JPH0347379A - Vibration controller - Google Patents

Vibration controller

Info

Publication number
JPH0347379A
JPH0347379A JP17991189A JP17991189A JPH0347379A JP H0347379 A JPH0347379 A JP H0347379A JP 17991189 A JP17991189 A JP 17991189A JP 17991189 A JP17991189 A JP 17991189A JP H0347379 A JPH0347379 A JP H0347379A
Authority
JP
Japan
Prior art keywords
conductor
vibration
magnet
magnetic
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17991189A
Other languages
Japanese (ja)
Other versions
JP2788946B2 (en
Inventor
Yoshihiro Kida
義弘 来田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP1179911A priority Critical patent/JP2788946B2/en
Publication of JPH0347379A publication Critical patent/JPH0347379A/en
Application granted granted Critical
Publication of JP2788946B2 publication Critical patent/JP2788946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To control all direction type vibration by arranging the N and S poles of a magnet to the surface of one part between two members making relative displacement in a shape adjacent to each other, and providing a conductor crossing magnetic force lines from the magnet and moving to the other part. CONSTITUTION:The N pole 9a and S pole 9b of a magnet 9 are arranged to one part 8 making relative displacement by vibration of a construction 6 in a shape adjacent to each other, and a conductor 13 which moves crossing magnetic force lines 12 from the magnets 9... is placed to the other part 11 to form a vibration controller. After that, when vibration occurs in the construction 6, displacement occurs between the construction 6 and a foundation concrete layer 10, and relative displacement of the conductor 13 is made against the magnet 9. When the conductor 13 crosses the magnetic force lines 12 of the magnet 9, overcurrent controlling the variations in the magnetic force lines 12 occurs, and the relative displacement between the conductor 13 and magnet 9 is controlled. Accordingly, effective vibration control can be made against all direction.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、構造物の振動抑制装置に係わり、特に、地震
や風等の外力によって発生させられる構造物の振動を有
効に減衰させる・振動抑制装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vibration suppression device for structures, and in particular, to effectively damp vibrations in structures caused by external forces such as earthquakes and wind. This invention relates to a suppression device.

「従来の技術」 従来、構造物の揺れを減衰させるために用いられている
振動抑制装置として、例えば、オイルダンパ、鋼材ダン
パ、粘性ダンパ等が挙げられている。しかしながら、こ
れらいずれの振動抑制装置においても、その減衰力が振
動の速度に比例せず、かつ、この減衰力の調整が困難で
あることから、構造物の振動特性に合わせたきめ細かな
セツティングができず、また、外乱に即した減衰力制御
が行なえないといった不具合を有していた。このため、
磁力を利用して構造物の揺れを減衰させるいわゆる磁気
ダンパと呼ばれるものが提供されているが、この磁気ダ
ンパは、第10図に示すように、外観0字状のヨーク(
継鉄)1の両脚部内面にそれぞれN極とS極の磁極2.
3を対向配置し、これら磁極2.3の間に、導体4をわ
ずかに離間させた状態で横切らせるように配置して構成
されたものである。
"Prior Art" Examples of vibration suppressing devices conventionally used to damp the shaking of structures include oil dampers, steel dampers, and viscous dampers. However, in any of these vibration suppression devices, the damping force is not proportional to the vibration speed, and it is difficult to adjust the damping force, so detailed settings that match the vibration characteristics of the structure are required. In addition, there were problems in that damping force control could not be performed in accordance with disturbances. For this reason,
There is a so-called magnetic damper that uses magnetic force to attenuate the shaking of a structure.As shown in Figure 10, this magnetic damper has a zero-shaped yoke (
N-pole and S-pole magnetic poles 2.
3 are arranged facing each other, and a conductor 4 is arranged to cross between these magnetic poles 2 and 3 with a slight distance between them.

これは、たとえば、ヨーク1を地盤上に固定し、導体4
を構造物に固定することによってセツティングを行ない
、構造物に外方が加わって振動を生じると、前記ヨーク
1と導体4とが相対移動して、図中矢印工で示す磁力線
と、導体4との間に電磁誘導力が発生し、この相対移動
の速度に比例しt;減衰力を発揮して構造物の振動を抑
制しようとするものである。
This means, for example, that the yoke 1 is fixed on the ground and the conductor 4
Setting is performed by fixing the yoke to a structure, and when an external force is applied to the structure to generate vibration, the yoke 1 and the conductor 4 move relative to each other, and the lines of magnetic force shown by arrows in the figure and the conductor 4 An electromagnetic induction force is generated between the two, which exerts a damping force proportional to the speed of this relative movement, thereby suppressing the vibration of the structure.

「発明が解決しようとする課題」 前記構成の磁気ダンパによれば、それまでのオイルダン
パ等によって生じていた不具合、すなわち、温度条件や
振動条件などの外的要因による減衰力の変化に伴う減衰
力の調整の困難性および、構造物の振動特性に合わせた
きめ細かなセツティングの困難性などの不具合を解消す
るに至ったが、新たに次のような不具合を生じることと
なった。
"Problems to be Solved by the Invention" According to the magnetic damper having the above configuration, problems that have occurred with conventional oil dampers, etc., can be solved, namely, damping due to changes in damping force due to external factors such as temperature conditions and vibration conditions. Although we have solved the problems such as the difficulty in adjusting the force and the difficulty in making detailed settings that match the vibration characteristics of the structure, the following new problems have arisen.

つまり、導体4に作用する磁場を作りだすためのヨーク
1は、その基端部において上下方向に連続しており、こ
の基端部へ向かう方向への導体4の移動を規制してしま
い、振動抑制方向が限定されてしまうといった不具合で
ある。よって、面内二方向に動く構造物の振動減衰に適
用しづらいといった問題を生じていた。
In other words, the yoke 1 for creating a magnetic field acting on the conductor 4 is continuous in the vertical direction at its base end, and restricts the movement of the conductor 4 in the direction toward this base end, suppressing vibration. The problem is that the direction is limited. Therefore, a problem arises in that it is difficult to apply this method to vibration damping of a structure that moves in two directions within the plane.

そこで、本発明は、磁気ダンパ自体の特性を生かしつつ
、振動制御方向が規制を受けることなく、いわゆる導体
面内全方向型の振動抑制装置を提供することを目的とし
ている。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a so-called omnidirectional in-plane vibration suppressing device in which the vibration control direction is not restricted while making full use of the characteristics of the magnetic damper itself.

「課題を解決するための手段」 本発明の構造物の振動抑制装置は、構造物の振動に伴っ
て相対移動する2部材間に設けられ、方の部位の表面に
、磁石のN極とS極とを互いに隣合う形態で配置し、他
方の部位に、前記磁石からの磁力線を横切って移動させ
られる導体を設けてなることを特徴としている。
"Means for Solving the Problems" The vibration suppressing device for a structure of the present invention is provided between two members that move relative to each other as the structure vibrates, and the N and S poles of a magnet are provided on the surface of one part. The magnetic poles are arranged adjacent to each other, and the other portion is provided with a conductor that can be moved across the lines of magnetic force from the magnet.

「作用」 本発明の構造物の振動抑制装置は、磁石のS極とN極と
の間に生じた磁場内を、導体が磁場と直角に運動するこ
とによって導体内に生じた渦電流が磁場と作用すること
によって減衰力を発揮する。
"Operation" The structure vibration suppressing device of the present invention is characterized in that when a conductor moves perpendicularly to the magnetic field in the magnetic field generated between the S and N poles of the magnet, eddy currents generated in the conductor are generated in the magnetic field. It exerts damping force by interacting with

この減衰力は、磁場と導体との相対速度、つまり一方の
部位に設けられた磁石と、他方に設けられた導体との相
対速度の大きさに比例して生じるので、構造物にか一交
る振動が大きければそれだけ大きな減衰力を発揮するも
のである。
This damping force occurs in proportion to the relative velocity between the magnetic field and the conductor, that is, the relative velocity between the magnet installed on one part and the conductor installed on the other, so it is The larger the vibration, the greater the damping force exerted.

「実施例」 以下、本発明の構造物の振動抑制装置の一実施例を図面
を参照して説明する。
"Example" Hereinafter, an example of the vibration suppressing device for a structure according to the present invention will be described with reference to the drawings.

第1図および第3図は、本発明の振動抑制装置の一実施
例を示す図であって、図中、符号5は、構造物6の振動
に伴って相対移動する2部材間に設けられる振動抑制装
置である。この振動抑制装置t5は、一方の部位8に、
磁石9、・・・のN極9!と、S極9bとを互いに隣合
う形態で配置し、他方の部位11に、前記磁石9、・・
・からの磁力線12を横切って移動させられる導体13
を配置することによって概略構成されている。
1 and 3 are diagrams showing an embodiment of the vibration suppressing device of the present invention, and in the figures, reference numeral 5 is provided between two members that move relative to each other as the structure 6 vibrates. It is a vibration suppression device. This vibration suppressing device t5 has one part 8,
N pole 9 of magnet 9,...! and S poles 9b are arranged adjacent to each other, and the magnets 9,...
- a conductor 13 moved across the magnetic field lines 12 from
It is roughly constructed by arranging.

一方の部位8は、例えば、構造物6下面に対向する基礎
敷きコンクリート10上とし、この基礎敷きコンクリー
ト10上に磁石9が複数個配置される。これら磁石9、
・・・は、第2図に示すように、隣合う磁石のN極9!
とS極9bとが交互になるような配列で基盤14上に配
置されている。
One portion 8 is, for example, on a concrete foundation 10 facing the lower surface of the structure 6, and a plurality of magnets 9 are arranged on this concrete foundation 10. These magnets 9,
... is the N pole 9! of the adjacent magnet, as shown in Figure 2.
and S poles 9b are arranged on the substrate 14 in an alternating arrangement.

そして、この基盤14の下面には、支持板2oが一体に
設けられ、支持板20をボルト21.・・・で基礎敷き
コンクリート10に固定する。このとき、全ての磁石9
、・・・の表面は、面一となるように設定されている。
A support plate 2o is integrally provided on the lower surface of the base 14, and the support plate 20 is connected to the bolt 21. ...and fix it to the foundation laying concrete 10. At this time, all magnets 9
, . . . are set so that their surfaces are flush with each other.

他方の部位11は、前記基礎敷きコンクリート10に対
向する構造物6下面とし、この構造物6下面に治具15
を介して導体13が前記磁石の表面に対して平行となる
ように設けられている。
The other part 11 is the lower surface of the structure 6 facing the foundation concrete 10, and a jig 15 is attached to the lower surface of the structure 6.
A conductor 13 is provided so as to be parallel to the surface of the magnet.

そして、この振動抑制装置5は、第3図に示すように、
構造物6を基礎敷きコンクリート10上に固定した積層
ゴム16上に構築して免震構造とし。前記構造物6と基
礎敷きコンクリート10との間に、前記積層ゴム16と
並列的に設ける構成とする。
This vibration suppressing device 5, as shown in FIG.
The structure 6 is constructed on a laminated rubber 16 fixed on a foundation concrete 10 to provide a seismic isolation structure. It is configured to be provided between the structure 6 and the foundation concrete 10 in parallel with the laminated rubber 16.

・次いで、このように構成された本実施例の振動抑制装
置5の作用について説明する。
-Next, the operation of the vibration suppressing device 5 of this embodiment configured as described above will be explained.

地震や風によって構造物6に振動が発生すると、構造物
6と基礎敷きコンクリート10との間に変位が生じ、こ
れに伴い、基礎敷きコンクリ−1・10上に設置された
磁石9、・・・に対して構造物6の下面に設置された導
体13が相対移動させられる。
When vibration occurs in the structure 6 due to an earthquake or wind, displacement occurs between the structure 6 and the concrete foundation 10, and along with this, the magnets 9 installed on the concrete foundation 1, 10... The conductor 13 installed on the lower surface of the structure 6 is moved relative to the .

このような導体13と磁石9、・・・ との相対移動に
より、前記導体13が磁石9、・・・間の磁力線12を
横切るように移動させられるとともに、磁力線12の導
体13に対する透過位置が移動させられ、この導体13
の移動方向の、前記磁石9、・・・に向かう前方部分と
後方部分とのそれぞれにおいて磁力線12の密度が変化
する。そして、前方部分と後方部分における磁力線12
の変化が逆となることから、それぞれにおいて前記磁力
線12の変化を抑制する渦電流が発生するとともに、導
体13と磁石9、・・・ との間に両者の相対移動を抑
制するような力が生じ、この力が構造物6にその振動を
減衰させる力として作用して、構造物6の振動が抑制さ
れる。
Due to such relative movement between the conductor 13 and the magnets 9, . . . , the conductor 13 is moved to cross the magnetic lines of force 12 between the magnets 9, . This conductor 13 is moved
The density of the lines of magnetic force 12 changes in each of the front and rear portions toward the magnets 9, . . . in the direction of movement. And magnetic field lines 12 in the front part and the rear part
Since the changes are opposite, eddy currents are generated that suppress the changes in the magnetic lines of force 12, and a force is generated between the conductor 13 and the magnets 9, . . . that suppresses their relative movement. This force acts on the structure 6 as a force to damp the vibration, and the vibration of the structure 6 is suppressed.

このような振動抑制作用において、磁石9、・・・と導
体13との間に生じる減衰力は、磁力線12の変化率に
比例して得られ、換言すれば、磁石9、・・・の磁力の
強さと両者の速度の大きさに比例した減衰力が得られる
In such a vibration suppressing effect, the damping force generated between the magnets 9, . . . and the conductor 13 is obtained in proportion to the rate of change of the magnetic lines of force 12. A damping force is obtained that is proportional to the strength of and the speed of both.

したがって、磁石9、・・・の磁力を一定とじた場合に
おいては、構造物6の振動の振幅および振動数に応じて
、すなわち、磁石9、・・・ と導体13との相対速度
に応じて減衰力が加減され、良好な振動抑制作用が得ら
れる。また、磁石9、・・・と導体13とは、常時非接
触状態に保持されているから、摩耗等の経時変化がなく
、耐久性ならびに信頼性の向上が図られる。
Therefore, when the magnetic force of the magnets 9, . . . The damping force is adjusted and a good vibration suppression effect is obtained. Further, since the magnets 9, . . . and the conductor 13 are always kept in a non-contact state, there is no change over time such as wear, and durability and reliability are improved.

以下、本発明の構造物の振動抑制装置の効果を確認する
ために行った実験およびその結果について説明する。
Hereinafter, an experiment conducted to confirm the effect of the vibration suppressing device for a structure according to the present invention and its results will be described.

まず、本実験に用いた磁石の配列は、前記第2図に示し
たものと同様とする。これら磁石9、・・・には、希土
類磁石(残留磁束密度−目1tlQG、最大エネルギー
積:33.5KG・0)を用いている。通常、磁気ダン
パ(振動抑制装置)は、磁石を対向させ平行磁場とする
が、ここでは、磁石9、・・・をN極9aとS極9bが
交互になるように配置し、導体13が磁石9、・・・に
対して面内自由に運動できるようにしている。この場合
、磁力線12は、N極91とS極9bとを端点とするア
ーチを描く。
First, the arrangement of the magnets used in this experiment is the same as that shown in FIG. 2 above. These magnets 9, . . . are rare earth magnets (residual magnetic flux density: 1 tlQG, maximum energy product: 33.5 KG·0). Normally, a magnetic damper (vibration suppressing device) has magnets facing each other to create a parallel magnetic field, but here, the magnets 9,... are arranged so that the north poles 9a and south poles 9b alternate, and the conductor 13 It is designed to be able to freely move within the plane relative to the magnets 9, . In this case, the lines of magnetic force 12 draw an arch with the north pole 91 and the south pole 9b as the end points.

次に、この希土類磁石9、・・・の特性について行なっ
た実験結果について説明する。
Next, the results of experiments conducted on the characteristics of the rare earth magnets 9, . . . will be explained.

磁場の測定を行なうにあたり、磁石間距離を20゜30
.40mmに設定して、それぞれ、鉛直方向の磁束密度
を測定した。その結果、平均磁束密度が最も大きい値を
示した40rrrmについて、以下の振動実験を実施し
た。
When measuring the magnetic field, the distance between the magnets should be set at 20°30°.
.. The magnetic flux density in the vertical direction was measured with a setting of 40 mm. As a result, the following vibration experiment was conducted for 40rrrm, which showed the largest average magnetic flux density.

この磁気ダンパ(振動抑制装置)の減衰量の測定を行な
うにあたり、振動抑制装置を次のように設定した。まず
、1層鉄骨フレームに振動抑制装置5を取り付け、振動
台掃引試験および自由振動試験を行なった。減衰定数は
、掃引試験によって得られた鉄骨フレームの伝達関数お
よび自由振動試験による応答波形をもとに算定した。な
お、導体には、銅板(0,17XIO−’Ωm)を用い
、鋼板厚、銅板形状、クリアランス(銅板中立軸から磁
石表面までの距離)をパラメータとした。
When measuring the amount of attenuation of this magnetic damper (vibration suppression device), the vibration suppression device was set as follows. First, the vibration suppression device 5 was attached to a single-layer steel frame, and a shaking table sweep test and a free vibration test were conducted. The damping constant was calculated based on the transfer function of the steel frame obtained from the sweep test and the response waveform from the free vibration test. A copper plate (0.17XIO-'Ωm) was used as the conductor, and the parameters were the steel plate thickness, copper plate shape, and clearance (distance from the copper plate neutral axis to the magnet surface).

この実験装置を使用して実験を行なった結果、第4図な
いし第8図に示すような実験結果を得た。
As a result of conducting experiments using this experimental apparatus, the experimental results shown in FIGS. 4 to 8 were obtained.

第4図に鉄骨フレームの加速度伝達関数の一例(横軸が
振動数、縦軸が応答倍率)を示し、第5図に減衰定数に
より算定した減衰係数−覧を、第6図に銅板の形状の違
いによる減衰係数比較図(鋼板厚は31IIIIで一定
)を横軸に銅板面積をとり、縦軸に減衰係数をとって示
す。これらより、減衰係数は、鋼板厚およびクリアラン
スの影響を強く受けるが、本実験範囲内では、銅板形状
による差異はほとんど見られないことが分かる。
Figure 4 shows an example of the acceleration transfer function of a steel frame (the horizontal axis is the frequency, the vertical axis is the response magnification), Figure 5 shows the damping coefficient calculated from the damping constant, and Figure 6 shows the shape of the copper plate. A comparison diagram of damping coefficients due to differences in (steel plate thickness is constant at 31III) is shown with copper plate area plotted on the horizontal axis and damping coefficient plotted on the vertical axis. From these results, it can be seen that the damping coefficient is strongly influenced by the steel plate thickness and clearance, but within the scope of this experiment, there is almost no difference due to the shape of the copper plate.

一般に、平行磁場における磁気ダンパ(振動抑制装置)
の減衰係数算定式は、次のような式によって導きだされ
ている。
Generally, a magnetic damper (vibration suppressor) in a parallel magnetic field
The damping coefficient calculation formula for is derived from the following formula.

B”・A−1C++ C〜                      ・
 ・ ・■(B:磁束密度、A;磁石面積、L:導体厚
、ρ:導体抵抗率、Co:磁石と導体の形状によって決
まる無次元量) しかしながら、本ダンパの場合には、磁場がアーチ状と
なるため、上式をそのまま適用することはできない。
B"・A-1C++ C~・
・ ・■ (B: magnetic flux density, A: magnet area, L: conductor thickness, ρ: conductor resistivity, Co: dimensionless quantity determined by the shape of the magnet and conductor) However, in the case of this damper, the magnetic field is Therefore, the above formula cannot be applied as is.

このアーチ状磁場のもとでは、磁束密度B(T)は、ク
リアランスrcm+n)に依存する。そこで、磁場測定
値を回帰することにより次の関係式を得た。
Under this arcuate magnetic field, the magnetic flux density B(T) depends on the clearance rcm+n). Therefore, the following relational expression was obtained by regressing the measured magnetic field values.

B = Bo/(r    Bo=0.55   − 
・・■■式を積分し、銅板内の平均磁束密度を求め、■
式に代入すると次の減衰係数算定式が得られる。
B = Bo/(r Bo=0.55 −
... Integrate the ■■ formula to find the average magnetic flux density in the copper plate,
By substituting into the equation, the following damping coefficient calculation formula is obtained.

8B o”(r −y”ぴ”7T”7T )) A C
0C−・ ・■ t Coは、実験値と■式よる値の比を回帰して求めた。し
かし、平行磁場の場合と異なり、Coは、銅板厚によっ
て幾分具なる値を示した。
8B o” (r -y”pi”7T”7T)) A C
0C-.・■ t Co was determined by regression of the ratio of the experimental value and the value according to the formula (■). However, unlike the case of a parallel magnetic field, Co showed a somewhat specific value depending on the copper plate thickness.

Co= 1.3(t−3)、Co−1,1(+−6m)
L/2r<<1の場合、■式は、次式で示されるように
0式中でBを0式で置き換えた式で近似できる。
Co=1.3(t-3), Co-1,1(+-6m)
In the case of L/2r<<1, the equation (2) can be approximated by an equation in which B in the 0 equation is replaced by the 0 equation, as shown in the following equation.

BO2・ A −1・ c。BO2・ A -1・ c.

C−・ ・■ P+r 第7図は、■式による計算値と実験値を、横軸に減衰係
数(計算値)をとり、縦軸に減衰係数(実験値)をとっ
て示し、第8図は、■式による計算値と実験値(銅板厚
3mm)を、横軸にクリアランスをとり、縦軸に減衰係
数をとって示す。
C-・■ P+r Figure 7 shows the calculated value and experimental value using formula ■, with the horizontal axis representing the damping coefficient (calculated value) and the vertical axis representing the damping coefficient (experimental value). Here, the calculated value according to formula (2) and the experimental value (copper plate thickness 3 mm) are shown, with the horizontal axis representing the clearance and the vertical axis representing the damping coefficient.

実験値と計算値は比較的良く対応しており、本実験に用
いた規模程度のアーチ状磁場を有する磁気ダンパを設計
する場合、■式または■式で十分であるといえる。ただ
し、銅板厚と、Coとの関係については、さらに検討を
すすめる必要がある。
The experimental values and calculated values correspond relatively well, and when designing a magnetic damper with an arch-shaped magnetic field on the scale used in this experiment, it can be said that formula (1) or (2) is sufficient. However, it is necessary to further study the relationship between copper plate thickness and Co.

このような特性を有する振動抑制装置は、次のように作
用することによって構造物の振動を抑制することができ
る。
A vibration suppressing device having such characteristics can suppress vibrations of a structure by acting as follows.

地震や風によって構造物6に振動が発生すると、この構
造物6の振動に伴って、磁石9および導体13の設けら
れた2部材間が相対移動し、このような導体と磁石との
相対移動により、前記導体が磁石間の磁力線12を横切
るように移動させられるとともに、磁力線12の導体1
3に対する透過位置が移動させられ、この導体の移動方
向の、前記磁石9に対向する面において磁力線12の密
度が変化する。そして、前方部分と後方部分における磁
力線の変化が逆となることから、それぞれにおいて前記
磁力線12の変化を抑制する渦電流が発生するとともに
、導体13と磁石9との間に両者の相対移動を抑制する
ような力が生じ、この力が構造物にその振動を減衰させ
る力として作用して、構造物の振動が抑制される。
When vibration occurs in the structure 6 due to an earthquake or wind, the two members provided with the magnet 9 and the conductor 13 move relative to each other due to the vibration of the structure 6, and such relative movement between the conductor and the magnet occurs. As a result, the conductor is moved to cross the magnetic lines of force 12 between the magnets, and the conductor 1 of the lines of magnetic force 12
3 is moved, and the density of the lines of magnetic force 12 changes on the surface facing the magnet 9 in the direction of movement of this conductor. Since the changes in the magnetic lines of force in the front and rear parts are opposite, eddy currents are generated in each part that suppresses the changes in the lines of magnetic force 12, and the relative movement between the conductor 13 and the magnet 9 is suppressed. A force is generated, and this force acts on the structure as a force that dampens the vibration, thereby suppressing the vibration of the structure.

このような振動抑制作用において、磁石と導体との間に
生じる減衰力は、磁力線の変化率に比例して得られ、換
言すれば、磁石の磁力の強さと両者の速度の大きさに比
例した減衰力が得られるので、構造物に作用する外乱に
対して最も好適な減衰力制御を行うことができる。
In such a vibration suppressing effect, the damping force generated between the magnet and the conductor is obtained in proportion to the rate of change of the lines of magnetic force.In other words, it is proportional to the strength of the magnetic force of the magnet and the speed of both. Since a damping force is obtained, the most suitable damping force control can be performed against disturbances acting on the structure.

そして、本実施例の振動抑制装置によれば、特に、導体
13が、磁石9上を面内自由に運動することができるの
で、構造物6に加わるいかなる面内方向の外乱に対して
も有効な振動抑制を行うことができるといった優れた効
果を奏することができる。
According to the vibration suppressing device of this embodiment, the conductor 13 can move freely in the plane on the magnet 9, so it is effective against any in-plane disturbance that is applied to the structure 6. This provides an excellent effect of suppressing vibrations.

また、磁石9と導体13とは、常時非接触状態に保持さ
れているから、摩耗等の経時変化がなく、耐久性ならび
に信頼性の向上が図られる。
Further, since the magnet 9 and the conductor 13 are always kept in a non-contact state, there is no change over time such as wear, and durability and reliability are improved.

次に、本発明の構造物の振動抑制装置の他の実施例につ
いて図面を参照して説明する。本実施例においては、振
動抑制装置5そのものは前記実施例のものと同一構成と
なっているが、この振動抑制装置5の両端に積層ゴム1
6の代わりに空気バネ17.17を用いた点で前記実施
例と異なっている。
Next, other embodiments of the vibration suppressing device for a structure according to the present invention will be described with reference to the drawings. In this embodiment, the vibration suppressing device 5 itself has the same structure as that of the previous embodiment, but a laminated rubber layer is attached to both ends of the vibration suppressing device 5.
This embodiment differs from the previous embodiment in that air springs 17 and 17 are used instead of springs 6 and 6.

本実施例によっても、前記実施例と同様の効果を奏する
ことができる。
This embodiment can also provide the same effects as the embodiments described above.

なお、本発明の構造物の振動抑制装置は、前記実施例の
みに限られることなく他の変形例も可能である。
Note that the vibration suppressing device for a structure according to the present invention is not limited to the above-mentioned embodiments, and other modifications are also possible.

たとえば、前記磁石に代えて、電磁石を用いた構成とし
てもよい。このとき、構造物6の振動の大きさを検出す
るセンサや、電磁石への供給電流制御するコンピュータ
等を組み合わせることによって、振動の大きさに応じた
電磁石への供給電流を調整することも可能となり、振動
の大きさに応じできめ細かな減衰力を生じさせることが
でき、より効果的な振動抑制作用を得ることができる。
For example, instead of the magnet, an electromagnet may be used. At this time, by combining a sensor that detects the magnitude of the vibration of the structure 6 and a computer that controls the current supplied to the electromagnet, it becomes possible to adjust the current supplied to the electromagnet according to the magnitude of the vibration. , it is possible to generate a fine damping force depending on the magnitude of vibration, and a more effective vibration suppressing effect can be obtained.

「発明の効果」 本発明の構造物の振動抑制装置は、構造物の振動に伴っ
て相対移動する2部材間に設けられ、方の部位に、磁石
のN極とS極とを互いに隣合う形態で配置し、他方の部
位に、前記磁石からの磁力線を横切って移動させられる
導体を設けてなる構成としたので、以下のような優れた
効果を奏することができる。
"Effects of the Invention" The vibration suppression device for a structure of the present invention is provided between two members that move relative to each other as the structure vibrates, and the N pole and S pole of the magnet are placed adjacent to each other in one part. Since the structure is such that a conductor is provided at the other portion and is moved across the lines of magnetic force from the magnet, the following excellent effects can be achieved.

導体は、磁石に対して面内自由に運動することができる
ので、構造物に加わるいかなる方向への外乱に対しても
有効な振動抑制を行うことができる。
Since the conductor can freely move within the plane relative to the magnet, it is possible to effectively suppress vibrations against disturbances in any direction that are applied to the structure.

また、磁石と導体との間に生じる減衰力は、磁力線の変
化率に比例して得られ、換言すれば、磁石の磁力の強さ
と両者の速度の大きさに比例した減衰力が得られるので
、構造物に作用する外乱に対して最も好適な減衰力制御
を行うことができる。
In addition, the damping force generated between the magnet and the conductor is obtained in proportion to the rate of change of the lines of magnetic force.In other words, the damping force generated between the magnet and the conductor is obtained in proportion to the strength of the magnetic force of the magnet and the speed of both. , it is possible to perform the most suitable damping force control against disturbances acting on the structure.

また、磁石と導体とは、常時非接触状態に保持されてい
るから、摩耗等の経時変化がなく、耐久性ならびに信頼
性の向上が図られる。
Further, since the magnet and the conductor are always maintained in a non-contact state, there is no change over time such as wear, and durability and reliability are improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の構造物の振動抑制装置の
一実施例を示す図であって、第1図は装置の側面図、t
$2図は同平面図、第3図は振動抑制装置の一使用例を
示す側面図、第4図ないし第8図は減衰特性を説明する
ためのデータ図、第9図は本発明の振動抑制装置の他の
使用例を示す側面図、第10図は構造物の振動抑制装置
の一従来例を示す図である。 l・ ・・・ ・・・ 2、91 3、9 b 4、13 7  ・・・ ・・・ 9  ・・・ ・・・ 12  ・・・ ヨーク、 ・・・・・・N極、 ・・・・・・ S極、 ・・・・・・導体、 振動抑制装置、 磁石、 ・・・磁力線。 ■ 第3図 榎か年子 488− 第5図 仄※嗜蒜(保許糊)
1 to 3 are diagrams showing an embodiment of the vibration suppressing device for a structure according to the present invention, and FIG. 1 is a side view of the device;
Figure 2 is a plan view of the same, Figure 3 is a side view showing an example of the use of the vibration suppression device, Figures 4 to 8 are data diagrams for explaining the damping characteristics, and Figure 9 is a diagram showing the vibration of the present invention. FIG. 10 is a side view showing another usage example of the suppressing device, and is a diagram showing a conventional example of the vibration suppressing device for a structure. l・ ... ... 2, 91 3, 9 b 4, 13 7 ... 9 ... 12 ... Yoke, ... N pole, ... ...S pole, ...conductor, vibration suppressor, magnet, ...magnetic field lines. ■ Fig. 3 Enoki or Nenshi 488- Fig. 5 ※Garden (Hosho paste)

Claims (1)

【特許請求の範囲】[Claims] 構造物の振動に伴って相対移動する2部材間に設けられ
る振動抑制装置であって、一方の部位の表面に、磁石の
N極とS極とを互いに隣合う形態で配置し、他方の部位
に、前記磁石からの磁力線を横切って移動させられる導
体を設けてなることを特徴とする構造物の振動抑制装置
A vibration suppressing device provided between two members that move relative to each other as a structure vibrates, in which the north and south poles of a magnet are arranged adjacent to each other on the surface of one part, and the A vibration suppressing device for a structure, further comprising a conductor that is moved across lines of magnetic force from the magnet.
JP1179911A 1989-07-12 1989-07-12 Vibration suppression device for structures Expired - Fee Related JP2788946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1179911A JP2788946B2 (en) 1989-07-12 1989-07-12 Vibration suppression device for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1179911A JP2788946B2 (en) 1989-07-12 1989-07-12 Vibration suppression device for structures

Publications (2)

Publication Number Publication Date
JPH0347379A true JPH0347379A (en) 1991-02-28
JP2788946B2 JP2788946B2 (en) 1998-08-20

Family

ID=16074072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1179911A Expired - Fee Related JP2788946B2 (en) 1989-07-12 1989-07-12 Vibration suppression device for structures

Country Status (1)

Country Link
JP (1) JP2788946B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321923A (en) * 1992-06-17 1994-06-21 Hitachi Metals, Ltd. Antivibration actuator
JPH06241274A (en) * 1993-02-18 1994-08-30 Toshiba Corp Dynamic vibration reducer type damping device and damping device for internal pump
JPH0735242A (en) * 1993-07-22 1995-02-07 Nippon Pillar Packing Co Ltd Contactless shaft seal device
JPH09177880A (en) * 1995-12-27 1997-07-11 Kawasaki Heavy Ind Ltd Electromagnetic damper
US5800078A (en) * 1995-04-10 1998-09-01 Tommeraasen; Paul E. Earthquake attenuating apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292351A (en) * 1987-05-26 1988-11-29 Nec Corp Memory copy device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292351A (en) * 1987-05-26 1988-11-29 Nec Corp Memory copy device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321923A (en) * 1992-06-17 1994-06-21 Hitachi Metals, Ltd. Antivibration actuator
JPH06241274A (en) * 1993-02-18 1994-08-30 Toshiba Corp Dynamic vibration reducer type damping device and damping device for internal pump
JPH0735242A (en) * 1993-07-22 1995-02-07 Nippon Pillar Packing Co Ltd Contactless shaft seal device
US5800078A (en) * 1995-04-10 1998-09-01 Tommeraasen; Paul E. Earthquake attenuating apparatus
JPH09177880A (en) * 1995-12-27 1997-07-11 Kawasaki Heavy Ind Ltd Electromagnetic damper

Also Published As

Publication number Publication date
JP2788946B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
Zhu et al. Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation
Bae et al. Vibration suppression of a cantilever beam using magnetically tuned-mass-damper
Sodano et al. Concept and model of eddy current damper for vibration suppression of a beam
Zhang et al. A novel multimode negative inductance negative resistance shunted electromagnetic damping and its application on a cantilever plate
CN103453062A (en) Zero-rigidity magnetic-suspension active vibration isolator and six-degree-of-freedom vibration isolation system consisting of vibration isolator
EP1015788B1 (en) Magnetic support system
JPS63306183A (en) Vibration control equipment
US20070131830A1 (en) Variable temperature magnetic damper
JPH061884U (en) Vibration suppression actuator
JP2001059546A (en) Vibration isolator and magnetic damper mechanism
Chen et al. A passive eddy current damper for vibration suppression of a force sensor
JPH0347379A (en) Vibration controller
KR100346335B1 (en) Magnetic circuit
JP3473979B2 (en) Floor vibration control device
JP4044977B2 (en) Leaf spring vibration type magnetic damper
Jangid Response of sliding structures to bi-directional excitation
Ao et al. Evaluation of eddy current damper for vibration control of a frame structure
JPH0816496B2 (en) Vibration control method for structures
JP3099706B2 (en) Seismic isolation structure of pile
JPH0415354B2 (en)
JP4219162B2 (en) Active dynamic damper device
JP3903163B2 (en) Magnetic suspension type suspension unit
Pranoto et al. Vibration suppression device using permanent-electromagnet and MRF shear damper
JPH09112630A (en) Base isolation building supporting structure
JP4242961B2 (en) Magnetic spring

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees