JPH0347202B2 - - Google Patents

Info

Publication number
JPH0347202B2
JPH0347202B2 JP58017077A JP1707783A JPH0347202B2 JP H0347202 B2 JPH0347202 B2 JP H0347202B2 JP 58017077 A JP58017077 A JP 58017077A JP 1707783 A JP1707783 A JP 1707783A JP H0347202 B2 JPH0347202 B2 JP H0347202B2
Authority
JP
Japan
Prior art keywords
rubber layer
tire
rubber
cap
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58017077A
Other languages
Japanese (ja)
Other versions
JPS59143702A (en
Inventor
Ryozo Okada
Minoru Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP58017077A priority Critical patent/JPS59143702A/en
Publication of JPS59143702A publication Critical patent/JPS59143702A/en
Publication of JPH0347202B2 publication Critical patent/JPH0347202B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C7/00Non-inflatable or solid tyres
    • B60C7/10Non-inflatable or solid tyres characterised by means for increasing resiliency
    • B60C7/102Tyres built-up with separate rubber parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はタイヤ発熱性を軽減し、かつ耐負荷能
力を向上するとともに、材料コストを低減したソ
リツドタイヤに関する。 一般にソリツドタイヤは、耐負荷能力、低発熱
性、耐久性等の性能が優れていることが要求され
る他、販価が低廉であることも重要な要素であ
り、一般需要者は一定水準の品質のものであれ
ば、当然安価であるものを選定するため、そのコ
ストダウンが要求される。他方、ニユーマチツク
型ソリツドタイヤは、第1図に示す如く、ベース
部aには短繊維を補強した硬質ゴムを用いるとと
もに、トレツド部bにはJISA硬度60〜70で前記
ベース部aよりは柔軟なゴムを用いる2層構造の
ものが知られている。しかしこのようなものでは
タイヤ回転による繰り返し屈曲歪によりエネルギ
ー損失が生じ、その結果タイヤは発熱するが、ベ
ース部aの短繊維補強ゴムの放熱効果は劣るた
め、タイヤの温度上昇曲線は走行時間が経過して
も飽和することなく著しく高い温度範囲に達す
る。又タイヤの温度上昇曲線をゆるやかにするた
め、エネルギー損失の少ないゴム材料を使用する
と製品コストが増すという問題がある。 また第2図に示すように、ベース部cとトレツ
ド部dとに比較的硬いゴムを用いるとともに、そ
の中間層eにはJISA硬度40〜58の軟質ゴムある
いは発泡体を用いた三層構造とすることにより、
タイヤの縦バネ定数を小さくし、タイヤのクツシ
ヨン性を改良したものも提案されているが、この
とき、中間層eは軟質ゴムあるいは発泡体であつ
たため、耐負荷能力、操縦安定性等に劣るという
欠点がある。 本発明は、ソリツドタイヤについてのかかる問
題点について種々研究を重ねた結果、短繊維コー
ドで補強されたゴムを用いるベースゴム層と、
JISA硬度が50〜70゜のキヤツプゴム層との間に、
該キヤツプゴム層のゴムよりも硬質しかもJISA
硬度が65〜80゜のゴムからなる中間ゴム層を配す
ることを基本として、耐荷重能力を増すととも
に、歪に基づく発熱、コロガリ抵抗を減じ、耐久
性とともに操縦安定性をも同時に向上しうること
を見出し、本発明を完成したものである。 従つて、本発明は低発熱性、耐荷重能力、省燃
費性、操縦安定性を向上するとともに、低コスト
化をも可能とするソリツドタイヤの提供を目的と
し、本発明は、タイヤの半径方向最内側に位置し
短繊維コードで補強されたゴムよりなるベースゴ
ム層と、接地面側に位置しJISA硬度が50〜70゜の
範囲のキヤツプゴム層と、該キヤツプゴム層と前
記ベースゴム層の中間に位置しJISA硬度が65〜
80゜の中間ゴム層の三層構造のトレツドゴムを備
え、かつ前記ベースゴム層の厚さTBがタイヤ断
面高さTHの20〜50%の範囲で、キヤツプゴム層
の厚さTCがタイヤ断面高さTHの20〜30%の範
囲であることを特徴としている。 以下本発明の一実施例を図面に基づき説明す
る。 第3図において、本発明のソリツドタイヤ1
は、タイヤ半径方向最内側に位置するベースゴム
層2と、接地面側に位置するキヤツプゴム層3
と、該キヤツプゴム層3と前記ベースゴム層2の
中間に位置する中間ゴム層4の三層構造のトレツ
ドゴム5を備えている。 前記ベースゴム層2は、短繊維コードで補強さ
れた硬質ゴムであつて、短繊維コードとして、ポ
リエステル、ナイロン、レーヨン等の有機繊維コ
ードのほか、ガラス、スチール等の無機繊維コー
ドも使用でき、好ましくは10mm以下の長さに切断
したものが使用される。しかし、製品コストの低
減の観点から空気入りタイヤで使用される未加硫
のケース材料、あるいは廃タイヤから回収される
ケース材料をクラツシヤーミル等で所定の長さに
裁断したものを用いるのがよい。これらの短繊維
コードを混入したゴム組成物をベースゴム層2に
用いることにより、その剛性が改善され、タイヤ
とリムの嵌合圧が高くなり両者間のスリツプが防
止できる。しかしながら短繊維コードを混入した
ゴム組成物は、短繊維コードをゴムに混入する
際、空気をもゴム内部に取込み、その結果熱伝導
従つて放熱効果を低下するため、ベースゴム層2
の厚さTBをタイヤ断面高さTHの20〜50%、好
ましくは25〜35%の範囲としている。前記数値が
20%未満ではリムとの嵌合圧が維持できず、他方
50%を越えると放熱効果が著しく低下する。なお
短繊維コードはゴム100重量部に対して40重量部
以下、好ましくは5〜35重量部混入する。 キヤツプゴム層3は、JISA硬度が50〜70゜のゴ
ムを使用し、耐摩耗性、耐クラツク性、及びグリ
ツプ性に優れたゴム組成物、例えば天然ゴム、イ
ソプレンゴム、スチレン−ブタジエンゴム等のジ
エン系ゴムにカーボンを所定量配合した所謂トレ
ツドゴム配合のものが使用される。JISA硬度が
50゜より小さい場合、耐摩耗性が劣りまたJISA硬
度が70゜を越えるとグリツプ性能が低下する。そ
してキヤツプゴム層3の厚さTCはタイヤ断面高
さTHの20〜30%の範囲である。このキヤツプゴ
ム層3の厚さTCはソリツドタイヤ1の摩耗によ
る使用寿命と相関し、厚さを増すと使用寿命も延
長しうるのではあるが、キヤツプゴム層3を厚く
するに従い中間ゴム層4が薄くなり後記するごと
く低発熱性が達成できなくなる。 次に中間ゴム層4として、JISA硬度が65〜80゜
で、前記キヤツプゴム3よりも硬質のゴムを使用
する。従来の三層構造のタイヤでは、前記したよ
うに、中間ゴム層eにエネルギー損失の小さいゴ
ムを使用したが、本発明のものでは硬いゴムを用
い変形量を抑制することにより発熱を低減するも
のである。したがつてゴム材料そのもののレジリ
エンスの小さいものを用いても変形量が小さいた
め、発熱量は少なくなり、ゴム材料選択の自由度
が高く、製品コストの低減が可能となる。一方中
間ゴム層4のゴム硬度が高いため、高荷重下での
変形が少なく耐負荷能力が向上するとともに、ピ
ツチング性、ローリング性も少なくなることによ
つて車両の操縦安定性が大巾に向上し、フオーク
リフトの作業の安全性が高まる。さらにタイヤの
変形が小であることにより、タイヤのコロガリ抵
抗を低減し、車両の燃費性能が改善される。なお
中間ゴム層4の厚さTEはトレツドゴム5の厚
THの20〜60%の範囲で選定される。なおベース
ゴム層2、キヤツプゴム層3、中間ゴム層4の各
境界面は、剛性の急変によるクラツクの発生を防
止するため、隣接するゴムのJISA硬度の差を8゜
以下にすることが望ましい。 叙上のごとく、本発明のソリツドタイヤは、三
層構造としそれぞれの層の硬度及び厚さを特定す
ることにより、低発熱性、耐負荷能力、車両の操
縦安定性、省燃費性が大巾に向上し更に製品コス
トの低減が可能となつた。 実施例 タイヤサイズ6.00−9のソリツドタイヤで、第
1図に示した従来構造のものと、第3図に示すも
のとを試作した。第1図のタイヤのトレツド部b
および第3図に示したキヤツプゴム層3に第1表
に「キヤツプゴム層」として示すものを、又中間
ゴム層4に同表で「中間ゴム層」と記載したもの
を使用している。詳細な仕様及び性能結果を第2
表に示す。第2表において縦ひずみはタイヤに荷
重を2030Kgを負荷した場合の歪量を%で表示した
もので、上記温度、コロガリ抵抗は荷重1205Kg、
速度25Km/hでドラム上で走行させ比較例の値を
100とした場合の相対値で示す。 いずれも実施例品が優れている。
The present invention relates to a solid tire that reduces tire heat generation, improves load-bearing capacity, and reduces material costs. In general, solid tires are required to have excellent performance such as load-bearing capacity, low heat generation, and durability, and low selling prices are also an important factor. If it is a product, it is natural to select an inexpensive product, so there is a need to reduce the cost. On the other hand, as shown in Fig. 1, the pneumatic type solid tire uses hard rubber reinforced with short fibers in the base part a, and a rubber with a JISA hardness of 60 to 70, which is softer than the base part a, in the tread part b. A two-layer structure using . However, in such a tire, energy loss occurs due to repeated bending strain due to tire rotation, and as a result, the tire generates heat. However, because the heat dissipation effect of the short fiber reinforced rubber in the base part a is poor, the temperature rise curve of the tire changes over the running time. It reaches a significantly higher temperature range without becoming saturated over time. Furthermore, if a rubber material with low energy loss is used in order to soften the temperature rise curve of the tire, there is a problem in that the product cost increases. Furthermore, as shown in Figure 2, a relatively hard rubber is used for the base part c and the tread part d, and the middle layer e has a three-layer structure using soft rubber or foam with a JISA hardness of 40 to 58. By doing so,
Tires have been proposed in which the longitudinal spring constant of the tire is reduced to improve the cushioning properties of the tire, but in this case, because the intermediate layer e is made of soft rubber or foam, the load-bearing capacity, handling stability, etc. are inferior. There is a drawback. As a result of various studies on these problems with solid tires, the present invention has developed a base rubber layer using rubber reinforced with short fiber cords,
Between the cap rubber layer and the JISA hardness of 50 to 70 degrees,
Harder than the rubber of the cap rubber layer and JISA
Based on the provision of an intermediate rubber layer made of rubber with a hardness of 65 to 80 degrees, it increases load-bearing capacity, reduces heat generation due to strain and rolling resistance, and simultaneously improves durability and handling stability. This discovery led to the completion of the present invention. Therefore, an object of the present invention is to provide a solid tire that improves low heat generation, load carrying capacity, fuel efficiency, and steering stability, and also enables cost reduction. A base rubber layer located on the inside and made of rubber reinforced with short fiber cords, a cap rubber layer located on the contact surface side and having a JISA hardness in the range of 50 to 70 degrees, and an intermediate layer between the cap rubber layer and the base rubber layer. Located at JISA hardness of 65~
It has a three-layer tread rubber structure with an 80° intermediate rubber layer, and the thickness TB of the base rubber layer is in the range of 20 to 50% of the tire cross-sectional height TH, and the thickness TC of the cap rubber layer is within the range of the tire cross-sectional height TH. It is characterized by a range of 20-30% of TH. An embodiment of the present invention will be described below based on the drawings. In FIG. 3, a solid tire 1 of the present invention is shown.
The base rubber layer 2 is located on the innermost side in the tire radial direction, and the cap rubber layer 3 is located on the contact surface side.
and an intermediate rubber layer 4 located between the cap rubber layer 3 and the base rubber layer 2. The base rubber layer 2 is made of hard rubber reinforced with short fiber cords, and as the short fiber cords, in addition to organic fiber cords such as polyester, nylon, and rayon, inorganic fiber cords such as glass and steel can also be used. Preferably, those cut into lengths of 10 mm or less are used. However, from the viewpoint of reducing product costs, it is preferable to use unvulcanized case material used in pneumatic tires or case material recovered from waste tires cut into a predetermined length using a crusher mill or the like. By using a rubber composition mixed with these short fiber cords for the base rubber layer 2, its rigidity is improved, the fitting pressure between the tire and the rim is increased, and slips between the two can be prevented. However, in rubber compositions containing short fiber cords, when the short fiber cords are mixed into the rubber, air is also taken into the rubber, resulting in a decrease in heat conduction and heat dissipation effects.
The thickness TB is in the range of 20 to 50%, preferably 25 to 35%, of the tire cross-sectional height TH. If the above numerical value is
If it is less than 20%, the fitting pressure with the rim cannot be maintained, and the other
If it exceeds 50%, the heat dissipation effect will be significantly reduced. The short fiber cord is mixed in at most 40 parts by weight, preferably from 5 to 35 parts by weight, per 100 parts by weight of rubber. The cap rubber layer 3 is made of rubber with a JISA hardness of 50 to 70 degrees, and is made of a rubber composition with excellent wear resistance, crack resistance, and grip properties, such as diene rubber such as natural rubber, isoprene rubber, and styrene-butadiene rubber. A so-called treaded rubber compound, in which a predetermined amount of carbon is blended into a base rubber, is used. JISA hardness
If the JISA hardness is smaller than 50°, the wear resistance will be poor, and if the JISA hardness exceeds 70°, the grip performance will deteriorate. The thickness TC of the cap rubber layer 3 is in the range of 20 to 30% of the tire cross-sectional height TH. The thickness TC of the cap rubber layer 3 correlates with the service life due to wear of the solid tire 1, and increasing the thickness can extend the service life, but as the cap rubber layer 3 becomes thicker, the intermediate rubber layer 4 becomes thinner. As described later, low heat generation cannot be achieved. Next, as the intermediate rubber layer 4, a rubber having a JISA hardness of 65 to 80 degrees and harder than the cap rubber 3 is used. As mentioned above, in conventional tires with a three-layer structure, rubber with low energy loss is used for the intermediate rubber layer e, but in the present invention, hard rubber is used to reduce heat generation by suppressing the amount of deformation. It is. Therefore, even if a rubber material with low resilience is used, the amount of deformation is small, so the amount of heat generated is small, the degree of freedom in selecting the rubber material is high, and product costs can be reduced. On the other hand, because the intermediate rubber layer 4 has a high rubber hardness, there is less deformation under high loads, which improves the load-bearing capacity, and also reduces pitching and rolling properties, which greatly improves vehicle handling stability. This increases the safety of forklift operations. Furthermore, since the deformation of the tire is small, the rolling resistance of the tire is reduced, and the fuel efficiency of the vehicle is improved. The thickness TE of the intermediate rubber layer 4 is the thickness of the tread rubber 5.
It is selected in the range of 20 to 60% of TH. In order to prevent cracks from occurring due to sudden changes in rigidity at the interfaces between the base rubber layer 2, cap rubber layer 3, and intermediate rubber layer 4, it is desirable that the difference in JISA hardness between adjacent rubbers be 8° or less. As mentioned above, the solid tire of the present invention has a three-layer structure, and by specifying the hardness and thickness of each layer, it has significantly improved low heat generation, load-bearing capacity, vehicle handling stability, and fuel efficiency. This has made it possible to further reduce product costs. EXAMPLE Solid tires of tire size 6.00-9 were prototyped, one having the conventional structure shown in FIG. 1 and the other shown in FIG. 3. Tread part b of the tire in Figure 1
For the cap rubber layer 3 shown in FIG. 3, the material shown as "cap rubber layer" in Table 1 is used, and for the intermediate rubber layer 4, the material shown as "intermediate rubber layer" in the same table is used. Detailed specifications and performance results are provided in the second section.
Shown in the table. In Table 2, longitudinal strain is the amount of strain expressed in % when a load of 2030 kg is applied to the tire, and the rolling resistance at the above temperature is a load of 1205 kg,
Run on the drum at a speed of 25 km/h and check the value of the comparative example.
Shown as a relative value when set to 100. In all cases, the example products are excellent.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1〜2図は従来のソリツドタイヤの断面図、
第3図は本発明のソリツドタイヤの断面図であ
る。 1……ソリツドタイヤ、2……ベースゴム層、
3……キヤツプゴム層、4……中間ゴム層、TH
……タイヤ断面高さ、TB……ベースゴム層の厚
さ、TC……キヤツプゴム層の厚さ、TE……中間
ゴム層の厚さ。
Figures 1 and 2 are cross-sectional views of conventional solid tires.
FIG. 3 is a sectional view of the solid tire of the present invention. 1...Solid tire, 2...Base rubber layer,
3...Cap rubber layer, 4...Intermediate rubber layer, TH
...Tire cross-sectional height, TB...Thickness of the base rubber layer, TC...Thickness of the cap rubber layer, TE...Thickness of the intermediate rubber layer.

Claims (1)

【特許請求の範囲】[Claims] 1 タイヤの半径方向最内側に位置し短繊維コー
ドで補強されたゴムよりなるベースゴム層と、接
地面側に位置しJIS硬度が50〜70゜の範囲のキヤツ
プゴム層と、該キヤツプゴム層と前記ベースゴム
層の中間に位置しJISA硬度が65〜80゜の範囲であ
つてしかもキヤツプゴム層よりも硬い中間ゴム層
の三層構造のトレツドゴムを具え、かつ前記ベー
スゴム層の厚さTBがタイヤ断面高さTHの20〜
50%の範囲で、キヤツプゴム層の厚さTCがタイ
ヤ断面高さTHの20〜30%の範囲であることを特
徴とするソリツドタイヤ。
1. A base rubber layer located on the innermost radial side of the tire and made of rubber reinforced with short fiber cords, a cap rubber layer located on the ground contact side and having a JIS hardness in the range of 50 to 70 degrees, and the cap rubber layer and the above-mentioned The tire has a tread rubber having a three-layer structure including an intermediate rubber layer located between the base rubber layer and having a JISA hardness of 65 to 80 degrees and harder than the cap rubber layer, and the thickness TB of the base rubber layer is equal to the cross section of the tire. Height TH 20~
A solid tire characterized in that the thickness TC of the cap rubber layer is in the range of 20 to 30% of the cross-sectional height TH of the tire.
JP58017077A 1983-02-03 1983-02-03 Solid tire Granted JPS59143702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58017077A JPS59143702A (en) 1983-02-03 1983-02-03 Solid tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58017077A JPS59143702A (en) 1983-02-03 1983-02-03 Solid tire

Publications (2)

Publication Number Publication Date
JPS59143702A JPS59143702A (en) 1984-08-17
JPH0347202B2 true JPH0347202B2 (en) 1991-07-18

Family

ID=11933911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58017077A Granted JPS59143702A (en) 1983-02-03 1983-02-03 Solid tire

Country Status (1)

Country Link
JP (1) JPS59143702A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388507U (en) * 1986-11-28 1988-06-09
US6450222B1 (en) * 1999-07-14 2002-09-17 Roger Fleming Non-pneumatic tire having an elastomeric hoop

Also Published As

Publication number Publication date
JPS59143702A (en) 1984-08-17

Similar Documents

Publication Publication Date Title
US4953605A (en) Reinforcing structure for bead portion of radial tire for heavy load
CN107031290B (en) Airless tire
JP3876085B2 (en) Heavy duty pneumatic radial tire
JP2009035229A (en) Pneumatic tire
WO2000035684A1 (en) Pneumatic tire
JPS582845B2 (en) Radial tire for passenger cars with low rolling resistance and anti-slip properties
JP4015629B2 (en) Heavy duty tire
JPS61200004A (en) Radial tire having improved configuration
EP1199192B1 (en) Pneumatic tire
US4867218A (en) Radial tire profile
JP4377934B2 (en) Pneumatic tire
JPH0347202B2 (en)
JPS61295103A (en) Pneumatic radial tire suitable for high speed
JPS5946801B2 (en) pneumatic tire and rim assembly
JPS61226306A (en) High performance tire
JPS60240506A (en) Tire for motor-cycle
JPH0228482B2 (en)
JP2006151212A (en) Pneumatic tire
JP2731489B2 (en) Solid tire
JPH05294108A (en) Pneumatic radial tire for construction vehicle
CN112124010A (en) Runflat tire
JPH0443001B2 (en)
JPH11235904A (en) Radial tire for heavy load
JP2000025410A (en) Pneumatic cushion tire
JPH0428242Y2 (en)