JPH0346732B2 - - Google Patents

Info

Publication number
JPH0346732B2
JPH0346732B2 JP62193468A JP19346887A JPH0346732B2 JP H0346732 B2 JPH0346732 B2 JP H0346732B2 JP 62193468 A JP62193468 A JP 62193468A JP 19346887 A JP19346887 A JP 19346887A JP H0346732 B2 JPH0346732 B2 JP H0346732B2
Authority
JP
Japan
Prior art keywords
room
chamber
passage
central
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62193468A
Other languages
Japanese (ja)
Other versions
JPS6438535A (en
Inventor
Hiroshi Emoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emoto Kogyo KK
Original Assignee
Emoto Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emoto Kogyo KK filed Critical Emoto Kogyo KK
Priority to JP19346887A priority Critical patent/JPS6438535A/en
Publication of JPS6438535A publication Critical patent/JPS6438535A/en
Publication of JPH0346732B2 publication Critical patent/JPH0346732B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Central Air Conditioning (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 A 発明の目的 a 産業上の利用分野 本発明は、温風暖房装置に関するものである。[Detailed description of the invention] A. Purpose of the invention a Industrial application field The present invention relates to a hot air heating device.

b 従来の技術とその問題点 [本発明の背景と必要性] 近年、石油危機以来、省エネルギーが国家レベ
ルで推進された。さらに、生活レベルの向上で、
夏は涼しく冬は暖かい住まいの快適性を追求する
ようになり、住宅は、急激に気密化の方向へ動き
出した。つまり、冬に省エネを満足させつつより
快適な暖房を行おうとすると、下記の様な理由に
より、住宅の気密性向上は欠くべからざる条件と
なる。
b. Prior art and its problems [Background and necessity of the present invention] In recent years, since the oil crisis, energy conservation has been promoted at the national level. Furthermore, with the improvement of living standards,
People began to pursue the comfort of a home that was cool in the summer and warm in the winter, and houses suddenly began to move toward airtightness. In other words, if you want to achieve more comfortable heating while still achieving energy savings in the winter, improving the airtightness of your home is an essential condition for the following reasons.

[換気と損失熱量] 今、暖房を行ない、室内の空気を暖めたとする
と、暖められた空気は、t℃上昇すると(V=1
+1/271t)だけ膨張し軽くなる。例えば、外気よ り27℃高く暖房すると、体積は1.1倍となり、10
%軽くなる。常温での空気の比重は、1.2Kg/m3
であるから、30坪(100m2)程度の住宅全体では、 G=100m2×2.7m×1.2Kg/m3×0.1(10%) (階高2.7m)=32.4Kg 軽くなつている。それで、外の寒気が32.4Kgの
力で室内に進入して来ることになる。
[Ventilation and heat loss] If we heat the indoor air by heating the room, the warmed air will rise by t°C (V = 1
+1/271t) and becomes lighter. For example, if you heat the room 27℃ higher than the outside air, the volume will increase by 1.1 times, and 10
% lighter. The specific gravity of air at room temperature is 1.2Kg/ m3
Therefore, the entire house of about 30 tsubo (100 m 2 ) is lighter by G = 100 m 2 × 2.7 m × 1.2 Kg/m 3 × 0.1 (10%) (story height 2.7 m) = 32.4 Kg. Therefore, the cold air from outside enters the room with a force of 32.4 kg.

一般的な木造住宅の場合、この外気の侵入量は
暖房中には1時間当り建物の体積の2回分は充分
にあると言われている。
In the case of a typical wooden house, the amount of outside air entering the house is said to be enough to double the volume of the building per hour during heating.

(換気回数2回270m3×2回=540m3/h) この外気の侵入(換気)により失われる熱量
は、外気が−5℃、湿度60%、室内22℃、湿度50
%の条件では、Q=7290Kcal/hであり、実に
灯油約1分の熱がこの換気によつて毎時失われ
ていることになる。つまり、気密性を向上させる
ことにより、暖まり軽くなつた空気を逃さず、外
気の侵入をも防がなければ省エネも快適な生活も
成立しない。故に、特に寒冷地においては、この
気密化の工夫がなされ、近年コンクリート住宅と
同じ程度の気密な木造住宅が急激に建てられる様
になつた。これにより、暖かく、燃費は従来の1/
2以下である住宅は出来たのであるが、カビ、湿
気、ダニ、結露など今迄には無かつた問題が発生
し始めた。その理由は下記の様である。
(Number of ventilation: 2 times 270m 3 × 2 times = 540m 3 /h) The amount of heat lost due to this intrusion of outside air (ventilation) is as follows: outside air is -5℃, humidity 60%, indoors is 22℃, humidity 50%.
% condition, Q = 7290 Kcal/h, which means that approximately 1 minute of kerosene's worth of heat is lost through this ventilation every hour. In other words, energy savings and a comfortable life cannot be achieved unless airtightness is improved to allow warmer, lighter air to escape and prevent outside air from entering. Therefore, especially in cold regions, efforts have been made to make buildings airtight, and in recent years wooden houses that are as airtight as concrete houses have been rapidly built. As a result, it is warmer and fuel efficiency is 1/1/2 compared to conventional models.
Although we were able to build houses that were less than 2, problems that had never existed before, such as mold, moisture, dust mites, and condensation, began to occur. The reason is as follows.

[気密化による室内水蒸気量の増加] 生活により発生する水蒸気は人体から70〜100
g/1人1時間を含め、炊事、洗濯、植物等から
4〜5人家族で1000g/h近くの水蒸気が発生し
ている。特に寒冷地の冬では、洗濯物を室内に干
さざるを得ない事と、開放型の石油ストーブを用
いることで最大3000g/h以上の水蒸気が発生す
ることもある。この時、従来の気密性の低い住宅
であれば暖房により外気が大量に侵入し、生活や
暖房により発生した水蒸気を室外へ運搬していた
訳である。それで、室内の絶対湿度(1m3中に含
まれている水蒸気の量(g))はせいぜい5g程
度以下であり、露点温度(水蒸気を含んだ空気を
冷却していつた時に相対湿度が上昇し、ついに
100%となる温度)も2℃程と低く(2℃以下の
室や物体にだけ結露が発生する)暖房中は、これ
程低温の室や部位は室内には無いため、結露やジ
メジメした感じ、カビ等の問題も発生することは
まず無かつた。
[Increase in the amount of indoor water vapor due to airtightness] The amount of water vapor generated in daily life is 70 to 100% from the human body.
A family of 4 to 5 people generates nearly 1000 g/h of water vapor from cooking, washing, plants, etc., including g/hour per person. Particularly in winter in cold regions, people are forced to dry their laundry indoors, and using open oil stoves can generate up to 3,000 g/h of water vapor. At this time, in conventional homes with low airtightness, a large amount of outside air would enter due to heating, and the water vapor generated by living and heating would be transported outside. Therefore, the absolute humidity indoors (the amount of water vapor (g) contained in 1 m 3 ) is at most about 5 g or less, and the dew point temperature (relative humidity increases when air containing water vapor is cooled). finally
The temperature at which the temperature reaches 100% is also as low as 2℃ (condensation only occurs in rooms and objects that are below 2℃).During heating, there are no rooms or parts of the room that are this low temperature, so there may be condensation or a damp feeling. There were almost no problems with mold or anything like that.

ところが、前述の理由で外気(絶対湿度は2g
程度)の侵入を最小限に防ぐ気密工法が採用され
ると、絶対湿度の低い外気の侵入が大幅に少なく
なり、生活や暖房により発生する水蒸気の運搬が
極端に少なくなり、発生蒸気量が運搬量を上回る
ようになる。そうすると、室内の絶対湿度は、10
g程度以上にまでも上昇する。絶対湿度10gの時
の露点は約12℃であるから、この気密化により、
室内の12℃より低温の室と物は結露でベタベタに
なる。(水蒸気はガス(気体)であり、酸素や窒
素と同じ様に密閉された室内や建物の中には、均
一に存在すると考えられる。)それで、平常の生
活に必要の無い非暖房室(客間や納戸)は当然12
℃以下となり、結露、カビ等が発生し、家財等に
実害をもたらす。
However, for the reasons mentioned above, the outside air (absolute humidity is 2 g)
If an airtight construction method is adopted that minimizes the intrusion of moisture (degrees), the intrusion of outside air with low absolute humidity will be greatly reduced, and the transport of water vapor generated from daily life and heating will be extremely reduced, resulting in a reduction in the amount of steam generated. It will exceed the quantity. Then, the absolute humidity in the room is 10
It can even rise to about 100 g or more. Since the dew point at absolute humidity of 10g is approximately 12℃, this airtightness
Rooms and objects that are colder than 12 degrees Celsius become sticky due to condensation. (Water vapor is a gas, and like oxygen and nitrogen, it is thought to exist uniformly in sealed rooms and buildings.) Of course, 12
If the temperature drops below ℃, condensation, mold, etc. will occur, causing actual damage to household goods, etc.

これを防止する為には、全室内を露点温度以上
である15℃以上(ジメジメ感とカビをなくすため
には、この程度は必要)に保つこと、さらに窓ガ
ラスの結露をも防ぐことからは全室温を20℃程度
に保つことが必要となる。(室温の上昇により窓
表面の温度も上昇し、結露温度以上にガラス面を
保つ) つまり、この気密化により、全室暖房がどうし
ても不可欠の条件となる。省エネ、気密化住宅に
は、このような理由により全室集中暖房が必要不
可欠の設備となることが理解されると考える。
In order to prevent this, it is necessary to keep the entire room at 15℃ or higher, which is above the dew point temperature (this level is necessary to eliminate dampness and mold), and also to prevent condensation on the window glass. It is necessary to maintain the entire room temperature at around 20°C. (As the room temperature rises, the temperature of the window surface also rises, keeping the glass surface above the condensation temperature.) In other words, this airtightness makes it absolutely necessary to heat all rooms. For these reasons, it is understood that central heating in all rooms is an essential equipment for energy-saving and airtight housing.

そこで、本発明は合理的、経済的かつ安全に全
室集中暖房を行うことができるものである。
Therefore, the present invention is capable of centrally heating all rooms rationally, economically, and safely.

さらに、冷房を考える場合にも、住宅の気密
性、断熱性は重要な条件となることは前述の通り
である。断熱、気密性が共に高い住宅においての
冷房は従来の2部屋用(800〜1200W)程度の家
庭用中型冷房機1台にて、全室の冷房を行なうこ
とが充分に可能となる。
Furthermore, as mentioned above, when considering air conditioning, the airtightness and insulation of a house are important conditions. For cooling a house with high insulation and airtightness, it is possible to sufficiently cool all rooms with a single conventional medium-sized household air conditioner for two rooms (800 to 1200 W ).

この場合、圧縮機と放熱器を室外に設置し、冷
却部(冷却ラジエター)を本装置図示部に設置
し、その間を配管により接続すれば、同一の設備
にて全室冷房も可能となる。つまり、本発明は、
最小のスペースと合理的共用設備で四季を通じ
(冷暖房共に不要の季節には換気送風)利用出来
るセントラル空調設備である。
In this case, by installing the compressor and radiator outdoors, installing the cooling unit (cooling radiator) in the illustrated part of the device, and connecting them with piping, it is possible to cool all rooms with the same equipment. In other words, the present invention
It is a central air conditioning system that can be used in all seasons (ventilation is provided in seasons when neither air conditioning nor heating is required) with minimal space and reasonable shared equipment.

[従来の住宅の暖房方式] 従来の住宅の暖房方式は、セントラル方式と個
別方式の2種類に分類することができる。
[Conventional House Heating Methods] Conventional house heating methods can be classified into two types: central methods and individual methods.

セントラル方式は熱源より各個室へ配管し、そ
の末端に室内用放熱器を設け、個室を暖房する。
この時の熱媒体は一般には水が用いられる。
In the central system, a heat source is piped to each private room, and an indoor radiator is installed at the end of the pipe to heat the private room.
Water is generally used as the heat medium at this time.

個別方式は各個室に燃焼器を設置する方法で、
温風発生式、放射熱式、対流式の3方式あるが、
いずれの場合も燃焼筒の冷却と熱の媒体は空気で
ある。
The individual method is a method in which a combustor is installed in each private room.
There are three methods: hot air generation type, radiant heat type, and convection type.
In both cases, the cooling and heating medium for the combustion tube is air.

従来はこの2種類の暖房設備で充分であつたた
め、温風を用いたセントラル暖房方式は一般に普
及していなかつた。
In the past, these two types of heating equipment were sufficient, so central heating systems using warm air were not widely used.

また、上記の暖房方式はそれぞれ以下のような
欠点があり、かねてより問題となつていた。
Furthermore, each of the above heating methods has the following drawbacks, which have been problematic for some time.

[温水セントラル暖房の問題点] イ 配管の腐食、緩みなどにより水漏れが発生
し、床や壁を汚したり、熱湯が噴出して火傷を
負う事故が発生する。
[Problems with hot water central heating] (a) Corroded or loose pipes can cause water leaks, staining floors and walls, or causing boiling water to gush out and cause burns.

ロ 配管は一般に床下などの温度の低い部位を通
過して配管されるため、この間の放熱ロスを生
じたり、寒冷地では留守中などに凍結破裂など
の事故も発生する。
(b) Piping is generally routed through areas with low temperatures, such as under the floor, which can cause heat radiation loss during this time, and in cold regions, accidents such as freezing and bursting can occur when you are away from home.

ハ 末端の放熱器が室内にあるため、場所をと
る。
C. The terminal radiator is located indoors, so it takes up space.

ニ それぞれの部屋に放熱器が必要であるため、
設備がかさむ。
D. Each room requires a radiator, so
Equipment is bulky.

[温風暖房器によるセントラル暖房の問題点] この方式では燃焼器(バーナー)外筒に空気を
接触させ、温風を発生させると同時に、外筒の冷
却も同時に行ない、機器本体の過熱をも防止する
構造を取らざるを得ないため、下記のような不合
理が生ずる。
[Problems with central heating using warm air heaters] In this method, air is brought into contact with the outer cylinder of the combustor (burner) to generate warm air and at the same time cool the outer cylinder, thereby preventing the equipment from overheating. Since we have no choice but to adopt a structure that prevents this, the following unreasonableness occurs.

イ 各個室で暖房の必要を生じた場合、スイツチ
を入れた直後からバーナーは着火燃焼を始める
が、外筒が熱するまで送風されないか、冷風が
送風される。逆に消化においても外筒が完全に
冷却するまで、不必要に送風が続く。
(b) When heating is required in each private room, the burner will start igniting and burning immediately after the switch is turned on, but air will not be blown until the outer cylinder is heated, or cold air will be blown. Conversely, during digestion, air continues to be blown unnecessarily until the outer cylinder is completely cooled.

ロ 末端の負荷変動に対し対応できない。(b) Unable to respond to terminal load fluctuations.

仮に、このバーナー出力が1万キロカロリー
で、1部屋のみの必要量が2千キロカロリーの
場合のように、又は春先や初冬の様に少ない熱
量で充分な場合など、供給量と必要量に差のあ
る場合は、短時間にバーナーが入り切りし、そ
の都度イのような状態を繰返し不快なものにな
る。
For example, if the output of this burner is 10,000 kcal and the required amount for only one room is 2,000 kcal, or if a small amount of heat is sufficient as in early spring or early winter, there may be a difference between the supplied amount and the required amount. In some cases, the burner will turn on and off in a short period of time, and the situation like A will repeat and become unpleasant.

ハ 上記のようにバーナーの出力に対し負荷が小
さすぎる場合には、送風量が少ないため、バー
ナー外筒の冷却が大幅に不足し、外筒が過熱し
安全装置が働いて、消化の状態のまま再起動し
ないことにもなる。
C. If the load is too small for the burner output as described above, the amount of air blown will be small, resulting in a significant lack of cooling of the burner outer cylinder, causing the outer cylinder to overheat and triggering the safety device, causing the state of extinguishing to deteriorate. It also means that it won't restart.

B 発明の構成 a 問題を解決しようとする手段 本願では、下記の構成のものによつて、上述し
た問題を解決しようとするものである。すなわ
ち、本願のものは 工事費用が安く、故障が少なく、保守が簡単
で、事故(漏れ)が発生しても実害のない温風に
よる集中暖房が住宅の暖房システムとして最も良
いことは誰も思うところなのであるが、前述のよ
うに大きな問題があり、一般には普及するには至
つていない。
B. Structure of the invention a Means for solving the problem The present application attempts to solve the above-mentioned problem with the following structure. In other words, everyone agrees that central heating using warm air is the best heating system for a home because it has low construction costs, fewer breakdowns, is easy to maintain, and causes no real harm even if an accident (leakage) occurs. However, as mentioned above, there are major problems, and it has not become widespread in general.

本願では下記の構成によつて上述した問題を解
決するものである。すなわち、本願のものは両方
式の長所のみを採用し、欠点を補うことができる
システムである。
In the present application, the above-mentioned problem is solved by the following configuration. In other words, the system of the present application employs only the advantages of both systems and can compensate for their shortcomings.

つまりは熱源には温度コントロールと燃焼の制
御が熱源自体で可能な温水ボイラーを用い、温水
ポンプ、配管により放熱ラジエターを一体に内装
した暖房ユニツトにより、温風を発生させ、この
温風により集中暖房を行なうものである。
In other words, the heat source is a hot water boiler that can control temperature and combustion by itself, and a heating unit with an integrated heat dissipation radiator using a hot water pump and piping generates hot air, and this hot air is used for central heating. This is what we do.

b 発明の実施例 1は本発明の温風暖房ユニツトである。2は縦
長のケーシングで、下方から下方室3、中央室
4、上方室5が積層された状態で構成され、これ
ら各室は仕切られた状態となつている。
b Example 1 of the invention is a hot air heating unit of the invention. Reference numeral 2 denotes a vertically elongated casing, which is composed of a lower chamber 3, a central chamber 4, and an upper chamber 5 stacked one on top of the other from the bottom, and each of these chambers is partitioned off.

上記下方室3の正面部にはエアーフイルター6
が張設され、内部には前方側に冷房用ラジエター
7が、後方側に暖房用温水ラジエター8が配設さ
れ、この暖房用温水ラジエター8の後方部9は下
方室通路10が形成されている。
An air filter 6 is installed in the front part of the lower chamber 3.
A cooling radiator 7 is provided on the front side, and a heating hot water radiator 8 is placed on the rear side, and a lower chamber passage 10 is formed in the rear part 9 of the heating hot water radiator 8. .

上記中央室4には、中央縦仕切板4Aでボイラ
ー室4Bと中央室通路4Cとに仕切られ、上記ボ
イラー室4B内にはボイラー11と、これに循環
パイプ12Aで連結された温水循環ポンプ12が
配設され、上記中央室通路4Cの上方には送風フ
アン13が配設され、この送風フアンは上記上方
室5における送風路5Aと連通している。
The central room 4 is partitioned into a boiler room 4B and a central room passage 4C by a central vertical partition plate 4A, and inside the boiler room 4B is a boiler 11, and a hot water circulation pump 12 connected to the boiler 11 by a circulation pipe 12A. A blower fan 13 is arranged above the central chamber passage 4C, and this blower fan communicates with the blower passage 5A in the upper chamber 5.

上記上方室5の送風路5Aの上面には各室送風
用ダクト部14が連設されている。
On the upper surface of the air passage 5A of the upper chamber 5, a ventilation duct portion 14 for each chamber is connected.

このダクト部14は、ケース14Aの側壁部に
適数本のダクト14Bが連結して構成されてい
る。
This duct portion 14 is constructed by connecting an appropriate number of ducts 14B to a side wall portion of a case 14A.

8A,8Bは上記暖房用温水ラジエター8と上
記ボイラー11とを連結する循環パイプである。
11Aは上記ボイラー11の吸気筒、11Bは排
気筒であるが、両者の外端部は吸排気同軸筒11
Cで外気と連通している。
8A and 8B are circulation pipes that connect the heating hot water radiator 8 and the boiler 11.
11A is an intake pipe of the boiler 11, and 11B is an exhaust pipe, the outer ends of both of which are coaxial with the intake and exhaust pipes 11.
It communicates with the outside air at C.

以上は温風暖房装置としての構成である。 The above is the configuration of the hot air heating device.

上記の温風暖房装置に対して下記のように構成
して冷房機能を有するもの(第2発明)とするこ
とができる。すなわち、 15は上記冷房用ラジエター7に連結した冷房
用室外ユニツトで、ケース15A内にコンプレツ
サー15B、送風フアン15C、放熱器15など
が配設されている。
The hot air heating device described above can be configured as follows to have a cooling function (second invention). That is, 15 is an outdoor cooling unit connected to the cooling radiator 7, in which a compressor 15B, a blower fan 15C, a radiator 15, etc. are arranged in a case 15A.

15Eは冷媒分配器、15Fは凝結水排水口で
ある。
15E is a refrigerant distributor, and 15F is a condensed water drain port.

そこで、上記ダクト14Bは第11図ないし第
13図を参照して、建物16の天井裏16Aを利
用して、居間16B、寝室16C、子供部屋16
D、和室16Eなどに連通せしめる。
Therefore, referring to FIGS. 11 to 13, the duct 14B is installed in the living room 16B, the bedroom 16C, and the children's room 16 by using the ceiling space 16A of the building 16.
D, communicate with Japanese-style room 16E, etc.

この場合、1階の部屋では天井より室内に開口
させると共に、2階の部屋では床面より室内に開
口させるとよい。各室内に入つた温風は仕切りか
べの下方に設けたガランを介して、上記エアーフ
イルター6へと循環することになる。
In this case, it is preferable to open the rooms from the ceiling into the room on the first floor, and open into the room from the floor in the rooms on the second floor. The warm air that has entered each room is circulated to the air filter 6 through the galley provided below the partition wall.

16Fは廊下、階段、ホールなど、16Gは送
風フアンである。
16F is for hallways, stairs, halls, etc., and 16G is for ventilation fans.

c 作用 ボイラー11のスイツチは暖房中は常時ONに
しておき、ボイラー内装のサーモスタツトの温度
を70℃程にセツトしておく。これによりボイラー
内には常に70℃の温水が確保されている。
c. Effect Keep the boiler 11 switch on at all times during heating, and set the temperature of the thermostat inside the boiler to about 70℃. This ensures that there is always 70°C hot water in the boiler.

各個室で暖房の必要が生じスイツチを入れる
と、温水循環ポンプ12が回り、暖房用温水ラジ
エター8へボイラー11より70℃の温水が送ら
れ、同時に送風フアンが回り瞬間に各個室へ温風
が送られる。
When heating is required in each private room and the switch is turned on, the hot water circulation pump 12 starts, and hot water of 70°C is sent from the boiler 11 to the heating hot water radiator 8. At the same time, the blower fan turns and instantaneously blows warm air to each private room. Sent.

温水の循環と暖房用温水ラジエター8より放熱
でボイラー内の温度が70℃以下に低下すると、バ
ーナーが着火し70℃になるまで燃焼を続けたの
ち、自動的に停止する。この間暖房用温水ラジエ
ターには70℃のほぼ一定の温水が供給され安定し
た温風が発生し、各個室へ送風する。負荷がボイ
ラーの能力以内であれば上記のようにボイラーの
燃焼と直接関係なく安定した温風を供給できる。
When the temperature inside the boiler drops below 70°C due to hot water circulation and heat radiation from the heating hot water radiator 8, the burner ignites and continues combustion until the temperature reaches 70°C, then automatically shuts down. During this time, hot water at a constant temperature of 70°C is supplied to the heating hot water radiator, generating stable warm air that is sent to each private room. As long as the load is within the boiler's capacity, stable hot air can be supplied without direct relation to boiler combustion as described above.

さらに、制御を細かく述べると、ボイラーは70
℃セツトの場合、67℃まで水温が下がる(ラジエ
ターよりの放熱により)とボイラーが着火し、72
℃にまで温度が上ると停止する(この動作の温度
幅はメーカーにより多少差がある)から、負荷が
大きければボイラーの運転時間が長くなり、小さ
ければ短くなる。この間の管路内の水温は72℃〜
67℃で安定し、ほぼ一定の温風を供給することが
できる。
Furthermore, to describe the control in detail, the boiler is 70
When the temperature is set to ℃, when the water temperature drops to 67℃ (due to heat dissipation from the radiator), the boiler ignites and the temperature reaches 72℃.
The boiler will stop operating when the temperature reaches ℃ (the temperature range for this operation varies somewhat depending on the manufacturer), so if the load is large, the boiler will run for a long time, and if the load is small, the boiler will run for a short time. During this time, the water temperature in the pipe is 72℃~
It is stable at 67℃ and can supply almost constant hot air.

C 発明の効果 イ 各個室には場所をとる放熱器が不要となり、
設備スペース、設備費の両面で有効である。
C. Effects of the invention (a) A space-consuming radiator is no longer required in each private room.
This is effective in terms of both equipment space and equipment costs.

ロ 各個室の暖房の要否により送風停止が自由に
できる(これによる燃焼のトラブルは全くな
い)。
B. Air blowing can be stopped freely depending on whether or not heating is required in each private room (there are no combustion problems caused by this).

ハ 熱源、放熱部が一体で接続されているため、
この間のロスが大幅に減少される。
C. Because the heat source and heat dissipation part are connected together,
Loss during this time is greatly reduced.

また、この間の配管がごく短いため、漏水の
事故も大幅に減少する。
Additionally, since the piping between these lines is extremely short, water leakage accidents are greatly reduced.

ニ 管路が全て室内のユニツト内にあるため、凍
結の心配がない。
D. All pipes are inside the unit, so there is no need to worry about freezing.

なお、ボイラーと暖房用温水ラジエターを一
体に接続したユニツトと送風フアンを別の位置
に設置することや温水ラジエター、冷房用ラジ
エターとボイラーの位置が上下入れ替わる事も
当然考えられる。(第9図、第10図参照)。
Of course, it is also conceivable that the unit that connects the boiler and hot water radiator for heating and the blower fan may be installed in different locations, or that the positions of the hot water radiator, cooling radiator, and boiler may be swapped vertically. (See Figures 9 and 10).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は左側図面、第2図は正面図、第3図は
右側面図、第4図はケーシングを分解した斜視
図、第5図はA−A線の略図的断面図、第6図は
B−B線の略図的断面図、第7図は第2発明のも
のの要部側面図、第8図はボイラーの吸排気筒部
分の略図的構成図、第9図は他の実施例の左側面
図、第10図は同上の略図的横断面図、第11図
は建物内の配管を説明する縦断面図、第12図は
同上の横断面図、第13図は配管の構成図であ
る。 1……温風暖房ユニツト、2……ケーシング、
3……下方室、4……中央室、5……上方室。
Fig. 1 is a left side view, Fig. 2 is a front view, Fig. 3 is a right side view, Fig. 4 is an exploded perspective view of the casing, Fig. 5 is a schematic sectional view taken along line A-A, Fig. 6 is a schematic sectional view taken along line B-B, FIG. 7 is a side view of the main part of the second invention, FIG. 8 is a schematic configuration diagram of the intake and exhaust pipe portion of the boiler, and FIG. 9 is the left side of another embodiment. FIG. 10 is a schematic cross-sectional view of the same as above, FIG. 11 is a vertical cross-sectional view illustrating the piping inside the building, FIG. 12 is a cross-sectional view of the same as above, and FIG. 13 is a configuration diagram of the piping. . 1... Warm air heating unit, 2... Casing,
3...Lower chamber, 4...Central chamber, 5...Upper chamber.

Claims (1)

【特許請求の範囲】 1 下方から下方室3、中央室4、上方室5が積
層された状態で構成され、これら各室は仕切られ
た状態となつている縦長のケーシング2における
上記下方室3の正面部にはエアーフイルター6が
張設され、内部には前方側に冷房用ラジエター7
が、後方側に暖房用温水ラジエター8が配設さ
れ、この暖房用温水ラジエター8の後方部9は下
方室通路10が形成され、上記中央室4には、中
央縦仕切板4Aでボイラー室4Bと中央室通路4
Cとに仕切られ、上記ボイラー室4B内にはボイ
ラー11と、これに循環パイプ12Aで連結され
た温水循環ポンプ12が配設され、上記中央室通
路4Cの上方には送風フアン13が配設され、こ
の送風フアンは上記上方室5における送風路5A
と連通していると共に、上記上方室5の送風路5
Aの上面には各室送風用ダクト部14が連設さ
れ、このダクト部14は、ケース14Aの側壁部
に適数本のダクト14Bが連結して構成されてい
ることを特徴とする温風暖房装置。 2 下方から下方室3、中央室4、上方室5が積
層された状態で構成され、これら各室は仕切られ
た状態となつている縦長のケーシングにおいて、
上記下方室3の正面部にはエアーフイルター6が
張設され、内部には前方側に冷房用ラジエター7
が、後方側に暖房用温水ラジエター8が配設さ
れ、この暖房用温水ラジエター8の後方部9は下
方室通路10が形成されていると共に、上記中央
室4には、中央縦仕切板4Aでボイラー室4Bと
中央室通路4Cとに仕切られ、上記ボイラー室4
B内にはボイラー11と、これに循環パイプ12
Aで連結された温水循環ポンプ12が配設され、
上記中央室通路4Cの上方には送風フアン13が
配設され、この送風フアンは上記上方室5におけ
る送風路5Aと連通し、さらに上記冷房用ラジエ
ター7には、ケース15A内にコンプレツサー1
5B、送風フアン15C、放熱器15Dなどが配
設されている冷房用室外ユニツト15を連結した
ことを特徴とする温風暖房装置。 3 上記ダクト14Bは建物16の天井裏16A
を利用して、居間16B、寝室16C、子供部屋
16D、和室16Eなどに連通せしめるに際して
1階の部屋では天井より室内に開口させると共
に、2階の部屋では床面より室内に開口させ、各
室内に入つた温風は仕切りかべの下方に設けたガ
ランなどを介して、上記エアーフイルター6へと
循環するようにした特許請求の範囲第1項又は第
2項記載の温風暖房装置。
[Scope of Claims] 1. The lower chamber 3 in a vertically long casing 2, which is composed of a lower chamber 3, a central chamber 4, and an upper chamber 5 stacked from below, and each of these chambers is partitioned. An air filter 6 is installed in the front part of the
However, a heating hot water radiator 8 is arranged on the rear side, a lower chamber passage 10 is formed in the rear part 9 of the heating hot water radiator 8, and a boiler room 4B is connected to the central chamber 4 by a central vertical partition plate 4A. and central chamber passage 4
A boiler 11 and a hot water circulation pump 12 connected to the boiler room 4B via a circulation pipe 12A are installed in the boiler room 4B, and a blower fan 13 is installed above the central room passage 4C. This blower fan is connected to the blower passage 5A in the upper chamber 5.
and communicates with the air passage 5 of the upper chamber 5.
A duct section 14 for blowing air from each room is connected to the upper surface of A, and the duct section 14 is configured by connecting an appropriate number of ducts 14B to the side wall of the case 14A. heating equipment. 2. In a vertically elongated casing that is composed of a lower chamber 3, a central chamber 4, and an upper chamber 5 stacked from below, and each of these chambers is partitioned,
An air filter 6 is installed on the front side of the lower chamber 3, and a cooling radiator 7 is installed inside the front side.
However, a heating hot water radiator 8 is disposed on the rear side, and a lower chamber passage 10 is formed in the rear part 9 of the heating hot water radiator 8, and a central vertical partition plate 4A is provided in the central chamber 4. The boiler room 4 is partitioned into a boiler room 4B and a central room passage 4C.
Inside B is a boiler 11 and a circulation pipe 12 to it.
A hot water circulation pump 12 connected by A is provided,
A blower fan 13 is arranged above the central chamber passage 4C, and this blower fan communicates with the blower passage 5A in the upper chamber 5, and the cooling radiator 7 has a compressor 1 installed in the case 15A.
5B, a blower fan 15C, a radiator 15D, etc., are connected to an outdoor cooling unit 15. 3 The duct 14B is connected to the ceiling 16A of the building 16.
When connecting the living room 16B, bedroom 16C, children's room 16D, Japanese-style room 16E, etc., the rooms on the first floor are opened from the ceiling, and the rooms on the second floor are opened from the floor to connect each room. 3. The hot air heating device according to claim 1, wherein the hot air that enters is circulated to the air filter 6 via a galley or the like provided below the partition wall.
JP19346887A 1987-07-31 1987-07-31 Hot air space heater Granted JPS6438535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19346887A JPS6438535A (en) 1987-07-31 1987-07-31 Hot air space heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19346887A JPS6438535A (en) 1987-07-31 1987-07-31 Hot air space heater

Publications (2)

Publication Number Publication Date
JPS6438535A JPS6438535A (en) 1989-02-08
JPH0346732B2 true JPH0346732B2 (en) 1991-07-17

Family

ID=16308513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19346887A Granted JPS6438535A (en) 1987-07-31 1987-07-31 Hot air space heater

Country Status (1)

Country Link
JP (1) JPS6438535A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090291A (en) * 1997-08-20 2000-07-18 Kabushiki Kaisha Toshiba Waste processing method and waste processing apparatus
JP4178649B2 (en) * 1999-02-24 2008-11-12 ダイキン工業株式会社 Air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106137A (en) * 1973-02-14 1974-10-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106137A (en) * 1973-02-14 1974-10-08

Also Published As

Publication number Publication date
JPS6438535A (en) 1989-02-08

Similar Documents

Publication Publication Date Title
CA1063470A (en) Fireplace systems
US4179065A (en) Circulating air building heating system
CA2021001A1 (en) Home heating system draft controller
US3930490A (en) Fireplace heater
US4004731A (en) Device for transferring heat energy from a fireplace to a fluid heating system
CA1076537A (en) Fireplace heating system
US4270513A (en) Fireplace flue heat exchanger and control
US2553278A (en) Air conditioning apparatus
US6019099A (en) Heat removal system for fireplaces
US4168797A (en) Heated air distribution system
JPH0346732B2 (en)
US4230268A (en) Forced air fireplace furnace
US4928667A (en) Gas fire heating unit
US2561290A (en) Heating apparatus
JP2007163023A (en) Heating device and cooling device associated with structure of house
US3086710A (en) Heating apparatus
JPH0293228A (en) Ventilating device for building
US2445102A (en) Humidity modifying and heat conserving means
US4195778A (en) Auxiliary air heater for fireplaces
JPH0221036Y2 (en)
RU2052728C1 (en) Heating-ventilating furnace
JPS63273736A (en) Structure of room heating by air circulation in house
JPS64504Y2 (en)
US1951997A (en) Air conditioning system
JP3011802U (en) Energy-saving supply and exhaust

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070717

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees