JPH0347749A - Resistance-weldable damping steel plate - Google Patents

Resistance-weldable damping steel plate

Info

Publication number
JPH0347749A
JPH0347749A JP1182964A JP18296489A JPH0347749A JP H0347749 A JPH0347749 A JP H0347749A JP 1182964 A JP1182964 A JP 1182964A JP 18296489 A JP18296489 A JP 18296489A JP H0347749 A JPH0347749 A JP H0347749A
Authority
JP
Japan
Prior art keywords
steel plate
hardness
metal particles
resin
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1182964A
Other languages
Japanese (ja)
Inventor
Motoo Sato
始夫 佐藤
Yoshiyuki Yuzutori
柚鳥 善之
Ryuichi Ishida
石田 隆一
Hiroshi Nishikawa
西川 廣士
Kazuhiko Gunda
郡田 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1182964A priority Critical patent/JPH0347749A/en
Priority to EP90301998A priority patent/EP0385684A1/en
Priority to KR1019900002501A priority patent/KR920008670B1/en
Priority to CA002011112A priority patent/CA2011112A1/en
Publication of JPH0347749A publication Critical patent/JPH0347749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To contrive to stabilize high resistance-weldability without impairing the bond strength by a method wherein the ratio between the hardness of metal particle and the surface hardness of thin steel sheet is specified. CONSTITUTION:Viscoelastic polymeric resin, in which metal particles acting as electrically conductive material are uniformly dispersed, is laminated between two thin steel sheets. The preferable thickness of the viscoelastic polymeric resin layer is 10 - 150mum. As the viscoelastic polymeric resin, polyolefin, polyester or the like can be used. Material for giving electrical conductivity is one, which makes the ratio between the surface hardness (Sh) of the skin steel sheet and the hardness (Ph) of metal particle to be 0.6<=Ph/Sh<=1.1. The ratio between the metal particle diameter in the direction of the thickness of the resin film before lamination and that after lamination or flattening ratio is preferably ensured to be 20% or more. Further, the amount of biting of the metal particle into the skin steel sheet is 1% of the thickness of the resin film at the lowest and 10% as its upper limit. Furthermore, the loading of metal particle is preferably 2 - 5vol.%.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、優れた振動減衰能を有する制振鋼板に係り、
より詳しくは、プレス成形性を左右する接着強度に優れ
、しかもスポット溶接、シーム溶接、プロジェクション
溶接に代表される抵抗溶接性能に特に優れた抵抗溶接可
能型制振鋼板に関する。 (従来の技術) 近年、各種の分野において静音性、静粛性の要求が高ま
ってきた。特に、自動車、家庭電気製品等の原動機を使
用する商品分野或いは建築物に使用される建材用途のよ
うに、外部からの振動、騒音を効果的に抑制する必要の
ある分野では、この振動、騒音エネルギーの吸収に有効
な制振鋼板の適用が積極的に進められている。 このような制振鋼板としては、冷延鋼板、各種めっき鋼
板、ステンレス鋼板、アルミニウム板、チタン板、更に
は合成樹脂板等を表皮材に使用し、この2枚の表皮板間
に粘弾性高分子樹脂を挾み込んだ、所謂、拘束型の複合
材(制振材料)が適用されている。 しかし、表皮鋼板間に挾み込まれた高分子樹脂は、電気
絶縁体であるため、従来から薄物材を構造部材に適用し
た場合の接合技術として代表的な技術であるスポット溶
接、シーム溶接、プロジェクション溶接等の溶接法をそ
のまま適用できない難点があった。 (発明が解決しようとする課題) 最近、この電気絶縁体である粘弾性高分子樹脂に導電性
を付与するために、鉄粉(特開昭57−51453号公
報)、ニッケル粉末(特開昭63−188040号公報
)等の各種金属粉末や、カーボン粉末(特開昭57−1
63560号公報)等の導電性物質を添加する方法が広
く採用されつつある。 これらの方法によれば、粘弾性高分子樹脂に導電性が一
応付与されるものの、溶接施工時の溶接不良の発生を未
然に防止するためには、多量の導電性物質の添加が必要
である。しかし、導電性物質の添加量を増すにつれて、
溶接性は安定化し、溶接不良発生率は低減できるものの
、それと共に剪断引張接着強度も低下するという問題が
生じる(「材料とプロセスJVoQ、1、Nci 5 
講演番号345、[鉄と鋼JVoU、63.Na13、
p、363参照)。 接着強度の低下は、薄物材の加工法として代表的なプレ
ス加工時に複合板(2枚板)の剥離発生をもたらし、成
形加工ができないという致命的な欠陥となっている。 また、表皮材に各種めっき鋼板を使用した場合には、導
電性物質を添加しても、容易に溶接性の安定化を゛図り
、溶接不良の発生を未然に且つ完全に防止することは困
難であり、制振鋼板の表皮材として、耐蝕性に優れた各
種めっき鋼板を使用した材料の適用部拡大に大きな阻害
要因となっている。 本発明は、上記の従来技術の問題点を解決するためにな
されたものであって、制振性能を低下させることなく、
プレス成形に必要な接着強度を損なうこともないことは
勿論のこと、表皮材にめっき鋼板を使用した場合でも、
抵抗溶接が安定して施工できる抵抗溶接可能型制振鋼板
を提供することを目的とするものである。 (課題を解決するための手段) か\る目的を達成するため、本発明者等は、先ず、抵抗
溶接時の溶接欠陥の発生する原因と接着強度の低下する
原因を詳細に調査した。その結果、以下のような原因が
あることが判明した。 すなわち、接着強度の低下と溶接不良の発生する原因は
、制振鋼板ラミネート時の接着が不完全であるため、粘
弾性高分子樹脂中に添加した導電性付与物質がラミネー
ト後に1表皮鋼板との間に樹脂を介在させた(巻き込ん
だ)状態のものと、樹脂の介在しないものとが不均一に
存在することにある。特に、表皮鋼板表面部の硬度が高
いめっき鋼板の場合には、樹脂を巻き込み、介在させた
状態で存在している頻度が非常に高いということである
。 このような状態で導電性物質が存在した場合には、抵抗
溶接時の通電初期には、樹脂を介在しない通電回路によ
り電流が流れ、通電に伴う抵抗発熱(ジュール熱)によ
り、樹脂が溶融軟化し、電極の加圧力により樹脂が排除
され、表皮鋼板と導電性物質との間で絶縁破壊を生じ、
スパークを発生することになる。また、表皮鋼板と導電
性物質との間に樹脂を介在させた頻度が高い場合には、
通電初期に通電回路として作用する局部に電流が集中し
、この際のジュール発熱量が表皮鋼板の熱容量を大幅に
上回れば、表皮鋼板が溶融し、内部樹脂の軟化・溶融・
蒸発に伴う鋼板間の内圧上昇に耐えきれず、表皮鋼板に
穴あきが発生する場合も生じる。 これを防止するために、導電性物質の添加量を増してい
くと、表皮鋼板間に樹脂を介在しない安定な通電回路が
増加し、溶接性は安定になると予想される。しかし1本
来の接着強度を付与する鋼板表面と樹脂との接着面積の
減少に伴い、接着に寄与する水素結合の数が減少し、接
着強度が低下する。また、樹脂膜厚さよりも粒子径の小
さい導電性物質を添加した場合には、電極の加圧によっ
ても有効な通電回路を形成することができず、溶接継手
が得られない未通電や、穴アキ等の重大欠陥の発生を引
き起こすことが明らかになった。 したがって、抵抗溶接性の安定化を図るためには、表皮
鋼板間の通電状態を良好にするために、制振樹脂膜厚さ
よりも大きな物質を添加することが望ましいが、ラミネ
ート時に導電性物質のみが変形する場合には、表皮鋼板
と制振樹脂との接着面積の低下をもたらし、接着強度が
低下する。また、表皮鋼板と通電性物質との間に樹脂を
介在させるため、抵抗溶接性はかならずしも安定になら
ない。 以上の原因究明の結果に基づき1本発明者等は、粘弾性
高分子樹脂に粉末状の導電性物質を混合して、抵抗溶接
時に有効な通電回路形成する方法について、前述の従来
技術とは全く異なる角度から研究した結果、従来技術で
は困難であった抵抗溶接可能型制振鋼板の接着強度を損
なうことなく、極めて高い抵抗溶接性の安定化を容易に
し、且つ低コストで製造可能であることを見い出したも
のである。 すなわち、本発明に係わる抵抗溶接可能型制振鋼板は、
2枚の薄鋼板の間に、金属粒子を均一に分散させた粘弾
性高分子樹脂を挾みこんでラミネートされている制振鋼
板において、金属粒子の硬さ(Ph)と薄鋼板の表面硬
さ(Sh)の比が0.6≦Ph/Sh≦1.1の範囲で
あることを特徴とするものである。 以下に本発明を更に詳しく説明する。 (作用) 本発明による抵抗溶接可能型制振鋼板は、2枚の薄鋼板
の間に、導電性物質として作用する金属粒子が均一に分
散されている粘弾性高分子樹脂がラミネートされている
構造を有している。 薄鋼板としては、この種の用途に用いられる様々な鋼種
が可能であり0通常の冷延鋼板、熱延鋼板、各種めっき
鋼板、ステンレス鋼板等々であり、特に各種めっき鋼板
に最適なものであり、また、その板厚さも特に制限され
ない。 粘弾性高分子樹脂層の厚さは特に制限されないが、10
〜150μ復が好ましく、より好ましくは30〜80μ
mの範囲である。樹脂膜厚さが10μm未満では、制振
樹脂の制振性能、すなわち。 外部からの振動エネルギーを熱エネルギーに変換し、放
散させる効果が急激に減衰し、制振鋼板本来の特性を発
揮できなくなるので好ましくない。 一方、樹脂膜厚さが150μmを超えても制振性能自体
の低下はないが、樹脂自体の強度不足により、制振鋼板
の加工成形時に鋼板端部にズレ量が大きくなり不利であ
る。 なお、粘弾性高分子樹脂としては、この種の用途に用い
られるポリオレフィン、ポリエステル、酢酸ビニール等
々、種々の材質が可能であることは言うまでもない。 導電性付与物質としては、各種の金属粒子を用いること
ができるが、本発明では1表皮鋼板の表面硬さ(Sh)
と金属粒子の硬さ(Ph)との関係を規定したものであ
り、その範囲は0.6≦Ph/Sh≦1.1とする。す
なわち、金属粒子の硬さと表皮鋼板の表面硬さとの比が
0.6以上であれば、抵抗溶接時の溶接不良の発生は認
められないが、0.6未満では溶接不良の発生を完全に
は防止できない。またその比が1.1を超えると、溶接
性には問題ないが、制振鋼板の表面に金属粒子の分散模
様が発生し、表面品質の面から好ましくない。 次に添加する金属粒子の硬さについて説明する。 金属粒子の安価な製造法としては、水アトマイズ法があ
る。この方法で製造すると溶融状態の金属゛溶湯から急
冷されて得られるので、アトマイズままでは表面に酸化
膜が厚く存在するため、導電性物質としては使用が難し
い。また急冷組織を持つため、硬さが非常に高く延性が
乏しい。この欠点を回避するため、還元雰囲気中で熱処
理され表面層の酸化膜の還元処理と、金属粒子の硬さ(
強度)の低下と延性改善が図られる。この熱処理条件を
コントロールすることにより、所定の粒子硬さと変形能
を確保することができる。 なお、添加する金属粒子の粒径に関しては、鉄粉の場合
を例にとり説明すると、粉末状のものを使用する場合に
は、一定の粒子サイズのもののみは得られず、常にある
範囲の粒度分布を伴うものである。したがって、JIS
Z8801の規定に従った篩いを使用して、2ランク異
なるメツシュ範囲の大きさに篩い分は整粒とした粉末を
使用するのが実用的である。 制振鋼板の製造に際しては、予め制振樹脂中にその硬さ
を調整した導電性付与のための金属粒子を均一に分散さ
せた樹脂フィルムとし、この樹脂フィルを2枚の表皮鋼
板(薄鋼板)で挾み込む時。 加熱により樹脂を一度溶融させ、制振樹脂層への空気の
巻き込みを防止するため、樹脂溜まりを生成させる。そ
の後、所定の樹脂膜厚さに金属ロールでラミネートする
場合に、溶融樹脂の反力以上の加圧力を付加した状態で
ラミネートすることにより、導電性物質である金属粒子
が樹脂膜厚さまで変形すると共に、表皮鋼板に噛み込ん
だ状態でラミネートされることにより、金属粒子と表皮
鋼板との接触が非常に良好となり、抵抗溶接性は安定と
なる。また、この時の金属粒子が表皮鋼板に噛み込んだ
状態で存在することが、接着強度に関しては、アンカー
効果として作用し、導電性物質の添加量を増した場合の
接着強度の低下防止に有効に作用するものである(第1
図参照)。 表皮鋼板及び金属粒子共に変形し、アンカー効果を発揮
させるためには、添加する金属粒子の硬さは金属粒子と
直接接触する表皮鋼板表面層の硬さと一定の関係を保つ
必要があり、また添加した金属粒子のラミネート前後の
樹脂膜厚さ方向の粒径比、すなわち、変形量(偏平率)
を少なくとも6%以上、望ましくは20%以上確保する
ことが好ましい。なお、金属粒子の変形量の上限は特に
規定しないが、常識的に使用される範囲の硬さ1粒径の
金属粒子を用いて常識的な樹脂厚さにラミネートされる
状況を考慮すれば、90%を超える状況で行われること
はない。 また、接着強度に与える金属粒子のアンカー効果を確保
するためには、ラミネート後の金属粒子の表皮鋼板への
噛み込み量(δ)を樹脂膜厚さ(1)の最低1%以上と
すれば効果がある。しかし、10%以上も噛み込ませた
状態でラミネートすることは困難であり、また大きく表
皮鋼板に噛み込ませるためには金属粒子の硬さを不必要
に高くする必要があり、プレス成形後の表面状況にも悪
影響を与える。そのため、10%を上限とするのが好ま
しい。 なお、金属粒子の添加量は、溶接性の安定に必要な最低
量以上とすれば良く、2容量%未滴の添加では溶接不良
の発生を防止できず、また制振性能、接着強度への影響
のない範囲で、最大値は5容量%であり、2〜5容量%
が望まし・い。 また、平均粒子径(d)と制振樹脂膜厚さ(1)の比が
1.2以上であれば、スポット溶接不良の発生は認めら
れない、d/を値が2.5以上になると、剪断接着強度
がやや大きく低下する。したがって、d/を値の上限は
2.5が好ましい。 (実施例) 次に本発明の実施例を示す。 失五籠よ 板厚0 、4 m1ntの連鋳アルミキルド鋼板と、両
面合金化溶融亜鉛めっき鋼板(めっき付着量:45g/
m2)を使用し、その間に、金属粒子を予め均一に分散
させたポリオレフィン系樹脂をラミネートした。このラ
ミネート鋼板より試験片を採取し、確性試験を行った。 なお、ラミネート条件は以下の通りである。 ■導電性付与物質: (1)水アトマイズ法で製造した純鉄系鉄粉、硬さHv
(0,005)= 110 (2)  水アトマイズ法で製造した低合金鋼粉、硬さ
Hv(0、0O5)= 173 (3)  水アトマイズ法で製造した純Ni粉末、硬さ
Hv(0,005)=122 (4)  ガス還元法で製造した純Ni粉末、硬さHv
(0,005)=252 (5)水アトマイズ法で製造した5US304粉末、硬
さHv(0,005)=220(6)  水アトマイズ
法で製造した5US304粉末、硬さHv(0,005
)=480■金金属子・粒径:63〜87μ脇 ■金属粒子添加量:3.5容量%(一定)■ラミネート
樹脂膜厚さ:50μ醜(±3μn+)■表皮鋼板表面層
(めっき層)の硬さ Hv(0,001) = 265 試作したラミネート鋼板より、試験片サイズ30m++
+w X 100++usQの形状に切断し、1000
枚のサンプルを採取した。このサンプルを用い、重ね代
30+mでスポット溶接を行い、スポット溶接性を評価
した。その結果を第1表に示す。 なお、溶接条件は、電極加圧力200kgf、溶接電流
8kA、通電時間12サイクルである。スポット溶接性
は、溶接後のスポット溶接試験片の表面状況を観察し、
鋼板表面の穴開き、焼け、未通電等の溶接不良発生率を
集計し、全溶接試験枚数比で溶接不良発生率を求めて評
価した。 第1表より、金属粒子の硬さ(Ph)と薄鋼板の表面硬
さ(Sh)の比が0.6≦Ph/Sh≦1.1の範囲に
ある本発明例&2.NQ4〜Nα5は、いずれもスポッ
ト溶接性が優れ5表面状況も良好であることがわかる。
(Industrial Application Field) The present invention relates to a damping steel plate having excellent vibration damping ability,
More specifically, the present invention relates to a resistance weldable vibration-damping steel plate that has excellent adhesive strength, which influences press formability, and is particularly excellent in resistance welding performance represented by spot welding, seam welding, and projection welding. (Prior Art) In recent years, demands for quietness and quietness have increased in various fields. In particular, in fields where it is necessary to effectively suppress vibrations and noise from the outside, such as products that use prime movers such as automobiles and home appliances, or construction materials used in buildings, this vibration and noise The application of damping steel plates, which are effective in absorbing energy, is being actively promoted. Such damping steel plates use cold-rolled steel plates, various plated steel plates, stainless steel plates, aluminum plates, titanium plates, and even synthetic resin plates as the skin material, and have high viscoelasticity between these two skin plates. A so-called restraint-type composite material (vibration damping material) in which molecular resin is sandwiched is used. However, since the polymer resin sandwiched between the skin steel plates is an electrical insulator, spot welding, seam welding, which is the typical joining technology when applying thin materials to structural members, has traditionally been used. There was a drawback that welding methods such as projection welding could not be directly applied. (Problems to be Solved by the Invention) Recently, iron powder (Japanese Patent Application Laid-open No. 57-51453), nickel powder (Japanese Patent Application Laid-open No. 57-51453), and 63-188040), carbon powder (Japanese Patent Laid-Open No. 57-1
63560) and the like are becoming widely adopted. According to these methods, conductivity is imparted to the viscoelastic polymer resin, but in order to prevent welding defects during welding, it is necessary to add a large amount of conductive substance. . However, as the amount of conductive material added increases,
Although weldability can be stabilized and the incidence of welding defects can be reduced, a problem arises in that shear tensile adhesive strength also decreases ("Materials and Processes JVoQ, 1, Nci 5
Lecture number 345, [Tetsu to Hagane JVoU, 63. Na13,
(See p. 363). A decrease in adhesive strength causes the composite plate (two plates) to peel during press processing, which is a typical method for processing thin materials, and is a fatal defect that prevents molding. Furthermore, when various types of plated steel sheets are used as the skin material, it is difficult to easily stabilize weldability and completely prevent the occurrence of welding defects even if conductive substances are added. This is a major impediment to the expansion of the application of various types of plated steel sheets with excellent corrosion resistance as skin materials for damping steel sheets. The present invention was made in order to solve the problems of the above-mentioned conventional technology, and without reducing vibration damping performance,
It goes without saying that the adhesive strength required for press forming is not compromised, and even when plated steel sheets are used as the skin material,
The object of the present invention is to provide a resistance weldable vibration-damping steel plate that allows stable resistance welding. (Means for Solving the Problems) In order to achieve the above object, the present inventors first investigated in detail the causes of welding defects during resistance welding and the causes of decrease in adhesive strength. As a result, the following causes were found. In other words, the reason for the decrease in adhesive strength and the occurrence of welding defects is that the adhesion during lamination of damping steel plates is incomplete, and the conductivity-imparting substance added to the viscoelastic polymer resin does not bond with the skin steel plate after lamination. This is due to the fact that there are non-uniform parts with resin interposed (involved) in between and parts without resin. In particular, in the case of a plated steel plate with a high hardness on the surface of the skin steel plate, resin is very often present in a state where the resin is involved and interposed. If a conductive substance is present in such a state, at the initial stage of energization during resistance welding, current will flow through the energizing circuit without resin, and the resin will melt and soften due to the resistance heat generation (Joule heat) that accompanies the energization. However, the resin is removed by the pressure applied by the electrode, causing dielectric breakdown between the skin steel plate and the conductive material.
Sparks will be generated. In addition, if resin is often interposed between the skin steel plate and the conductive material,
At the initial stage of energization, current concentrates in a local area that acts as a current-carrying circuit, and if the Joule heat generated at this time significantly exceeds the heat capacity of the skin steel plate, the skin steel plate will melt and the internal resin will soften, melt, and
In some cases, the skin steel plate becomes perforated because it cannot withstand the increase in internal pressure between the steel plates due to evaporation. In order to prevent this, if the amount of conductive material added is increased, stable current-carrying circuits without intervening resin between the skin steel plates will increase, and weldability will become stable. However, as the adhesive area between the steel plate surface and the resin, which provides the original adhesive strength, decreases, the number of hydrogen bonds that contribute to the adhesive decreases, and the adhesive strength decreases. In addition, if a conductive substance with a particle size smaller than the resin film thickness is added, an effective current-carrying circuit cannot be formed even by applying pressure to the electrode, resulting in non-current-carrying and holes where welded joints cannot be obtained. It has become clear that this causes serious defects such as empty space. Therefore, in order to stabilize resistance weldability, it is desirable to add a substance larger than the thickness of the damping resin film in order to improve the electrical conductivity between the skin steel plates. When the surface steel plate is deformed, the bonding area between the skin steel plate and the damping resin decreases, and the bonding strength decreases. Furthermore, since a resin is interposed between the skin steel plate and the electrically conductive substance, resistance weldability is not always stable. Based on the results of the above cause investigation, the present inventors have developed a method for forming a current-carrying circuit that is effective during resistance welding by mixing a powdered conductive substance with a viscoelastic polymer resin, which is different from the prior art described above. As a result of research from a completely different angle, we have found that it is possible to easily stabilize extremely high resistance weldability without compromising the adhesive strength of resistance weldable damping steel plates, which was difficult with conventional technology, and to manufacture them at low cost. This is what I discovered. That is, the resistance weldable damping steel plate according to the present invention is
In a vibration-damping steel plate that is laminated by sandwiching a viscoelastic polymer resin with metal particles evenly dispersed between two thin steel plates, the hardness (Ph) of the metal particles and the surface hardness of the thin steel plate are It is characterized in that the ratio of (Sh) is in the range of 0.6≦Ph/Sh≦1.1. The present invention will be explained in more detail below. (Function) The resistance weldable damping steel plate according to the present invention has a structure in which a viscoelastic polymer resin in which metal particles that act as a conductive substance are uniformly dispersed is laminated between two thin steel plates. have. The thin steel sheet can be made of various steel types used for this type of application, such as ordinary cold rolled steel sheet, hot rolled steel sheet, various types of plated steel sheet, stainless steel sheet, etc., and is particularly suitable for various types of plated steel sheet. Also, the thickness of the plate is not particularly limited. The thickness of the viscoelastic polymer resin layer is not particularly limited, but may be 10
-150μ is preferable, more preferably 30-80μ
m range. When the resin film thickness is less than 10 μm, the damping performance of the damping resin decreases. This is not preferable because the effect of converting external vibration energy into thermal energy and dissipating it is rapidly attenuated, making it impossible for the vibration damping steel plate to exhibit its original characteristics. On the other hand, even if the resin film thickness exceeds 150 μm, the damping performance itself does not deteriorate, but due to the insufficient strength of the resin itself, the amount of deviation at the end of the steel plate becomes large during processing and forming of the damping steel plate, which is disadvantageous. It goes without saying that the viscoelastic polymer resin can be made of various materials used for this type of application, such as polyolefin, polyester, vinyl acetate, and the like. Various metal particles can be used as the conductivity imparting substance, but in the present invention, the surface hardness (Sh) of the skin steel sheet
and the hardness (Ph) of metal particles, and the range is 0.6≦Ph/Sh≦1.1. In other words, if the ratio between the hardness of the metal particles and the surface hardness of the skin steel plate is 0.6 or more, welding defects will not occur during resistance welding, but if it is less than 0.6, welding defects will not occur completely. cannot be prevented. If the ratio exceeds 1.1, there will be no problem in weldability, but a dispersion pattern of metal particles will occur on the surface of the damping steel plate, which is unfavorable from the viewpoint of surface quality. Next, the hardness of the metal particles to be added will be explained. A water atomization method is an inexpensive method for producing metal particles. When manufactured by this method, the metal is obtained by rapidly cooling it from a molten metal, so if it is atomized, a thick oxide film exists on the surface, making it difficult to use it as a conductive material. Also, because it has a rapidly cooled structure, it has very high hardness and poor ductility. In order to avoid this drawback, heat treatment is performed in a reducing atmosphere to reduce the oxide film on the surface layer, and the hardness of the metal particles (
strength) and improve ductility. By controlling the heat treatment conditions, predetermined particle hardness and deformability can be ensured. Regarding the particle size of the metal particles to be added, using the case of iron powder as an example, when using powdered metal particles, it is not possible to obtain only a certain particle size, but always within a certain range of particle sizes. It involves distribution. Therefore, JIS
It is practical to use a sieve that complies with the regulations of Z8801, and use powder that has been sieved to a size in the mesh range that is two ranks different. When manufacturing vibration-damping steel plates, a resin film is prepared by uniformly dispersing metal particles for imparting conductivity whose hardness has been adjusted in a damping resin, and this resin film is then bonded to two skin steel plates (thin steel plates). ) when sandwiching. The resin is once melted by heating, and a resin pool is created to prevent air from being drawn into the damping resin layer. After that, when laminating with a metal roll to a predetermined resin film thickness, laminating is applied with a pressure greater than the reaction force of the molten resin, so that the metal particles, which are conductive substances, are deformed to the resin film thickness. At the same time, by laminating the metal particles in a state where they are bitten into the skin steel plate, contact between the metal particles and the skin steel plate becomes very good, and resistance weldability becomes stable. In addition, the presence of metal particles embedded in the skin steel plate acts as an anchor effect on adhesive strength, and is effective in preventing a decrease in adhesive strength when the amount of conductive material added is increased. (first
(see figure). In order for both the skin steel plate and the metal particles to deform and exhibit an anchor effect, the hardness of the added metal particles must maintain a certain relationship with the hardness of the skin steel plate surface layer that is in direct contact with the metal particles. The particle size ratio of the metal particles in the resin film thickness direction before and after lamination, that is, the amount of deformation (oblateness)
It is preferable to secure at least 6% or more, preferably 20% or more. Note that there is no particular upper limit to the amount of deformation of the metal particles, but if we consider the situation where metal particles with a hardness of 1 particle size within the commonly used range are laminated to a common resin thickness, This is not done in more than 90% of cases. In addition, in order to ensure the anchoring effect of metal particles on adhesive strength, the amount of metal particles biting into the skin steel plate after lamination (δ) should be at least 1% or more of the resin film thickness (1). effective. However, it is difficult to laminate with 10% or more of the metal particles biting into the surface steel plate, and in order to make the metal particles bite into the skin steel plate to a large extent, it is necessary to make the hardness of the metal particles unnecessarily high. It also has a negative effect on the surface condition. Therefore, it is preferable to set the upper limit to 10%. Note that the amount of metal particles added should be at least the minimum amount necessary for stable weldability; adding less than 2% by volume will not prevent welding defects, and will affect vibration damping performance and adhesive strength. Within the range without influence, the maximum value is 5% by volume, and 2-5% by volume
is desirable. Also, if the ratio of the average particle diameter (d) to the damping resin film thickness (1) is 1.2 or more, no spot welding defects will be observed; if the value of d/ is 2.5 or more, , the shear adhesive strength decreases somewhat significantly. Therefore, the upper limit of the value of d/ is preferably 2.5. (Example) Next, an example of the present invention will be shown. A continuous cast aluminum killed steel sheet with a thickness of 0.4 m1 nt and a double-sided alloyed hot-dip galvanized steel sheet (coating weight: 45 g/
m2), and a polyolefin resin in which metal particles were uniformly dispersed in advance was laminated therebetween. A test piece was taken from this laminated steel plate and an accuracy test was conducted. Note that the lamination conditions are as follows. ■Conductivity imparting substance: (1) Pure iron powder manufactured by water atomization method, hardness Hv
(0,005) = 110 (2) Low alloy steel powder manufactured by water atomization method, hardness Hv (0, 0O5) = 173 (3) Pure Ni powder manufactured by water atomization method, hardness Hv (0, 005)=122 (4) Pure Ni powder produced by gas reduction method, hardness Hv
(0,005) = 252 (5) 5US304 powder manufactured by water atomization method, hardness Hv (0,005) = 220 (6) 5US304 powder manufactured by water atomization method, hardness Hv (0,005
)=480 ■Gold metal particle/particle size: 63~87μ side ■Metal particle addition amount: 3.5% by volume (constant) ■Laminating resin film thickness: 50μ ugly (±3μn+) ■Skinned steel plate surface layer (plating layer ) Hardness Hv (0,001) = 265 From the prototype laminated steel plate, the test piece size was 30m++
Cut into the shape of +w x 100++usQ, 1000
A sample was taken. Using this sample, spot welding was performed with an overlap distance of 30+ m, and spot weldability was evaluated. The results are shown in Table 1. The welding conditions were: electrode pressure of 200 kgf, welding current of 8 kA, and energization time of 12 cycles. Spot weldability was determined by observing the surface condition of the spot welding specimen after welding.
The incidence of welding defects such as holes, burns, and non-energization on the surface of the steel plate was totaled, and the rate of occurrence of welding defects was calculated based on the ratio of the number of sheets tested for welding. From Table 1, it can be seen that the invention examples &2. It can be seen that all of NQ4 to Nα5 have excellent spot weldability and good surface conditions.

【以下余白】[Left below]

11礼 板厚0 、4 mmtの連鋳アルミキルド鋼板と、 Z
n−Ni合金両面電気めっき鋼板(めっき付着量:20
g/[11”)を使用し、その間に、金属粒子を予め均
一に分散させたポリオレフィン系樹脂をラミネートした
。このラミネート鋼板より試験片を採取し、確性試験を
行った。なお、ラミネート条件は以下の通りである。 ■導電性付与物質: (1)水アトマイズ法で製造した純鉄系鉄粉。 硬さHv(0,005)” 110 (2)  水アトマイズ法で製造した低合金鋼粉、硬さ
Hv(0,005)= 173 (3)  水アトマイズ法で製造した純Ni粉末。 硬さHv(0,005)= 122 (4)  ガス還元法で製造した純Ni粉末、硬さHv
(0,005)= 252 (5)  水アトマイズ法で製造した5US304粉末
、硬さHv(0,005)” 220(6)水アトマイ
ズ法で製造した5US304粉末、硬さHv(0,00
5)=480■金金属子・粒径:63〜87μm ■金属粒子添加量:3.5容量%(一定)■ラミネート
樹脂膜厚さ850μm(±3μm)■表皮鋼板表面層(
めっき層)の硬さ Hv(0,001)= 265 試作したラミネート鋼板より、試験片サイズ30n+m
w X 100m+ulの形状に切断し、1000枚の
サンプルを採取した。このサンプルを用い、重ね代30
mmでスポット溶接を行い、スポット溶接性を評価した
。その結果を第2表に示す。なお。 溶接条件並びにスポット溶接性の評価は実施例1の場合
と同じである。 第2表より、金属粒子の硬さ(Ph)と薄鋼板の表面硬
さ(Sh)の比が0.6≦Ph/Sh≦1.1の範囲に
ある本発明例Nα4〜No 5は、いずれもスポット溶
接性が優れ、表面状況も良好であることがわかる。
11 Continuously cast aluminum killed steel plate with plate thickness 0, 4 mm, and Z
n-Ni alloy double-sided electroplated steel sheet (plating weight: 20
g/[11"), and a polyolefin resin in which metal particles were uniformly dispersed in advance was laminated between them. A test piece was taken from this laminated steel plate and an accuracy test was conducted. The lamination conditions were as follows. They are as follows. ■Conductivity imparting substance: (1) Pure iron powder manufactured by water atomization method. Hardness Hv (0,005)" 110 (2) Low alloy steel powder manufactured by water atomization method , hardness Hv (0,005) = 173 (3) Pure Ni powder manufactured by water atomization method. Hardness Hv (0,005) = 122 (4) Pure Ni powder manufactured by gas reduction method, hardness Hv
(0,005) = 252 (5) 5US304 powder manufactured by water atomization method, hardness Hv (0,005)” 220 (6) 5US304 powder manufactured by water atomization method, hardness Hv (0,00
5) = 480 ■Gold metal particles/particle size: 63 to 87 μm ■Amount of metal particles added: 3.5% by volume (constant) ■Laminating resin film thickness 850 μm (±3 μm) ■Surface steel plate surface layer (
Hardness of plating layer) Hv (0,001) = 265 From the prototype laminated steel plate, test piece size 30n+m
It was cut into a shape of w x 100 m + ul, and 1000 samples were collected. Using this sample, overlap thickness is 30
Spot welding was performed with a diameter of 1 mm, and the spot weldability was evaluated. The results are shown in Table 2. In addition. Welding conditions and evaluation of spot weldability were the same as in Example 1. From Table 2, inventive examples Nα4 to No. 5 in which the ratio of the hardness (Ph) of the metal particles to the surface hardness (Sh) of the thin steel plate is in the range of 0.6≦Ph/Sh≦1.1, It can be seen that both have excellent spot weldability and good surface conditions.

【以下余白】[Left below]

去ILジ 板厚0 、4 ma+tの連鋳アルミキルド鋼板と1合
金化溶融亜鉛めっき鋼板表面にFe−Zn合金を電気め
っきした鋼板(めっき付着量は合金化溶融亜鉛めっき4
0g/m”であり、電気めっき5g/m”である)を使
用し、その間に、金属粒子を予め均一に分散させたポリ
オレフィン系樹脂をラミネートした。このラミネート鋼
板より試験片を採取し、確性試験を行った。なお、ラミ
ネート条件は以下の通りである。 ■導電性付与物質: (1)水アトマイズ法で製造した純鉄系鉄粉、硬さHv
(0,005)= 110 (2)水アトマイズ法で製造した低合金鋼粉、硬さHv
(0,005)= 173 (3)水アトマイズ法で製造した純Ni粉末、硬さHv
(0,005)= 122 (4)  ガス還元法で製造した純Ni粉末、硬さHv
(0,005)= 252 (5)水アトマイズ法で製造した5US304粉末、硬
さHv(0,005)=220(6)  水アトマイズ
法で製造した5US304粉末、硬さHv(0,005
) =480■金金属子・粒径:63〜87μm ■金属粒子添加量:3.5容量%(一定)■ラミネート
樹脂膜厚さ850μm(±3μm)■表皮鋼板表面層(
めっき層)の硬さ Hv(0,001)= 265 試作したラミネート鋼板より、試験片サイズ30mmw
 X 100mmQの形状に切断し、1000枚のサン
プルを採取した。このサンプルを用い1重ね代30mm
でスポット溶接を行い、スポット溶接性を評価した。そ
の結果を第3表に示す。なお。 溶接条件並びにスポット溶接性は実施例1の場合と同じ
である。 第3表より、金属粒子の硬さ(Ph)と薄鋼板の表面硬
さ(Sh)の比が0.6≦Ph/Sh≦1.1の範囲に
ある本発明例N[14〜Nc15は、いずれもスポット
溶接性が優れ、表面状況も良好であることがわかる。 (発明の効果) 以上詳述したように、本発明によれば、制振性能を低下
させることなく、しかもプレス成形に必要な接着強度を
損なうことなく、表皮材に各種めっき鋼板を使用した場
合でも、抵抗溶接が安定して施工できる優れた性能の抵
抗溶接可能型制振鋼板を提供することができる。
Continuously cast aluminum killed steel sheet with thickness 0,4 ma+t and steel sheet with Fe-Zn alloy electroplated on the surface of 1-alloyed hot-dip galvanized steel sheet (the coating weight is 4 mm).
0 g/m" and electroplating of 5 g/m"), and between them, a polyolefin resin in which metal particles had been uniformly dispersed was laminated. A test piece was taken from this laminated steel plate and an accuracy test was conducted. Note that the lamination conditions are as follows. ■Conductivity imparting substance: (1) Pure iron powder manufactured by water atomization method, hardness Hv
(0,005) = 110 (2) Low alloy steel powder manufactured by water atomization method, hardness Hv
(0,005) = 173 (3) Pure Ni powder manufactured by water atomization method, hardness Hv
(0,005) = 122 (4) Pure Ni powder produced by gas reduction method, hardness Hv
(0,005) = 252 (5) 5US304 powder manufactured by water atomization method, hardness Hv (0,005) = 220 (6) 5US304 powder manufactured by water atomization method, hardness Hv (0,005
) = 480■Gold metal particles/particle size: 63~87μm ■Amount of metal particles added: 3.5% by volume (constant) ■Lamination resin film thickness 850μm (±3μm) ■Skinned steel plate surface layer (
Hardness of plating layer) Hv (0,001) = 265 From the prototype laminated steel plate, test piece size 30 mmw
It was cut into a shape of x 100mmQ and 1000 samples were collected. Using this sample, one overlap is 30mm.
Spot welding was performed using the following method, and spot weldability was evaluated. The results are shown in Table 3. In addition. Welding conditions and spot weldability are the same as in Example 1. From Table 3, inventive examples N [14 to Nc15 are It can be seen that both have excellent spot weldability and good surface conditions. (Effects of the Invention) As detailed above, according to the present invention, various plated steel sheets can be used as the skin material without reducing vibration damping performance and without impairing the adhesive strength required for press forming. However, it is possible to provide a resistance weldable damping steel plate with excellent performance that allows stable resistance welding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は接着強度の低下を防止するアンカー効果を説明
する図である。
FIG. 1 is a diagram illustrating the anchor effect that prevents a decrease in adhesive strength.

Claims (1)

【特許請求の範囲】 (1)2枚の薄鋼板の間に、金属粒子を均一に分散させ
た粘弾性高分子樹脂を挾みこんでラミネートされている
制振鋼板において、金属粒子の硬さ(Ph)と薄鋼板の
表面硬さ(Sh)の比が0.6≦Ph/Sh≦1.1の
範囲であることを特徴とする抵抗溶接可能型制振鋼板。 (2)ラミネート後の金属粒子の偏平率が20%以上で
ある請求項1に記載の制振鋼板。(3)ラミネート後の
金属粒子の表皮鋼板への噛み込み量(δ)と粘弾性高分
子樹脂膜厚さ(t)の比が1%≦δ/t≦10%の範囲
である請求項1又は2に記載の制振鋼板。 (4)金属粒子の粘弾性高分子樹脂への添加量が2〜5
容量%である請求項1に記載の制振鋼板。
[Claims] (1) In a vibration-damping steel plate laminated with a viscoelastic polymer resin in which metal particles are uniformly dispersed between two thin steel plates, the hardness of the metal particles ( A resistance weldable damping steel plate, characterized in that the ratio of the surface hardness (Sh) of the thin steel plate to the surface hardness (Sh) of the thin steel plate is in the range of 0.6≦Ph/Sh≦1.1. (2) The damping steel plate according to claim 1, wherein the metal particles have an oblateness ratio of 20% or more after lamination. (3) Claim 1, wherein the ratio between the amount of metal particles biting into the skin steel plate (δ) after lamination and the thickness (t) of the viscoelastic polymer resin film is in the range of 1%≦δ/t≦10%. Or the damping steel plate according to 2. (4) The amount of metal particles added to the viscoelastic polymer resin is 2 to 5
The vibration damping steel plate according to claim 1, which is % by volume.
JP1182964A 1987-07-15 1989-07-15 Resistance-weldable damping steel plate Pending JPH0347749A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1182964A JPH0347749A (en) 1989-07-15 1989-07-15 Resistance-weldable damping steel plate
EP90301998A EP0385684A1 (en) 1989-02-28 1990-02-26 Resistance weldable type vibration damping composite steel sheet
KR1019900002501A KR920008670B1 (en) 1987-07-15 1990-02-27 Resistance weldable type vibration damping composite steel plate
CA002011112A CA2011112A1 (en) 1989-02-28 1990-02-28 Resistance weldable type vibration damping composite steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1182964A JPH0347749A (en) 1989-07-15 1989-07-15 Resistance-weldable damping steel plate

Publications (1)

Publication Number Publication Date
JPH0347749A true JPH0347749A (en) 1991-02-28

Family

ID=16127405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1182964A Pending JPH0347749A (en) 1987-07-15 1989-07-15 Resistance-weldable damping steel plate

Country Status (1)

Country Link
JP (1) JPH0347749A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290044A (en) * 1985-06-17 1986-12-20 株式会社神戸製鋼所 Vibration-damping composite metallic plate having excellent resistance weldability
JPS6357226A (en) * 1986-08-28 1988-03-11 日本鋼管株式会社 Resin laminated steel plate
JPS6367142A (en) * 1986-09-09 1988-03-25 新日本製鐵株式会社 Vibration-damping steel plate having excellent weldability
JPS63170031A (en) * 1987-01-08 1988-07-13 日本鋼管株式会社 Resin laminated steel plate
JPS63188040A (en) * 1987-01-30 1988-08-03 新日本製鐵株式会社 Weldable vibration-damping steel plate and manufacture thereof
JPS63209829A (en) * 1987-02-26 1988-08-31 日本鋼管株式会社 Resistance weldable resin laminated steel plate and manufacture thereof
JPH01141045A (en) * 1987-11-27 1989-06-02 Kawasaki Steel Corp Composite-type damping steel sheet superior in direct spot welding property
JPH01171937A (en) * 1987-12-28 1989-07-06 Sumitomo Metal Ind Ltd Vibration damping metallic sheet superior in weldability and its manufacture

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290044A (en) * 1985-06-17 1986-12-20 株式会社神戸製鋼所 Vibration-damping composite metallic plate having excellent resistance weldability
JPS6357226A (en) * 1986-08-28 1988-03-11 日本鋼管株式会社 Resin laminated steel plate
JPS6367142A (en) * 1986-09-09 1988-03-25 新日本製鐵株式会社 Vibration-damping steel plate having excellent weldability
JPS63170031A (en) * 1987-01-08 1988-07-13 日本鋼管株式会社 Resin laminated steel plate
JPS63188040A (en) * 1987-01-30 1988-08-03 新日本製鐵株式会社 Weldable vibration-damping steel plate and manufacture thereof
JPS63209829A (en) * 1987-02-26 1988-08-31 日本鋼管株式会社 Resistance weldable resin laminated steel plate and manufacture thereof
JPH01141045A (en) * 1987-11-27 1989-06-02 Kawasaki Steel Corp Composite-type damping steel sheet superior in direct spot welding property
JPH01171937A (en) * 1987-12-28 1989-07-06 Sumitomo Metal Ind Ltd Vibration damping metallic sheet superior in weldability and its manufacture

Similar Documents

Publication Publication Date Title
JPS6290236A (en) Resin composite steel plate having excellent electric-resistance weldability and adhesive strength
JPS6156099B2 (en)
JPS63158242A (en) Vibration-damping steel plate having excellent weldability
JPH0347749A (en) Resistance-weldable damping steel plate
EP0385684A1 (en) Resistance weldable type vibration damping composite steel sheet
JPH0477245A (en) Resin composite type surface-treated vibration damping steel plate excellent in adherence and spot weldability
JPH02231134A (en) Resin composite type damping steel sheet
JP2945544B2 (en) Resin composite metal plate with excellent resistance weldability
JP2581369B2 (en) Laminated steel sheet with excellent corrosion resistance and weldability
JP2768242B2 (en) Damping metal plate with excellent electric resistance weldability
JP2520757B2 (en) Laminated steel sheet with excellent corrosion resistance and weldability
JPH02227247A (en) Resistance welding type vibration-damping steel sheet
JPH0564860A (en) Resin composite type steel plate
JPS63188040A (en) Weldable vibration-damping steel plate and manufacture thereof
JPH0386380A (en) Resistance welding method for resin combined type high damping steel sheet
JPH03221446A (en) Weldable damping metal plate
JP2917765B2 (en) Laminated steel sheet with excellent electric resistance weldability and few welding defects
JPH0679826A (en) Resin composite metal sheet with excellent resistance welding property
JPH0445922A (en) Weldable damping steel sheet
JPH0274331A (en) Resin laminate steel plate
KR950003092B1 (en) Clad steel and manufacturing method
JPH0623905A (en) Production of weldable composite damping metal plate
JPH09295373A (en) Resin composite laminated damping steel sheet with superior tight fitting properties
JP3214345B2 (en) Laminated steel sheet with excellent press formability and spot weldability
JPH03236953A (en) Manufacture of vibration-damping steel plate