JPH0347921B2 - - Google Patents

Info

Publication number
JPH0347921B2
JPH0347921B2 JP59229602A JP22960284A JPH0347921B2 JP H0347921 B2 JPH0347921 B2 JP H0347921B2 JP 59229602 A JP59229602 A JP 59229602A JP 22960284 A JP22960284 A JP 22960284A JP H0347921 B2 JPH0347921 B2 JP H0347921B2
Authority
JP
Japan
Prior art keywords
rolling
hot
reduction
cracks
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59229602A
Other languages
Japanese (ja)
Other versions
JPS61108401A (en
Inventor
Nobuhisa Tabata
Kimio Mine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22960284A priority Critical patent/JPS61108401A/en
Publication of JPS61108401A publication Critical patent/JPS61108401A/en
Publication of JPH0347921B2 publication Critical patent/JPH0347921B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2271/00Mill stand parameters
    • B21B2271/02Roll gap, screw-down position, draft position

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 直接圧延(造塊、就中連続鋳造直後の鋼片を直
ちに熱間圧延すること。)またはホツトチヤージ
圧延(造塊就中、連続鋳造後そのまま鋼片を保熱
炉に装入し、ついで熱間圧延すること。)するに
際して、熱間圧延途上にてしばしば発生する表面
割れの発生を有効に防止することにより生産性の
向上と熱エネルギー原単位の低下を図るのに有用
な工程を含む熱間圧延方法をここに提案する。 鉄鋼材料を製造する場合に、転炉又は電気炉に
て溶製し溶鋼を造塊法または連続鋳造法にて鋳片
とし放冷ののち、冷間にて表面疵の除去などの手
入を行つてから加熱炉に装入し、ついで熱間圧延
が施されるを例としていた。 これに対し、近年、省エネルギーの観点の下
で、造塊または連続鋳造後の熱鋳片を放冷するこ
となしにそのまま熱間圧延に供し、または保熱炉
を経由して圧延し、直接製品または鋼片にするプ
ロセスが開発された。しかるにこの際、冷間での
表面手入工程と、冷却−再加熱過程での変態点通
過に伴う組織改善のため、従来法では熱間圧延に
よる表面欠陥発生の如きが格別問題にはならなか
つたのに対し、直接圧延又はホツトチヤージ圧延
では、熱間手入が完全を期し難いこともあつてし
ばしば表面欠陥が発生する。 (従来の技術) この問題点に対し、種々の方法が考案され例え
ば特公昭58−52441号公報では直接圧延もしくは
ホツトチヤージ圧延において第一次圧延として
1300〜1150℃の温度範囲で1パス15%以上の圧下
率で少なくとも2回以上の圧延を行い、その後
1150℃未満の温度域で第二次圧延を施すことを開
示しているが次のような難点を残す。 すなわち上記条件は元来熱間加工性に有害な元
素の粒界析出形態の変化とオーステナイト粒の細
粒化とが起こることに期待して、熱間割れ発生を
防止しようとするものである。 ところが通常、造塊直後の鋼片表面は湯じわ等
で粗く、また連続鋳造鋳片においてはモールドの
上下振動による、いわゆるオツシレーシヨンマー
クなどがあり、いずれも凹凸が多数ある。 この状態の鋳片を事前に手入することなく1300
〜1150℃の温度で、15%以上もの圧下率で圧下を
付与すると上記凹凸とくにその凹部での引張応力
が過大となり割れの起点となるとともに、微小な
欠陥も成長して、割れに発展し、この状態で15%
以上の圧下率で連続して圧延されると割れは拡大
する一方となる。 ここに熱間加工において発生する割れは主とし
てオーステナイト粒界に、有害元素の析出物、例
えば(Fe、Mn)O、(Fe、Mn)S、(Fe、Mn)
P、BN、Nb(C、N)、AlNなどが析出し、粒
界強度を著しく低下させ、割れの主要な径路とな
ることは広く知られているとおりである。 したがつて、再結晶によりオーステナイト粒を
細粒化させても粒界に有害な析出物が存在するこ
とには変わりはなく、表層での粒界割れを阻止す
る根本的な対応策とはならないことから熱間割れ
を皆無にすることは困難である。 (発明が解決しようとする問題点) さて圧延の最も初期の段階は凝固組織に起因す
る表面割れが発生しやすく、微小な疵の存在も最
終製品の表面欠陥、と発展することから問題が多
い。 かかる点から発明者らは直接圧延及びホツトチ
ヤージ圧延における熱鋳片の表面割れ発生機構と
防止策について詳細な研究を行つた所、特定の圧
延条件下での熱間圧延時の表面割れの発生を完全
に防止できることが見出されたのである。 (問題点を解決するための手段) この発明は、鋼材の直接圧延又はホツトチヤー
ジ圧延に際し、 圧延の初期段階として1300〜1000℃で少なくと
も1回の軽圧下率圧延を、1パス当り圧下率は3
%以上〜15%未満でかつ2回以上にわたる合計圧
下率でも15%未満の制限下に行つてから、引続き
通常の圧延に移行することを特徴とする、表面割
れの少ない鋼材の熱間圧延方法である。 (作用) 前述のごとく直接圧延もしくはホツトチヤージ
圧延に供される熱片の表層は凹凸、微少な亀裂、
表面直下の割れ及びブロホールが存在する場合が
多い。 この状態の鋼片を1300〜1000℃で1パス当り3
%以上15%未満に制限した1回以上の軽圧下圧
延、2回以上のときでも合計圧下率を15%未満の
制限下に行うと、表層部の凹凸、微少な欠陥に及
ぶ引張応力が軽微であるため、応力集中度が低
く、割れとして成長することがなく、逆に微少な
欠陥は表層部に開口せず圧着され、欠陥が解消さ
れる。 さらに軽圧下するメリツトとして、多くの鋼材
では1300〜1000℃の温度域において1パス当り15
%未満の圧下率で圧下するとオーステナイト粒は
再結晶することなく伸長し、加工歪は粒内に蓄積
されることをあげることができる。 すなわち析出物は一般に、結晶粒界、サブグレ
イン境界、変態帯、転位線に沿つて析出するの
で、加工歪を持つたオーステナイト粒について
は、粒界以外に、粒内に多数析出するいわゆる歪
誘起析出を起こすからである。 熱間脆性は主としてオーステナイト粒界に、有
害元素の析出物が析出することにより割れ感受性
を増大させるのに対して、粒内に析出した析出物
は微細であることと、オーステナイト地との整合
性が高いことと、さらに粒界と比較して多重すべ
りを起こし、外部変形が緩和され、割れ発生の起
点となる転位の堆積が起こりにくいことのため、
熱間割れを誘発することがない。 粒界に析出する合金元素を有する鋼では、かり
に再結晶を進行させても熱間加工時の割れ発生の
危険を免れることは困難であるが上記のような歪
誘起に基づく粒内析出の場合では、析出温度域に
おいて熱間加工を任意行うことが可能である。 歪有起析出はオーステナイトの未再結晶状態で
進行することから上記方法を有利に行うには、有
害析出が終了するまでの間は再結晶の進行が起こ
らないような圧下率の制御が必要である。 再結晶を起こすのに必要な臨界圧下率は化学組
成、加工温度等により著しく相違しているが、
1000〜1300℃の温度域では合計圧下率15%未満で
再結晶を起こすことはなく、完全な未再結晶状態
となるわけでありこの発明において軽圧下率圧延
の圧下率上限および合計圧下率につき15%未満と
したのである。 次に軽圧下率の下限を3%とする理由は、3%
未満の軽圧下では加工歪が粒内に蓄積されるまで
には至らず粒界に集中してしまい、歪が粒界の移
動という、いわゆる歪誘起粒界移動という形で開
放される。この結果、オーステナイト粒の粗大化
と粒界析出物により熱間脆性を誘発する。 この点で3%未満の圧下率の適用を除外する必
要がある。 ここで、この軽圧下は1回行うことにより熱間
脆性の低減に著しい効果を示すが、軽圧下率圧延
を数回に分けて付与を行つても何ら支障がないば
かりか、むしろ導入される歪の均一性の点からし
て、より望ましい。 但し、この際1回当りの圧下率を3%以上で、
かつ複数回に分けた際の合計圧下率を15%未満に
止める必要があることは前述の通りである。 次にこの発明の方法では、軽圧下を付与する温
度域を1300〜1000℃に限定したが温度上限を1300
℃としたのは低融点の合金元素を含む鋼では、
1300℃以上では粒界が一部溶融して、粒界強度は
著しく低下しているので、熱間加工を行うと多く
の場合に鋳片割れが発生するためであり、また下
限を1000℃としたのは大型の鋳片の形状制御を行
う場合、1000℃以下では変形抵抗が高くなりすぎ
ることと、所定寸法にするまでの圧延パス回数の
確保が困難となることなど実操業上の理由のほ
か、1000℃以下では比較的高温で析出する有害析
出物、例えば、(Fe、Mn)O、(Fe、Mn)S、
(Fe、Mn)P、BN、Nb(C、N)などが大半析
出してしまつてもはや、粒内析出物を形成するこ
とによるこの発明の特徴が十分に発揮され得なく
なるためである。 (実施例) 表1に示す化学組成を有する鋼A,Bを転炉
(300ton)で溶製し、連続鋳造機にて断面サイズ
400×560mmのブルームに鋳込んだ後、直ちに切断
し、第1図に示したパターンに従う加熱、および
圧延条件にて熱間圧延を行い鋼片とした。
(Industrial application field) Direct rolling (hot rolling of a steel billet immediately after ingot making, especially continuous casting) or hot charge rolling (ingot making, especially hot rolling of a steel billet immediately after continuous casting) (charging and then hot rolling), it is possible to improve productivity and reduce thermal energy consumption by effectively preventing the occurrence of surface cracks that often occur during hot rolling. A hot rolling method including useful steps is proposed here. When manufacturing steel materials, the molten steel is made in a converter or electric furnace, turned into slabs by the ingot-forming method or continuous casting method, and then left to cool, and then subjected to maintenance such as removing surface defects in the cold. In this example, the material is heated, charged into a heating furnace, and then subjected to hot rolling. On the other hand, in recent years, from the perspective of energy conservation, hot slabs after ingot making or continuous casting are directly subjected to hot rolling without being allowed to cool, or are rolled through a heat retention furnace, and directly manufactured into products. Or a process was developed to make it into steel billets. However, in this case, due to the cold surface treatment process and the structure improvement accompanying the passing of the transformation point during the cooling-reheating process, the generation of surface defects due to hot rolling does not pose a particular problem in the conventional method. On the other hand, in direct rolling or hot charge rolling, it is difficult to ensure perfect hot treatment and surface defects often occur. (Prior art) Various methods have been devised to solve this problem.
Rolling is performed at least twice with a reduction rate of 15% or more per pass in the temperature range of 1300 to 1150℃, and then
Although it is disclosed that the second rolling is performed in a temperature range below 1150°C, the following drawbacks remain. That is, the above conditions are intended to prevent the occurrence of hot cracking in anticipation of changes in the grain boundary precipitation form of elements originally harmful to hot workability and refinement of austenite grains. However, the surface of the steel slab immediately after ingot formation is usually rough with hot water wrinkles, etc., and continuously cast slabs have so-called oscillation marks due to the vertical vibration of the mold, and both have many unevenness. 1300 without pre-maintaining the slab in this condition.
If a reduction is applied at a temperature of ~1150°C and a reduction rate of 15% or more, the tensile stress at the above-mentioned irregularities, especially at the recesses, becomes excessive and becomes the starting point of cracks, and minute defects also grow and develop into cracks. 15% in this state
If the steel is continuously rolled at the above rolling reduction ratio, the cracks will only continue to expand. Cracks that occur during hot working are mainly caused by precipitates of harmful elements, such as (Fe, Mn) O, (Fe, Mn) S, (Fe, Mn), at austenite grain boundaries.
It is widely known that P, BN, Nb (C, N), AlN, etc. precipitate, significantly reducing grain boundary strength and becoming the main path for cracking. Therefore, even if the austenite grains are made finer by recrystallization, harmful precipitates still exist at the grain boundaries, and this is not a fundamental countermeasure to prevent intergranular cracking in the surface layer. Therefore, it is difficult to completely eliminate hot cracking. (Problems to be Solved by the Invention) The earliest stage of rolling is prone to surface cracks due to the solidified structure, and the presence of minute flaws can lead to surface defects in the final product, causing many problems. . From this point of view, the inventors conducted detailed research on the mechanism and preventive measures for the occurrence of surface cracks in hot slabs during direct rolling and hot charge rolling, and found that the occurrence of surface cracks during hot rolling under specific rolling conditions. It has been discovered that it can be completely prevented. (Means for Solving the Problems) This invention provides at least one light reduction rolling at 1300 to 1000°C as an initial stage of rolling, with a reduction rate of 3 per pass during direct rolling or hot charge rolling of steel materials.
% or more and less than 15% and a total reduction of less than 15% over two or more times, and then proceeding to normal rolling. It is. (Function) As mentioned above, the surface layer of hot pieces subjected to direct rolling or hot charge rolling has unevenness, minute cracks,
Cracks and blowholes just below the surface are often present. A steel billet in this state is heated to 1300 to 1000℃ for 3 passes per pass.
% or more and less than 15%, or if the total rolling reduction is limited to less than 15% even when performing two or more times, the tensile stress affecting surface irregularities and minute defects is slight. Therefore, the degree of stress concentration is low, and cracks do not grow. On the contrary, minute defects are compressed without opening in the surface layer, and the defects are eliminated. Furthermore, as an advantage of light reduction, in many steel materials, in the temperature range of 1300 to 1000℃, the reduction is 15% per pass.
%, the austenite grains elongate without recrystallizing, and processing strain accumulates within the grains. In other words, precipitates generally precipitate along grain boundaries, subgrain boundaries, transformation zones, and dislocation lines, so for austenite grains with working strain, so-called strain-induced precipitates occur in large numbers within the grains in addition to the grain boundaries. This is because it causes precipitation. Hot embrittlement mainly increases cracking susceptibility due to the precipitation of harmful elemental precipitates at austenite grain boundaries, whereas the precipitates that precipitate within the grains are fine and are consistent with the austenite base. Because of the high
Does not induce hot cracking. In steel that has alloying elements that precipitate at grain boundaries, it is difficult to avoid the risk of cracking during hot working even if recrystallization progresses, but in the case of intragranular precipitation due to strain induction as described above. In this case, it is possible to arbitrarily perform hot working in the precipitation temperature range. Since strained precipitation progresses in the unrecrystallized state of austenite, in order to use the above method advantageously, it is necessary to control the rolling reduction rate so that recrystallization does not proceed until the harmful precipitation ends. be. The critical pressure reduction required to cause recrystallization varies significantly depending on chemical composition, processing temperature, etc.
In the temperature range of 1,000 to 1,300°C, recrystallization does not occur at a total rolling reduction of less than 15%, and the product is in a completely unrecrystallized state. It was set at less than 15%. Next, the reason why the lower limit of the light rolling reduction rate is set at 3% is 3%.
Under a light pressure of less than 1, the processing strain does not accumulate within the grains but concentrates at the grain boundaries, and the strain is released in the form of grain boundary movement, so-called strain-induced grain boundary movement. As a result, hot embrittlement is induced due to coarsening of austenite grains and grain boundary precipitates. In this respect, it is necessary to exclude the application of a reduction ratio of less than 3%. Here, this light reduction shows a remarkable effect in reducing hot embrittlement by performing it once, but there is no problem even if the light reduction rate rolling is applied in several times, and in fact, it can be introduced. This is more desirable in terms of uniformity of strain. However, at this time, the rolling reduction rate per roll should be 3% or more,
In addition, as mentioned above, it is necessary to keep the total rolling reduction ratio when dividing into multiple steps to less than 15%. Next, in the method of this invention, the temperature range for applying light pressure was limited to 1300 to 1000°C, but the upper temperature limit was set to 1300°C.
℃ is used for steels containing alloying elements with low melting points.
This is because at temperatures above 1300℃, some of the grain boundaries melt and the grain boundary strength decreases significantly, which often causes slab cracking when hot working is performed.The lower limit was set at 1000℃. The reason for this is that when controlling the shape of large slabs, the deformation resistance becomes too high at temperatures below 1000℃, and it becomes difficult to secure the number of rolling passes required to achieve the specified dimensions, as well as operational reasons. , harmful precipitates that precipitate at relatively high temperatures below 1000℃, such as (Fe, Mn) O, (Fe, Mn) S,
This is because (Fe, Mn) P, BN, Nb (C, N), etc. are mostly precipitated and the feature of the present invention due to the formation of intragranular precipitates can no longer be fully exhibited. (Example) Steels A and B having the chemical compositions shown in Table 1 were melted in a converter (300 tons), and the cross-sectional size was melted in a continuous casting machine.
After being cast into a bloom of 400 x 560 mm, it was immediately cut and hot-rolled under the heating and rolling conditions shown in the pattern shown in Figure 1 to obtain a steel billet.

【表】 その際の鋼片表面の割れ発生の頻度と初期圧延
条件との関係を表2にまとめて示す。 なお、鋼片表面の割れ発生の頻度は、熱間圧延
後鋼片全表面を目視により観察し、計数して算出
した。 表2において供試No.1〜No.12については第1図
でホツトチヤージの場合のヒートパターンを示し
たのに反して連鋳のあと切断したブルームを直接
圧延により熱間圧延したものであり、同No.13〜32
は切断したブルームを900ないし800℃まで一たん
冷却して加熱炉に装入し圧延温度に加熱して圧延
する、いわゆるホツトチヤージ圧延にて熱間圧延
したものである。
[Table] Table 2 summarizes the relationship between the frequency of cracking on the surface of the steel slab and the initial rolling conditions. The frequency of occurrence of cracks on the surface of the steel slab was calculated by visually observing the entire surface of the steel slab after hot rolling and counting. In Table 2, samples No. 1 to No. 12 were hot-rolled by direct rolling from blooms cut after continuous casting, contrary to the heat pattern shown in Figure 1 for hot charge. Same No.13~32
The cut bloom is once cooled to 900 to 800°C, charged into a heating furnace, heated to rolling temperature, and rolled, which is called hot-rolling.

【表】【table】

【表】 No.1、No.5〜6、No.8〜No.13、No.17〜21、No.25
〜26及びNo.28〜32はいずれも比較例である。製造
条件により若干の相違はあるものの、いずれも鋼
片表面の割れ発生頻度は高い水準にある。 これに対しこの発明法によればNo.2〜4、No.
7、No.14〜16、No.22〜24そしてNo.27の例のように
いずれも、鋼片表面の割れ発生が極めて少ない。
なおこれらの効果は化学組成の異なる鋼A及びB
について区別のないのは明らかである。 (発明の効果) この発明は、鋼材の直接ないしはホツトチヤー
ジ圧延において従来不可避で、効果的な防止対策
が未解決であつた熱間割れの有効な回避に有用で
ある。
[Table] No.1, No.5-6, No.8-No.13, No.17-21, No.25
-26 and Nos. 28-32 are all comparative examples. Although there are some differences depending on the manufacturing conditions, the frequency of cracking on the surface of the steel billet is at a high level in all cases. On the other hand, according to this invention method, No. 2 to 4, No.
7. As in the examples of Nos. 14 to 16, Nos. 22 to 24, and No. 27, the occurrence of cracks on the surface of the steel piece is extremely small.
Note that these effects apply to steels A and B, which have different chemical compositions.
It is clear that there is no distinction between (Effects of the Invention) The present invention is useful for effectively avoiding hot cracking, which has hitherto been unavoidable in direct or hot charge rolling of steel materials and for which no effective prevention measures have been taken.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼材の製造工程図である。 FIG. 1 is a diagram of the manufacturing process of steel materials.

Claims (1)

【特許請求の範囲】 1 鋼材の直接圧延又はホツトチヤージ圧延に際
し、 圧延の初期段階として1300〜1000℃の温度範囲
で少なくとも1回の軽圧下率圧延を1パス当り圧
下率は3%以上〜15%未満でかつ2回以上にわた
る合計圧下率でも15%未満の制限下に行つてか
ら、引続き通常の圧延に移行することを特徴とす
る、表面割れ発生の少ない鋼材の熱間圧延方法。
[Claims] 1. During direct rolling or hot charge rolling of steel materials, as an initial stage of rolling, at least one light reduction rolling is carried out at a temperature range of 1300 to 1000°C, and the reduction per pass is 3% or more to 15%. 1. A method for hot rolling steel materials with less occurrence of surface cracks, characterized in that the total rolling reduction is less than 15% even in two or more times, and then normal rolling is carried out.
JP22960284A 1984-10-31 1984-10-31 Method for hot rolling steel stock little causing surface cracking Granted JPS61108401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22960284A JPS61108401A (en) 1984-10-31 1984-10-31 Method for hot rolling steel stock little causing surface cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22960284A JPS61108401A (en) 1984-10-31 1984-10-31 Method for hot rolling steel stock little causing surface cracking

Publications (2)

Publication Number Publication Date
JPS61108401A JPS61108401A (en) 1986-05-27
JPH0347921B2 true JPH0347921B2 (en) 1991-07-22

Family

ID=16894749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22960284A Granted JPS61108401A (en) 1984-10-31 1984-10-31 Method for hot rolling steel stock little causing surface cracking

Country Status (1)

Country Link
JP (1) JPS61108401A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744402A (en) * 1980-08-29 1982-03-12 Kawasaki Steel Corp Reforming method for continously cast ni-containing billet to be hot rolled
JPS5852441A (en) * 1981-09-22 1983-03-28 Sumitomo Metal Ind Ltd Production of high strength cold rolled steel plate having good press formability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744402A (en) * 1980-08-29 1982-03-12 Kawasaki Steel Corp Reforming method for continously cast ni-containing billet to be hot rolled
JPS5852441A (en) * 1981-09-22 1983-03-28 Sumitomo Metal Ind Ltd Production of high strength cold rolled steel plate having good press formability

Also Published As

Publication number Publication date
JPS61108401A (en) 1986-05-27

Similar Documents

Publication Publication Date Title
KR100971902B1 (en) Method and installation for producing a hot rolled strip from austenitic rust-resistant steels
JPH0947854A (en) Method for restraining surface crack of cast slab
JPH0565263B2 (en)
KR950005320B1 (en) Process for producing thin sheet of cr-ni based stainless steel having excellent surface quality and workability
US6451136B1 (en) Method for producing hot-rolled strips and plates
JPH0347921B2 (en)
JP3575400B2 (en) Direct-feed rolling method of continuous cast slab
JPH07251265A (en) Method for scarfing cast steel slab
JP2843665B2 (en) Hot work crack prevention method for continuous cast slab.
JPH0568525B2 (en)
JP2561476B2 (en) Method for preventing cracking during rapid solidification of Cr-Ni stainless steel or Cr-Ni high alloy steel
JPH0541348B2 (en)
JPH0112561B2 (en)
JPH0333777B2 (en)
US4422884A (en) Method of treating a continuously cast strand formed of stainless steel
JPH06246414A (en) Continuous casting of high carbon steel
KR900004844B1 (en) Process for reducing the edge cracks of steel billet in hot rolled processing
JPH07238322A (en) Method for preventing surface cracking in steel slab
JPS58144418A (en) Manufacture of high-mn steel
JPS5852441B2 (en) Method for preventing surface cracking of steel slabs during hot rolling
JP2548942B2 (en) Method for preventing cracking during rapid solidification of Fe-Ni based alloy
JPH02263931A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JPH054169B2 (en)
JPH07290101A (en) Method for preventing surface crack at time of hot edging/rolling continuously cast slab
JPS58221603A (en) Method for preventing cracking in hot rolling of extra- low carbon steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees