添加することもできる。Moを添加する場合、Moと
、WSV、 Nb、 Taとの合計量は、上記と同様の
理由により、3〜14重量%とする。またM。
In addition, along with one or more of these elements, Mo
can also be added. When Mo is added, the total amount of Mo, WSV, Nb, and Ta is 3 to 14% by weight for the same reason as above. M again.

の含有量としては、5〜10重量%とするのが好ましい
The content is preferably 5 to 10% by weight.

このW、 V、 Nb、 Ta又はこれらとMoとを基
地中に均一に分布させるため、原料粉の主体となる鉄粉
は、Mo、 W、 V 、 Nb、 Taを均一に分布
、固溶するFe−X系(X : W、 V、 Nb、 
Taのいずれか1種類以上又はこれとMoを含む)の粉
末を使用す、る必要がある。粉末としては、種々のもの
を使用することができるが、アトマイズ法により製造し
た粉末を使用するのが好ましい。この際、一部(3重量
%を超える量)のMo%W、 V、 Nb、 Taは3
25メツシユアンダーの微細な金属粉として添加しても
良い。この場合、Fe−x系の粉末中の合金元素(W、
 V、 Nb、 TaSMo)の含有量を調節するか、
又は合金元素を含有しない少量の鉄粉を対応する量だけ
配合することにより、得られる焼結合金中の合金元素の
含有量が所定の値になるように調節することができる。
In order to uniformly distribute W, V, Nb, Ta, or these and Mo in the base, the iron powder, which is the main ingredient of the raw material powder, uniformly distributes and solid-solves Mo, W, V, Nb, and Ta. Fe-X system (X: W, V, Nb,
It is necessary to use a powder containing at least one type of Ta or a powder containing Ta and Mo. Although various powders can be used, it is preferable to use powder produced by an atomization method. At this time, a part (amount exceeding 3% by weight) of Mo%W, V, Nb, Ta is 3
It may be added as a fine metal powder of 25 mesh or less. In this case, alloying elements (W,
Adjust the content of V, Nb, TaSMo) or
Alternatively, by blending a corresponding amount of a small amount of iron powder that does not contain alloying elements, the content of alloying elements in the resulting sintered alloy can be adjusted to a predetermined value.

炭素は、鉄基地に固溶し強度を高めると共に、上記元素
と反応し炭化物を作る。その量は、共析組成〜若干の過
共析組成を目標とすることで、添加するMo、 W、 
V、 Nb、 Taの量や他の合金元素量により、フェ
ライト及び粗大な炭化物を生じない範囲として、必然的
に決まる。上記Mo、 W、 V、Nb、 Ta量の範
囲に対応する炭素量は0.8〜2.5重蛍%となる。炭
素%が共析組成よりも低いと、軟らかいフェライトを生
じ、耐摩耗性が劣化し好ましくなく、また逆に炭素%が
高過ぎる出、粗い炭化物を生じ加工しずらくなるととも
に、脆くなるため好ましくない。ただし、フェライト、
粗大炭化物は生じないことが好ましいが、現実的には炭
素量を厳密にコントロールするのは、原料粉の酸素量が
焼結炉の雰囲気などに左右されるため難しく、5体積%
以下のフェライト、粗大炭化物の生成は許容する。
Carbon dissolves in the iron matrix to increase its strength, and reacts with the above elements to form carbides. The amount of added Mo, W,
Depending on the amounts of V, Nb, and Ta and the amounts of other alloying elements, the range is inevitably determined as a range in which ferrite and coarse carbides are not generated. The amount of carbon corresponding to the range of the amounts of Mo, W, V, Nb, and Ta described above is 0.8 to 2.5%. If the carbon percentage is lower than the eutectoid composition, soft ferrite is produced, which deteriorates wear resistance, which is undesirable.On the other hand, if the carbon percentage is too high, coarse carbides are produced, making it difficult to process and making the material brittle, which is not desirable. do not have. However, ferrite,
Although it is preferable that coarse carbides do not occur, in reality it is difficult to strictly control the amount of carbon because the amount of oxygen in the raw material powder depends on the atmosphere of the sintering furnace.
The following ferrites and coarse carbides are allowed to form.

なお、上記の元素以外に、補助的にCo、 B等の基地
強化元素を10原子%まで添加しても良い。
In addition to the above-mentioned elements, base reinforcement elements such as Co and B may be added in an amount of up to 10 atomic %.

上記焼結用粉末の粒径は、325メツシユ以下であるの
が好ましく、この範囲より粗い粉末では均一な固溶組織
が得にくく、またこの範囲より細かくしてもそれに見合
う効果は得られない。
The particle size of the sintering powder is preferably 325 mesh or less; if the powder is coarser than this range, it is difficult to obtain a uniform solid solution structure, and if the particle size is finer than this range, commensurate effects cannot be obtained.

焼結は、110[1〜1200℃の範囲で行う。焼結温
度が1100℃以下では、焼結後の強度が低く十分な耐
摩耗性が得られないので、好ましくなく、逆に1200
tJa上となると、多量の液相が発生し炭化物が粗大化
するので好ましくない。従って焼結は1100〜120
0℃で行う必要がある。焼結時間は一般に30〜120
分程度であ程度焼結後は、必要により熱処理を行い、組
織、硬さの調整を行う。
The sintering is performed at a temperature of 110[deg.]C to 1200[deg.]C. If the sintering temperature is below 1100°C, the strength after sintering will be low and sufficient wear resistance will not be obtained, so it is not preferable;
If it exceeds tJa, a large amount of liquid phase will be generated and the carbide will become coarse, which is not preferable. Therefore, sintering is 1100-120
It is necessary to carry out at 0°C. Sintering time is generally 30 to 120
After sintering to a certain extent in about minutes, heat treatment is performed as necessary to adjust the structure and hardness.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて具体的に説明する。 Hereinafter, the present invention will be specifically explained based on Examples.

実施例1 粒度が150〜200メツシユにピークを持ち、5重量
%のWを均一に固溶する鉄粉に、325メツシユアンダ
ーの黒鉛粉を最終組成で2.1重量%になるように加え
た。さらに金型成形の際に型抜けを良くするために、潤
滑材としてステアリン酸亜鉛を0.6重量%加え、得ら
れた混合粉をプレスにて7 t / cn[の成形圧力
で成形し、650℃で1時間脱ろうをした。さらに、1
200℃で1時間焼結してから900℃まで炉冷し、9
00℃からはガス冷却した。
Example 1 Graphite powder with a mesh size of 325 was added to iron powder having a peak particle size of 150 to 200 mesh and containing 5% by weight of W in a uniform solid solution so that the final composition was 2.1% by weight. Ta. Furthermore, in order to improve mold release during mold molding, 0.6% by weight of zinc stearate was added as a lubricant, and the resulting mixed powder was molded in a press at a molding pressure of 7 t/cn. Dewaxing was performed at 650°C for 1 hour. Furthermore, 1
After sintering at 200°C for 1 hour, the furnace was cooled to 900°C.
Gas cooling was performed from 00°C.

冷却後、加工して外径46mm x内径30mmx高さ
7,5mmのテストピース(バルブシート)を作成した
After cooling, it was processed to create a test piece (valve seat) with an outer diameter of 46 mm, an inner diameter of 30 mm, and a height of 7.5 mm.

さらに、硬度がHRB95前後になるよう熱処理を行っ
た。
Furthermore, heat treatment was performed so that the hardness became around HRB95.

実施例2〜10、比較例1〜4 実施例1と同様にして、第1表に示すようにMo、W、
V、NbXTaを単独あるいは複合して含む系について
も、テストピースを作成した。
Examples 2 to 10, Comparative Examples 1 to 4 In the same manner as in Example 1, Mo, W,
Test pieces were also created for systems containing V and NbXTa singly or in combination.

また比較材として、同じ粒径の鉄粉に、第1表に示す組
成となるようにW、 V、 Nb、 Taの各々のフェ
ロアロイを添加した材料についても、実施例■と同じ条
件でテストピースを作った。なお各フェロアロイ中のW
XV、Nb、Taの含有量は以下の通りであった。
In addition, as a comparative material, test pieces were prepared by adding W, V, Nb, and Ta ferroalloys to iron powder of the same particle size so as to have the composition shown in Table 1, under the same conditions as Example ①. made. In addition, W in each ferroalloy
The contents of XV, Nb, and Ta were as follows.

W: 80重量% V: 50重量% Nb:  65重量% 7a:    65!、!I) % 各個の焼結合金の組成を第1表に示す。W: 80% by weight V: 50% by weight Nb: 65% by weight 7a: 65! ,! I) % Table 1 shows the composition of each sintered alloy.

第 表 (注)*:各化学成分はフェロアロイで添加した。No. table (Note) *: Each chemical component was added as a ferroalloy.

こうして作製した外径46mmx内径30mmx高さ7
゜5mmのテストピースを所定のバルブシート形状に加
工後、単体摩耗試験での耐久試験でバルブシート材とし
ての適性を評価した。
The outer diameter 46 mm x inner diameter 30 mm x height 7
After processing a 5 mm test piece into a predetermined valve seat shape, its suitability as a valve seat material was evaluated by a durability test using a unit wear test.

第1図には、使用した単体摩耗試験機を概略的に示す。FIG. 1 schematically shows the unit wear tester used.

この試験機においては、駆動装置(図示せず)によって
回転するカム2によって上昇したバルブ3は、バルブス
テム4の下部のスプリング5の伸縮によって、バルブシ
ート1を衝撃的に叩く動作を繰返し行うようになってい
る。またバルブ3の上方にガスバーナ6が、側方にシリ
ンダヘッド7に圧縮空気を吹き付けるノズル8が、それ
ぞれ配設されており、制御装置(図示せず)によって、
ガスバーナ6に供給されるプロパンガスの供給量とノズ
ル8の風量を調節して、バルブ3の表面を一定温度に加
熱維持する構造になっている。
In this test machine, the valve 3 raised by the cam 2 rotated by a drive device (not shown) repeatedly hits the valve seat 1 with an impact by the expansion and contraction of the spring 5 at the bottom of the valve stem 4. It has become. Further, a gas burner 6 is disposed above the valve 3, and a nozzle 8 for blowing compressed air to the cylinder head 7 is disposed on the side.
The structure is such that the surface of the valve 3 is heated and maintained at a constant temperature by adjusting the amount of propane gas supplied to the gas burner 6 and the air volume of the nozzle 8.

このような摩耗試験機を用いて、吸気バルブシートの使
用条件を想定した下記に示す試験条件で、試験を行い、
バルブシートの摩耗量を基準バルブの沈み量から求めた
Using such a wear tester, tests were conducted under the test conditions shown below assuming the usage conditions of intake valve seats.
The amount of wear on the valve seat was determined from the amount of sinking of the reference valve.

(試験条件) バルブ材質    5IIH−36 バルブ表面温度  650℃ バルブシート温度 300℃ 回転数      300Orpm 試験時間     5時間 試験結果を第2表に示す。第2表から明らかなように、
本発明の焼結合金製のバルブシートは、従来のフェロア
ロイ添加のものに比べて、著しく耐摩耗性が向上してい
る。また相手バルブの摩耗量も著しく減少している。
(Test conditions) Valve material: 5IIH-36 Valve surface temperature: 650°C Valve seat temperature: 300°C Number of revolutions: 300 rpm Test time: 5 hours The test results are shown in Table 2. As is clear from Table 2,
The sintered alloy valve seat of the present invention has significantly improved wear resistance compared to conventional valve seats containing ferroalloy. Additionally, the amount of wear on the mating valve has been significantly reduced.

1 2 第 表 ブシート用鉄基焼結合金は、合金元素が均一に固溶した
鉄粉を焼結してなるものであるので、合金元素の大部分
が鉄基地中に均一に固溶しており、そのために、耐摩耗
性と強度が向上している。従って、高負荷エンジン用の
バルブシート用に好適に用いることができる。
1 2 The iron-based sintered alloy for seat sheets shown in Table 1 is made by sintering iron powder in which alloying elements are uniformly dissolved in solid solution, so most of the alloying elements are uniformly dissolved in the iron matrix. This improves wear resistance and strength. Therefore, it can be suitably used for valve seats for high-load engines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は単体摩耗試験機の概要図である。 1・・・バルブシート 2・・・カム 3・・・バルブ Figure 1 is a schematic diagram of a single wear tester. 1...Valve seat 2...cam 3... Valve

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.8〜2.5重量%、W、V、Nb、Ta
のいずれか1種又は2種以上:3〜14重量%、残部F
e及び不可避不純物よりなり、前記W、V、Nb、Ta
元素の大部分が鉄基地中に均一に固溶して分布した組織
を有していることを特徴とするバルブシート用鉄基焼結
合金。
(1) C: 0.8-2.5% by weight, W, V, Nb, Ta
Any one or two or more of: 3 to 14% by weight, balance F
consisting of e and unavoidable impurities, the above-mentioned W, V, Nb, Ta
An iron-based sintered alloy for valve seats, characterized by having a structure in which most of the elements are uniformly distributed as a solid solution in the iron matrix.
(2)請求項1に記載のバルブシート用鉄基焼結合金に
おいて、Moと、W、V、Nb、Taのいずれか1種又
は2種以上とを合計で3〜14重量%含有することを特
徴とするバルブシート用鉄基焼結合金。
(2) The iron-based sintered alloy for valve seats according to claim 1 contains a total of 3 to 14% by weight of Mo and one or more of W, V, Nb, and Ta. An iron-based sintered alloy for valve seats featuring:
JP01182131A 1989-07-14 1989-07-14 Iron-based sintered alloy for valve seat Expired - Lifetime JP3105509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01182131A JP3105509B2 (en) 1989-07-14 1989-07-14 Iron-based sintered alloy for valve seat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01182131A JP3105509B2 (en) 1989-07-14 1989-07-14 Iron-based sintered alloy for valve seat

Publications (2)

Publication Number Publication Date
JPH0347950A true JPH0347950A (en) 1991-02-28
JP3105509B2 JP3105509B2 (en) 2000-11-06

Family

ID=16112874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01182131A Expired - Lifetime JP3105509B2 (en) 1989-07-14 1989-07-14 Iron-based sintered alloy for valve seat

Country Status (1)

Country Link
JP (1) JP3105509B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190028804A (en) * 2016-07-29 2019-03-19 닛폰 피스톤 린구 가부시키가이샤 Valve seat with excellent durability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190028804A (en) * 2016-07-29 2019-03-19 닛폰 피스톤 린구 가부시키가이샤 Valve seat with excellent durability

Also Published As

Publication number Publication date
JP3105509B2 (en) 2000-11-06

Similar Documents

Publication Publication Date Title
US5859376A (en) Iron base sintered alloy with hard particle dispersion and method for producing same
EP0480495B1 (en) Sintered ferrous-based material
JP2799235B2 (en) Valve seat insert for internal combustion engine and method of manufacturing the same
US6066191A (en) Hard molybdenum alloy, wear resistant alloy and method for manufacturing the same
CN107267877B (en) A kind of clean fuel engine powder metallurgy high-speed steel valve seat and its preparation process
US4491477A (en) Anti-wear sintered alloy and manufacturing process thereof
EP0752015A1 (en) A method of making a sintered article
EP1347067B1 (en) Iron-based sintered alloy for use as valve seat
US6783568B1 (en) Sintered steel material
EP0711845A1 (en) Wear-resistant sintered ferrous alloy for valve seat
EP0098536A2 (en) Wear-resistant sintered ferrous alloy and method of producing same
JPH0347950A (en) Iron-base sintered alloy for valve seat
JPH0347951A (en) Iron-base sintered alloy for valve seat
JP3226618B2 (en) Iron-based sintered alloy for valve seat
JPS6119762A (en) Abrasion resistant sintered alloy
JPH0633184A (en) Production of sintered alloy for valve seat excellent in wear resistance
JPH06172942A (en) Wear resistant iron base sintered alloy
JP2842868B2 (en) Iron-based sintered alloy for valve seat
JPH0593241A (en) Production of iron-base sintered alloy for valve seat
JPH0456747A (en) Manufacture of wear resistant ferrous sintered alloy
JPS63161144A (en) Ferrous sintered alloy for valve seat
JPH02104636A (en) Ferrous sintered alloy for valve seat
JPS6119766A (en) Abrasion resistant sintered alloy
JPS6152301A (en) Iron base alloy powder for wear resistant sintered parts
JPH06271998A (en) Wear resistant iron base sintered alloy and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term