JPH0347378B2 - - Google Patents

Info

Publication number
JPH0347378B2
JPH0347378B2 JP59066329A JP6632984A JPH0347378B2 JP H0347378 B2 JPH0347378 B2 JP H0347378B2 JP 59066329 A JP59066329 A JP 59066329A JP 6632984 A JP6632984 A JP 6632984A JP H0347378 B2 JPH0347378 B2 JP H0347378B2
Authority
JP
Japan
Prior art keywords
glaze
base
layer
fine particles
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59066329A
Other languages
Japanese (ja)
Other versions
JPS60208554A (en
Inventor
Akio Iwata
Yoshihiro Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP6632984A priority Critical patent/JPS60208554A/en
Publication of JPS60208554A publication Critical patent/JPS60208554A/en
Publication of JPH0347378B2 publication Critical patent/JPH0347378B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、浴室床構成用等として用いられる滑
止めタイルの製造方法に関する。
The present invention relates to a method of manufacturing anti-slip tiles used for constructing bathroom floors and the like.

【従来の技術】[Conventional technology]

従来、滑止めタイルの製造方法としては、特願
昭51−153929号(特開昭53−78629号)に係るも
のがある。即ち、第1図Aに示す如く、タイル素
地2の表面2aに釉薬3を施しておき、本焼き焼
成温度よりも高い耐火度を有する焼融アルミナ、
磁器質等よりなる微細粒子4の単数または数粒子
群ずつをでんぷん糊等の接着剤層または粘着剤層
5を介して前記素地表面2aに分散配置し、第1
図Cに示す如く、所望によりその上に更に釉薬6
を施し、しかる後本焼き焼成によりタイル本体の
表面に前記微細粒子4,4…を接着固定するもの
であり、前記微粒子4の粒子径を0.1〜0.8mmと
し、前記本焼き焼成温度を800℃以上乃至前記微
細粒子4が完全熔融しない温度とする製造方法で
ある。
Conventionally, as a method for manufacturing anti-slip tiles, there is a method disclosed in Japanese Patent Application No. 51-153929 (Japanese Patent Application Laid-Open No. 53-78629). That is, as shown in FIG. 1A, a glaze 3 is applied to the surface 2a of the tile base 2, and sintered alumina having a refractory temperature higher than the firing temperature is applied.
A single particle or several particle groups of fine particles 4 made of porcelain or the like are dispersed on the substrate surface 2a via an adhesive layer such as starch paste or a pressure-sensitive adhesive layer 5, and the first
As shown in Figure C, add glaze 6 if desired.
After that, the fine particles 4, 4, etc. are adhesively fixed to the surface of the tile body by firing, and the particle size of the fine particles 4 is set to 0.1 to 0.8 mm, and the firing temperature is set to 800°C. The above is a manufacturing method in which the temperature is set such that the fine particles 4 are not completely melted.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかし、前記従来の製造方法には、次の如き欠
点があつた。 (a) 第1図Aに示すように粘着剤層5を介して釉
薬3上に分散配置した微細粒子4,4…を焼成
したときには、同図Bに示すように釉薬3の中
へ微細粒子4,4…が沈み込んでいた。 (b) 第1図Cに示すように釉薬6を施して焼成し
たときには、同図Dに示すように釉薬6が微細
粒子4,4…を伴つて釉薬3側へ流込むことが
あり、所定の滑止め用突起をタイル本体に形成
できないことがあつた。 (c) 前記a及びbの現象は、微細粒子4の粒径が
特に微細なときに顕著である。そのため、従来
方法では、施釉厚みの薄肉化限界から0.1mm未
満の微細粒子を用いることが不可能であつたの
で0.1mm以上の粒子を用いるのが余儀ない状態
であり、この場合に得られたタイルは素足に傷
みを与えるものもあり、適度な感触の滑止め効
果を発揮する滑止めタイルを製造することが出
来なかつた。 本発明は、従来製造が不可能であつた、0.1mm
未満の微細粒子を用いた滑止めタイルの製造方法
の提供を目的とする。
However, the conventional manufacturing method has the following drawbacks. (a) When the fine particles 4, 4... dispersed on the glaze 3 through the adhesive layer 5 are fired as shown in FIG. 1A, the fine particles are transferred into the glaze 3 as shown in FIG. 4, 4... was sinking. (b) When the glaze 6 is applied and fired as shown in Figure 1C, the glaze 6 may flow into the glaze 3 side with fine particles 4, 4, etc. as shown in Figure 1D. In some cases, it was not possible to form anti-slip protrusions on the tile body. (c) The phenomena a and b above are remarkable when the particle size of the fine particles 4 is particularly fine. Therefore, in the conventional method, it was impossible to use fine particles smaller than 0.1 mm due to the thinning limit of the glaze thickness, so it was necessary to use particles larger than 0.1 mm. Some tiles may cause damage to bare feet, and it has not been possible to manufacture anti-slip tiles that provide an appropriate level of anti-slip effect. The present invention has developed a 0.1 mm
The purpose of the present invention is to provide a method for manufacturing an anti-slip tile using fine particles of less than or equal to 100%.

【課題を解決するための手段】[Means to solve the problem]

本発明に係る滑止めタイルの製造方法(以下、
「本発明製造方法」という)が採用した手段は、
滑止めタイルの製造方法において、タイル素地の
表面適所に傾斜式ボタンテストの測定値で2.0cm
以下の流動性を有する下地釉薬により下地釉薬層
を形成し、下地釉薬より融点の高い接着釉薬の中
に接着釉薬よりも融点が高く且つ粒径が0.06mm以
上0.1mm未満の微細粒子を懸濁させたものを下地
施釉層表面適所に塗布し、下地釉薬と接着釉薬の
共融温度以上で且つ接着釉薬と微細粒子の共融温
度未満の温度で焼成することである。 なお、前記下地釉薬層は前記タイル素地表面の
全面に第1層を形成した後、第1層表面の任意箇
所へ第2層を部分形成することもある。
Method for manufacturing an anti-slip tile according to the present invention (hereinafter referred to as
The means adopted by the "manufacturing method of the present invention" are as follows:
In the manufacturing method of anti-slip tiles, the measurement value of the tilt button test is 2.0cm on the surface of the tile base.
A base glaze layer is formed with a base glaze having the following fluidity, and fine particles with a melting point higher than that of the adhesive glaze and a particle size of 0.06 mm or more and less than 0.1 mm are suspended in the adhesive glaze, which has a higher melting point than the base glaze. This is applied to the surface of the base glaze layer at a suitable location, and fired at a temperature that is higher than the eutectic temperature of the base glaze and the adhesive glaze and lower than the eutectic temperature of the adhesive glaze and the fine particles. Incidentally, the base glaze layer may be formed by forming a first layer on the entire surface of the tile base material, and then partially forming a second layer at an arbitrary location on the surface of the first layer.

【実施例】【Example】

以下、本発明製造方法を第2図A,Bに示す実
施例に基づいて説明する。 第1工程は、第2図Aに示す如く、タイル素地
8の表面8aの全面又は適所に下地釉薬9により
下地釉薬層13の第1層13aを所望厚みA(例
えば、第3図に示す焼成後の厚みA′=0.02〜0.03
mmとなるような施釉厚みA)に形成することであ
る。該タイル素地8は、公知の乾式加圧成型方法
又は湿式押出成型方法等により得る。前記下地釉
薬9は、後述する傾斜式ボタンテストの測定値L
(第4図B参照)でL=2.0cm以下の流動性を有す
るものを用いる。ここで傾斜式ボタンテストの測
定値LでL=2.0cm以下の流動性を有する下地釉
薬9を用いるのは、後述する第4工程における焼
成の際に、下地釉薬9からなる溶融状態の下地釉
薬層13上で後述する接着釉薬11が溶融して
も、接着釉薬11を下地釉薬層13内へ流入移動
させないためである。もし、傾斜式ボタンテスト
の測定値LでL=2.0cmを越える流動性の良い下
地釉薬を用いたときには、この下地釉薬からなる
下地釉薬層内に接着釉薬11が流入移動して微細
粒子14を下地釉薬層内に没入させることにな
り、タイル表面に突出する微細突起の数が極端に
減少したすべり抵抗の低いタイルとなり(第5図
のグラフに示す比較結果を参照)、従来の技術に
存在していた課題を解決することが不可能とな
る。上記傾斜式ボタンテストとは、第4図Aに示
す如く、前記タイル素地8を素焼して得た素焼タ
イル素地8′の表面8′aを水平面に対してθ=25
度となるように傾斜させると共に、表面8′a上
にD=1.0cmφ、H=1.0cmのテスト用釉薬ブロツ
ク9′を酢酸ビニール樹脂(図示省略)で接着し、
後述する所定の焼成温度T1に加熱昇温すると共
に温度T1で30分間加熱維持した後に徐冷し、そ
して、第4図Bに示すタイル地8″の表面8″aに
おける溶融釉薬9″の流動長Lを測定し、この測
定値Lによつて釉薬の流動性を評価するものであ
る。なお、前記テスト用釉薬ブロツク9′は、100
メツシユの篩を通過した乾燥釉薬の1.0gを短円
柱状に加圧成型して得る。 第2工程は、第2図Aに示す如く、前記第1層
13a上の任意箇所に傾斜式ボタンテストの測定
値がL=2.0cm以下の下地釉薬10により下地釉
薬層13の第2層13bを所望厚みB(例えば、
第3図に示す焼成後の厚みB′=0.05〜0.1mmとな
るような施釉厚みB)に形成することである。該
下地釉薬10の施釉は、ボタ掛け機械によるボタ
掛け方法又はスクリーン印刷機械による印刷方法
等の如き公知の施釉方法で行なう。なお、第2工
程は、第1層13aの上に第2層13bを部分的
に設けて凹凸部を形成することにより、凹凸部に
よる若干ではあるが滑止め効果の向上及び/又は
凹凸部模様による意匠的効果の向上を図ることを
目的として必要に応じて行なうものであり、省略
することも勿論可能である。 第3工程は、第2図Bに示す如く、前記下地釉
薬層13の表面適所に、図示省略したが予め接着
釉薬11の中に微細粒子14を懸濁させた懸濁液
15を0.5〜2.0g/10cm角塗布して素地16を得
ることである。接着釉薬11は、前記下地釉薬
9,10より融点が高い(例えば、100℃程度高
い)釉薬を用いる。これは、接着釉薬11が軟化
溶融する前に、下地釉薬9,10を完全に溶融さ
せるためである。前記微細粒子14は、接着釉薬
11より融点が高い(例えば、100℃高い)もの
で且つ溶融アルミナ粒子及び/又はジルコンサン
ド粒子等からなる粒径が0.06mm以上0.1mm未満の
ものが用いられる。微細粒子14の融点を接着釉
薬11よりも高くするのは、焼成時に微細粒子1
4を溶融させることなく滑止め用の微小突起を形
成するためである。微細粒子14の粒径を上記の
範囲に限定する理由は、0.06mm未満では焼成した
接着釉薬11の層内に微細粒子の背丈の大部分が
没入するため滑止め効果に寄与する微細粒子の有
効突起部分が少なくなるからであり、0.1mm以上
では接着釉薬11中に粒子が懸濁せずに沈澱する
からである。沈澱した粒子を塗布面に対して均一
分散状態に塗布することは、塗布技術的に非常に
難しい。これに対し、懸濁した微細粒子14を塗
布面に均一分散状態に塗布することは、塗布技術
的に簡単である。前記懸濁液15を構成する微細
粒子14と接着釉薬11の配合割合は、微細粒子
14の重量を接着釉薬11の乾燥重量で除した値
が0.2〜0.4(好ましくは0.3)となるようにする。
この配合割合の懸濁液15は、比重が1.9〜2.1程
度になるように調整される。懸濁液15の塗布方
法は、吹付け機械若しくは遠心施釉機械によるキ
リ状施釉方法又はスクリーン印刷機械による印刷
方法の如き公知の塗布方法を用いる。 第4工程は、前記第3工程で得た素地16を下
地釉薬9,10と接着釉薬11の共融温度T2
上で且つ接着釉薬と微細粒子の共融温度T3未満
の温度T1で焼成することである。前記素地16
は、加熱昇温に伴ない下地釉薬9,10の融点
T4に達すると下地釉薬層13が溶融し、更に加
熱昇温に伴ない前記共融温度T2に達すると塗布
厚の薄い接着釉薬11が溶融する。ところが、接
着釉薬11は、溶融状態の下地釉薬層13上で溶
融しても、前記下地釉薬9,10が傾斜ボタンテ
ストの測定地でL=2.0cm以下と非常に流動性の
悪いことから何ら下地釉薬層13内へ流入移動し
ない。更に、微細粒子14,14…は、焼成温度
の上限が前記温度T4未満であることから何ら溶
融することなく、下地釉薬層13上で溶融した接
着釉薬11により接着固定される。微細粒子14
は、前記第3工程における塗布時において接着釉
薬11で覆われていても(第2図B参照)、焼成
時の接着釉薬11の溶融に伴なう流動によりその
一部が露出する(第3図参照)。前記焼成温度T1
の状態で適宜時間保持した後、徐々に冷却して第
4図に示す滑止めタイル17を得る。 なお、第2図Bに示す下地釉薬層13の第1層
13aを形成する下地釉薬9をブライト釉又はセ
ミマツト釉、第2層13bを形成する下地釉薬1
0をマツト釉及び接着釉薬11をマツト釉とした
場合には、艶出し部分と艶消し部分からなるモザ
イク模様となり意匠的効果に優れた滑止めタイル
を得ることが出来る。 本発明者らは、下記の諸条件で実験を行ない下
記の如き結果を得た。 [実験条件] (1) 第1層用下地釉薬9の条件 配合内容 長 石 20% 珪 砂 10% 炭酸カルシユウム 20% 粘 土 5% クレー粉 10% フリツト 20% タルク 15% 種 類:ブライト釉 単独の融点:1140℃ 傾斜ボタン テストの測定値:2.0cm (2) 第2層用下地釉薬10の条件 配合内容 珪 砂 15% 炭酸カルシユウム 25% 粘 土 5% フリツト 20% タルク 25% ジルコン 10% 種 類:マツト釉 単独の融点:1140℃ (3) 接着釉薬11の条件 配合内容 粘 土 10% フリツト 20% タルク 30% ジルコン 40% 種 類:マツト釉 単独の融点:1250℃ (4) 微細粒子14の条件 材 質:溶融アルミナ 平均粒径:0.075mm 単独の融点:1450℃ (5) 懸濁液15の条件 配合割合:微細粒子30重量部に対し乾燥接着釉
薬100重量部 比 重:2.0 (6) 施釉又は塗布方法 第1層13a:幕掛け施釉方法 第2層13b:ボタ掛け施釉方法 懸濁液15:スプレー塗布方法 (7) 施釉又は塗布量 第1層:6.0g/10cm角 第2層:1.0g/10cm角 懸濁液:1.0g/10cm角 (8) 焼成温度:1190℃ [実験結果] 微細粒子によりタイル表面に形成された微細突
起の数は、約160個/1.0cm角であつた。また、
JISA1407に規定の試験により得たすべり抵抗は
0.9であつた。 更に、本発明者らは、下地釉薬9,10の流動
性が微細突起の数及びすべり抵抗に与える影響を
調べるために比較実験を行ない、第5図のグラフ
に示す比較結果を得た。この比較結果から明らか
な如く、もし下地釉薬の流動性が傾斜式ボタンテ
ストの測定値で2.0cmを越えると、微細突起の数
及びすべり抵抗が極端に低下し、非常に滑り易い
タイルとなる。
The manufacturing method of the present invention will be explained below based on the embodiment shown in FIGS. 2A and 2B. In the first step, as shown in FIG. 2A, the first layer 13a of the base glaze layer 13 is coated with the base glaze 9 on the entire surface 8a of the tile base 8 or in appropriate places to a desired thickness A (for example, by firing as shown in FIG. Later thickness A′=0.02~0.03
The method is to form the glaze to a thickness A) of mm. The tile base 8 is obtained by a known dry pressure molding method, wet extrusion molding method, or the like. The base glaze 9 has a measured value L of the tilt button test described below.
(See Figure 4B) and have a fluidity of L = 2.0 cm or less. The reason for using the base glaze 9 having a fluidity of L = 2.0 cm or less as measured by the tilt button test is because the base glaze 9 in a molten state is used during firing in the fourth step to be described later. This is to prevent the adhesive glaze 11 from flowing into the base glaze layer 13 even if the adhesive glaze 11, which will be described later, melts on the layer 13. If a base glaze with good fluidity with a measured value L of the inclined button test exceeding L = 2.0 cm is used, the adhesive glaze 11 will flow into the base glaze layer made of this base glaze and cause the fine particles 14 to form. By immersing it in the base glaze layer, the number of microscopic protrusions protruding from the tile surface is extremely reduced, resulting in a tile with low slip resistance (see the comparison results shown in the graph in Figure 5), which exists in conventional technology. It becomes impossible to solve the problems that were being faced. The above-mentioned tilt button test means that, as shown in FIG. 4A, the surface 8'a of the unglazed tile base 8' obtained by bisque firing the tile base 8 is θ=25 with respect to the horizontal plane.
At the same time, a test glaze block 9' with D = 1.0 cmφ and H = 1.0 cm is glued on the surface 8'a with vinyl acetate resin (not shown).
The temperature is heated to a predetermined firing temperature T1 , which will be described later, and the temperature is maintained at the temperature T1 for 30 minutes, followed by gradual cooling, and the molten glaze 9'' on the surface 8''a of the tile base 8'' shown in FIG. 4B is heated. The flow length L of the glaze is measured, and the fluidity of the glaze is evaluated based on this measured value L.The test glaze block 9' has a diameter of 100
1.0 g of the dried glaze that has passed through a mesh sieve is press-molded into a short cylinder. In the second step, as shown in FIG. 2A, a second layer 13b of the base glaze layer 13 is applied to an arbitrary location on the first layer 13a with a base glaze 10 having a measured value of L = 2.0 cm or less in the inclined button test. to the desired thickness B (for example,
The glazing thickness B) is such that the thickness B' after firing as shown in FIG. 3 is 0.05 to 0.1 mm. The base glaze 10 is applied by a known glazing method such as a buttoning method using a buttoning machine or a printing method using a screen printing machine. In addition, in the second step, by partially providing the second layer 13b on the first layer 13a to form an uneven part, the anti-slip effect due to the uneven part is slightly improved and/or the uneven part pattern is improved. This is done as necessary for the purpose of improving the design effect, and it is of course possible to omit it. In the third step, as shown in FIG. 2B, a suspension 15 (not shown) in which fine particles 14 are suspended in the adhesive glaze 11 is applied to an appropriate place on the surface of the base glaze layer 13 in an amount of 0.5 to 2. g/10 cm square to obtain a substrate 16. As the adhesive glaze 11, a glaze having a higher melting point (for example, about 100° C. higher) than the base glazes 9 and 10 is used. This is to completely melt the base glazes 9 and 10 before the adhesive glaze 11 softens and melts. The fine particles 14 have a higher melting point than the adhesive glaze 11 (for example, 100° C. higher), and are made of fused alumina particles and/or zircon sand particles and have a particle diameter of 0.06 mm or more and less than 0.1 mm. What makes the melting point of the fine particles 14 higher than that of the adhesive glaze 11 is that the fine particles 1
This is to form microscopic protrusions for anti-slip without melting 4. The reason why the particle size of the fine particles 14 is limited to the above range is that if it is less than 0.06 mm, most of the height of the fine particles will be absorbed into the layer of the fired adhesive glaze 11, so the effectiveness of the fine particles contributing to the anti-slip effect will be reduced. This is because the number of protrusions will be reduced, and if the diameter is 0.1 mm or more, the particles will not be suspended in the adhesive glaze 11 but will precipitate. Applying the precipitated particles to the coating surface in a uniformly dispersed state is extremely difficult in terms of coating technology. On the other hand, applying the suspended fine particles 14 to the coating surface in a uniformly dispersed state is simple from a coating technique. The mixing ratio of the fine particles 14 and the adhesive glaze 11 constituting the suspension 15 is such that the value obtained by dividing the weight of the fine particles 14 by the dry weight of the adhesive glaze 11 is 0.2 to 0.4 (preferably 0.3). .
The suspension 15 having this blending ratio is adjusted to have a specific gravity of about 1.9 to 2.1. The suspension 15 can be applied by a known method such as a glazing method using a spraying machine or a centrifugal glazing machine, or a printing method using a screen printing machine. In the fourth step, the base 16 obtained in the third step is heated at a temperature T 1 that is higher than the eutectic temperature T 2 of the base glazes 9 and 10 and the adhesive glaze 11 and lower than the eutectic temperature T 3 of the adhesive glaze and the fine particles . It is to be fired. The substrate 16
is the melting point of base glazes 9 and 10 as the temperature increases.
When the temperature T 4 is reached, the base glaze layer 13 melts, and when the eutectic temperature T 2 is reached as the temperature increases, the thin adhesive glaze 11 melts. However, even if the adhesive glaze 11 is melted on the base glaze layer 13 in a molten state, the base glazes 9 and 10 have very poor fluidity (L = 2.0 cm or less at the measurement site of the inclined button test), so there is no problem. It does not flow into the base glaze layer 13. Further, since the upper limit of the firing temperature is less than the temperature T4 , the fine particles 14, 14, etc. are adhesively fixed on the base glaze layer 13 by the molten adhesive glaze 11 without being melted at all. Fine particles 14
Even if it is covered with the adhesive glaze 11 during application in the third step (see FIG. 2B), a part of it is exposed due to the flow accompanying the melting of the adhesive glaze 11 during firing (see FIG. 2B). (see figure). Said firing temperature T 1
After being held in this state for a suitable period of time, it is gradually cooled to obtain the anti-slip tile 17 shown in FIG. Note that the base glaze 9 forming the first layer 13a of the base glaze layer 13 shown in FIG. 2B is bright glaze or semi-matte glaze, and the base glaze 1 forming the second layer 13b is used.
When 0 is a matte glaze and the adhesive glaze 11 is a matte glaze, it is possible to obtain an anti-slip tile with a mosaic pattern consisting of a glossy part and a matte part and excellent in design effect. The present inventors conducted experiments under the following conditions and obtained the following results. [Experimental conditions] (1) Conditions for base glaze 9 for the first layer Mixture length Stone 20% Silica sand 10% Calcium carbonate 20% Clay 5% Clay powder 10% Fritz 20% Talc 15% Type: Bright glaze alone Melting point: 1140℃ Measured value of inclined button test: 2.0cm (2) Conditions for base glaze 10 for second layer Composition Silica sand 15% Calcium carbonate 25% Clay 5% Fritz 20% Talc 25% Zircon 10% Seed Type: Pine glaze Individual melting point: 1140℃ (3) Conditions for adhesive glaze 11 Contents Clay 10% Fritz 20% Talc 30% Zircon 40% Type: Pine glaze Individual melting point: 1250℃ (4) Fine particles 14 Conditions Material: Fused alumina Average particle size: 0.075mm Single melting point: 1450℃ (5) Conditions for suspension 15 Mixing ratio: 30 parts by weight of fine particles to 100 parts by weight of dry adhesive glaze Specific gravity: 2.0 (6 ) Glazing or coating method 1st layer 13a: Curtain glazing method 2nd layer 13b: Bottle glazing method Suspension 15: Spray coating method (7) Glazing or coating amount 1st layer: 6.0g/10cm square 2nd layer : 1.0g/10cm square Suspension: 1.0g/10cm square (8) Firing temperature: 1190℃ [Experimental results] The number of microscopic protrusions formed on the tile surface by fine particles was approximately 160/1.0cm square. It was hot. Also,
The slip resistance obtained by the test specified in JISA1407 is
It was 0.9. Further, the present inventors conducted a comparative experiment to examine the influence of the fluidity of the base glazes 9 and 10 on the number of microprotrusions and the sliding resistance, and obtained the comparative results shown in the graph of FIG. As is clear from the results of this comparison, if the fluidity of the base glaze exceeds 2.0 cm as measured by the tilt button test, the number of fine protrusions and sliding resistance will be extremely reduced, resulting in a very slippery tile.

【発明の効果】 以上詳細の如く、本発明製造方法は、傾斜式ボ
タンテストの測定値で2.0cm以下の流動性を有す
る下地釉薬を用いているので、微細粒子が下地釉
薬層内に没入することなく、更に接着釉薬の中に
微細粒子が懸濁した懸濁液を下地釉薬層表面に塗
布するので微細粒子と接着釉薬の馴染みが良く微
細粒子を強固に下地釉薬層表面に接着固定するこ
とができる。その結果、本発明製造方法は、素足
に傷みを与えることなく滑止め効果を十分に発揮
し得る滑止めタイルを製造することができる優れ
た効果を有する。
[Effects of the Invention] As detailed above, the manufacturing method of the present invention uses a base glaze that has a fluidity of 2.0 cm or less as measured by the tilt button test, so fine particles are absorbed into the base glaze layer. Furthermore, since a suspension of fine particles suspended in the adhesive glaze is applied to the surface of the base glaze layer, the fine particles and the adhesive glaze blend well, and the fine particles are firmly adhesively fixed to the surface of the base glaze layer. I can do it. As a result, the manufacturing method of the present invention has the excellent effect of manufacturing an anti-slip tile that can sufficiently exhibit an anti-slip effect without causing damage to bare feet.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A,Cは従来の滑止めタイルの製造方法
を示す断面図、第1図B,Dは従来の滑止めタイ
ルの要部拡大断面図である。第2図A,Bは本発
明製造方法の実施例を示す要部拡大断面図、第3
図は本発明製造方法で得た滑止めタイルを示す要
部拡大断面図、第4図A,Bは傾斜式ボタンテス
トの説明図である。第5図は比較実験の結果を示
すグラフである。 8……タイル素地、9,10……下地釉薬、1
1……接着釉薬、13……下地釉薬層、14……
微細粒子、15……懸濁液。
FIGS. 1A and 1C are cross-sectional views showing a conventional method of manufacturing an anti-slip tile, and FIGS. 1B and D are enlarged sectional views of essential parts of the conventional anti-slip tile. 2A and 2B are enlarged sectional views of main parts showing an embodiment of the manufacturing method of the present invention;
The figure is an enlarged sectional view of the main part showing the anti-slip tile obtained by the manufacturing method of the present invention, and FIGS. 4A and 4B are explanatory views of the tilt button test. FIG. 5 is a graph showing the results of a comparative experiment. 8...Tile base, 9,10...Base glaze, 1
1... Adhesive glaze, 13... Base glaze layer, 14...
Fine particles, 15...suspension.

Claims (1)

【特許請求の範囲】 1 滑止めタイルの製造方法において、タイル素
地の表面適所に傾斜式ボタンテストの測定値で
2.0cm以下の流動性を有する下地釉薬により地下
釉薬層を形成し、下地釉薬より融点の高い接着釉
薬の中に接着釉薬よりも融点が高く且つ粒径が
0.06mm以上0.1mm未満の微細粒子を懸濁させたも
のを下地施釉層表面適所に塗布し、下地釉薬と接
着釉薬の共融温度以上で且つ接着釉薬と微細粒子
の共融温度未満の温度で焼成することを特徴とす
る滑止めタイルの製造方法。 2 前記下地釉薬層は前記タイル素地表面の全面
に第1層を形成した後、第1層表面の任意箇所へ
第2層を部分形成する特許請求の範囲第1項記載
の滑止めタイルの製造方法。
[Claims] 1. In a method for manufacturing an anti-slip tile, a method for manufacturing an anti-slip tile is provided in which a measurement value of an inclined button test is applied to a suitable place on the surface of a tile base.
An underground glaze layer is formed with a base glaze that has a fluidity of 2.0 cm or less, and the adhesive glaze has a melting point higher than that of the base glaze.
A suspension of fine particles of 0.06 mm or more and less than 0.1 mm is applied to the surface of the base glaze layer at a suitable location, and the temperature is higher than the eutectic temperature of the base glaze and the adhesive glaze and lower than the eutectic temperature of the adhesive glaze and the fine particles. A method for producing an anti-slip tile characterized by firing it. 2. Manufacturing the anti-slip tile according to claim 1, wherein the base glaze layer is formed by forming a first layer on the entire surface of the tile base material, and then partially forming a second layer at an arbitrary location on the surface of the first layer. Method.
JP6632984A 1984-04-02 1984-04-02 Anti-slip tile and its production Granted JPS60208554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6632984A JPS60208554A (en) 1984-04-02 1984-04-02 Anti-slip tile and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6632984A JPS60208554A (en) 1984-04-02 1984-04-02 Anti-slip tile and its production

Publications (2)

Publication Number Publication Date
JPS60208554A JPS60208554A (en) 1985-10-21
JPH0347378B2 true JPH0347378B2 (en) 1991-07-19

Family

ID=13312693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6632984A Granted JPS60208554A (en) 1984-04-02 1984-04-02 Anti-slip tile and its production

Country Status (1)

Country Link
JP (1) JPS60208554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747590Y2 (en) * 1991-05-16 1995-11-01 株式会社日本アルミ Seal material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2576322B2 (en) * 1991-10-22 1997-01-29 株式会社イナックス Non-slip tile and manufacturing method thereof
JP4031895B2 (en) * 2000-02-09 2008-01-09 日本特殊陶業株式会社 Metal-ceramic joint using ceramic member with glaze layer and vacuum switch unit using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142866A (en) * 1979-04-18 1980-11-07 Tanto Kk Floor tile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142866A (en) * 1979-04-18 1980-11-07 Tanto Kk Floor tile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747590Y2 (en) * 1991-05-16 1995-11-01 株式会社日本アルミ Seal material

Also Published As

Publication number Publication date
JPS60208554A (en) 1985-10-21

Similar Documents

Publication Publication Date Title
CN111605043A (en) Porous gradient ceramic tile and manufacturing method thereof
CN113683306B (en) Anti-slip glaze, anti-slip glazed tile and preparation method thereof
JPH0347378B2 (en)
JP2953610B2 (en) Glazing method for ceramics
JP2576322B2 (en) Non-slip tile and manufacturing method thereof
US4146670A (en) Manufacture of ceramic articles
EP0076001A1 (en) Method of producing ceramic articles, particularly floortiles, with a slip-resisting surface
JP3211442B2 (en) Manufacturing method of ceramics
JP3760784B2 (en) How to repair ceramics
CN117125967B (en) Wet anti-slip brick and manufacturing process thereof
JPS6177690A (en) Glazed tile with luminescent glaze layer of embossed patternand manufacture
JPH075352B2 (en) Atomized kiln alteration glazed body and its manufacturing method
JP2802347B2 (en) Glaze for pottery tiles and method of manufacturing pottery tiles
JP3575377B2 (en) Porcelain and its manufacturing method
JP3038893B2 (en) How to form a stone pattern on ceramic products
JPS62153176A (en) Manufacture of surface dressing material for road surface, floor surface and wall surface
JPS6027642A (en) Manufacture of ceramic tile-like article
JPH0319193B2 (en)
JP3472912B2 (en) Glaze composition for decorative ceramic products and method for forming decorative pattern using the same
JP2625241B2 (en) Manufacturing method of glazed concrete panel
JPS61242256A (en) Anti-slip tile and its production
JPH06107486A (en) Production of design tile
JP2775575B2 (en) Raster glaze
JP2007091518A (en) Method for producing vitreous tile
JPH0124752B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term