JPH0346616A - Progressive focal lens - Google Patents

Progressive focal lens

Info

Publication number
JPH0346616A
JPH0346616A JP1181936A JP18193689A JPH0346616A JP H0346616 A JPH0346616 A JP H0346616A JP 1181936 A JP1181936 A JP 1181936A JP 18193689 A JP18193689 A JP 18193689A JP H0346616 A JPH0346616 A JP H0346616A
Authority
JP
Japan
Prior art keywords
curve
cross
radius
curvature
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1181936A
Other languages
Japanese (ja)
Other versions
JP2503664B2 (en
Inventor
Yasunori Ueno
保典 上野
Fumio Takahashi
文男 高橋
Ryuji Aizawa
会沢 隆二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP18193689A priority Critical patent/JP2503664B2/en
Priority to US07/551,082 priority patent/US5048945A/en
Priority to EP90113473A priority patent/EP0408067B1/en
Priority to DE69019616T priority patent/DE69019616T2/en
Publication of JPH0346616A publication Critical patent/JPH0346616A/en
Application granted granted Critical
Publication of JP2503664B2 publication Critical patent/JP2503664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Eyeglasses (AREA)

Abstract

PURPOSE:To make a light view area wider although an intermediate part is short and to reduce the distortion and fluctuation of an image at the periphery by increasing the radius of longitudinal curvature below the intermediate part and above a short-distance part along a cross-sectional curve from the intersection with a main meridian curve and then decreasing it. CONSTITUTION:The vertical section of a refracting surface is so shaped so that the value of radius of vertical curvature increases along the cross section curve from the intersection with the main meridian curve MM' above a long- distance part F, decreases below the long-distance part F, and is nearly constant along the cross section curve at the center part. Then the radius of the vertical curve decreases from the intersection with the main meridian curve MM' above the intermediate part P, increases along the cross section curve from the intersection with the main meridian curve below the intermediate part and above the short-distance part, and then decreases. Even when the intermediate part as a progressive zone becomes short, the intermediate part having an aberrationally balanced light view area which is wide enough for practical use is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、眼の調節力の補助として使用する累進焦点レ
ンズに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a progressive lens for use as an aid to accommodative power of the eye.

〔従来技術〕[Prior art]

眼の調節力が衰退して近方視が困難になった場合の調節
力の補助用眼鏡レンズとして、上方の遠用視矯正領域(
以下遠用部という)と下方の近用視矯正領域(以下近用
部という)と両者の中間において連続的に屈折力が変化
する累進領域(以下中間部という)を有する累進焦点レ
ンズが種々知られている。
The upper distance vision correction area (
There are various progressive focus lenses that have a lower near vision correction area (hereinafter referred to as the near vision area), and a progressive area (hereinafter referred to as the intermediate area) in which the refractive power changes continuously between the two. It is being

累進焦点レンズにおいて、一般には遠用部と近用部との
明視域を広く確保し、その間を累進帯で結ぶと、その累
進帯の側方領域にレンズ収差が集中するようになり、こ
の領域の存在が像のボケをはじめとして、像のゆがみを
引き起こし、視線を移動したときのゆれとして、装用者
に悪い印象を与える。
In a progressive focal length lens, generally, when a wide clear vision area is secured between the distance and near vision areas and a progressive zone is connected between them, lens aberrations will be concentrated in the side areas of the progressive zone. The presence of the area causes image distortion, including blurring of the image, and gives a bad impression to the wearer as the image shakes when the line of sight moves.

このような視覚特性の問題を解決するために、公知の累
進焦点レンズにおいては様々な観点での設計、評価がな
されている。そして、レンズ面の形状に関して、レンズ
面のほぼ中央に垂直に走る子午線に沿う断面と物体側レ
ンズ面との交線が、レンズの加入度などの仕様を表すた
めの基準線として用いられ、レンズの設計においても重
要な基準線として用いられている。また、レンズの装用
状態において近用部が奥側に寄ることを考慮して近用部
を非対称な配置とした累進焦点レンズにおいても、遠用
中心と近用中心とを縦に通る1本の中心線が基準線とし
て扱われている。本発明においては、これらの基準線を
主子午線曲線という。
In order to solve such problems with visual characteristics, known progressive focus lenses have been designed and evaluated from various viewpoints. Regarding the shape of the lens surface, the line of intersection between the cross section along the meridian running perpendicular to the center of the lens surface and the object-side lens surface is used as a reference line to express specifications such as the addition power of the lens. It is also used as an important reference line in the design of In addition, even in progressive focus lenses where the near vision area is arranged asymmetrically in consideration of the fact that the near vision area is closer to the back side when the lens is worn, a single lens that passes vertically between the center of distance vision and the center of near vision can be used. The center line is treated as the reference line. In the present invention, these reference lines are referred to as principal meridian curves.

従来の累進焦点レンズとしては、例えば特公昭49−3
595号公報、特公昭52−20271号公報や、特公
昭59−42285号公報に開示されたものが知られて
いる。
As a conventional progressive focus lens, for example,
Those disclosed in Japanese Patent Publication No. 595, Japanese Patent Publication No. 52-20271, and Japanese Patent Publication No. 59-42285 are known.

〔発明の解決しようとする課題〕[Problem to be solved by the invention]

上記の公知技術においては一応の視覚性能の向上を図る
ことが可能ではあるが、実用上では未だ不十分なもので
あった。すなわち、特公昭493595号公報のもので
は、主子午線曲線と直角な平面と屈折面との成す交線の
形状について、中間部のほぼ中央に相当する点における
交線のみを円形形状とし、それより上部では主子午線曲
線から遠ざかるに従って交線の曲率半径は減少し下部で
は増加するような、いずれも非円形形状とするものであ
り、このように中央部のみを円形形状とし他の領域にお
いて単純な非円形形状としているため、近用部及び遠用
部の明視域(非点隔差が0゜5デイオプター以下の範囲
)が狭く、また急激な収差変化を伴うため視野が狭くな
り、像のゆがみ、ゆれが著しいものであった。
Although it is possible to improve visual performance to a certain extent with the above-mentioned known technology, it is still insufficient for practical use. That is, in Japanese Patent Publication No. 493,595, regarding the shape of the line of intersection formed by the plane perpendicular to the principal meridian curve and the refracting surface, only the line of intersection at a point corresponding to approximately the center of the intermediate part is circular; In the upper part, the radius of curvature of the intersection line decreases as it moves away from the principal meridian curve, and in the lower part, it increases.In this way, only the central part is circular, and the other areas are simple. Because it has a non-circular shape, the clear vision range (range where the astigmatism difference is 0°5 dayopters or less) in the near and far vision areas is narrow, and the field of view becomes narrow due to rapid changes in aberrations, resulting in image distortion. , the shaking was significant.

また、特公昭52−20271号公報のものは、前記特
公昭49−3595号公報に開示された静的視覚の改善
にさらに動的視覚の改良を加えたものであるが、ある程
度の動的視覚の改善は可能となるものの、実用的に十分
な性能を達成することは未だ難しい。
Furthermore, the method disclosed in Japanese Patent Publication No. 52-20271 is an improvement in dynamic vision that is further improved in addition to the improvement in static vision disclosed in Japanese Patent Publication No. 49-3595. Although it is possible to improve this, it is still difficult to achieve practically sufficient performance.

特公昭5 L−42285号公報のものでは、同様に主
子午線曲線と直角な平面と屈折力面との成す交線の形状
について、遠用部上方では、主子午線曲線より遠ざかる
につれて曲率半径が減少し、遠用部の上方にいくに従っ
てその減少率がOに近づき上方周辺部では一定の曲率半
径とし、遠用部の下部では曲率半径が単調に減少する非
円形形状とし、さらに中間部では遠用部との接続部を除
いて主子午線曲線から遠ざかるに従って、曲率半径が増
加し減少する非円形形状とし、近用部では主子午線曲線
より遠ざかるにつれて曲率半径が増加して減少する構成
としている。このものでは、前記特公昭52−2027
1号公報のものよりはある程度の視覚特性の改良がなさ
れ得るものの、遠用部の周辺領域、特に遠用部の中央か
ら下方にかけての側方領域における残存非点隔差が依然
著しく、また中間部及び近用部の側方領域においても像
のゆがみ、ゆれが大きく、未だ十分広い視野を得ること
か難しいものであった。
According to Japanese Patent Publication No. 5 L-42285, regarding the shape of the intersection line formed by the plane perpendicular to the principal meridian curve and the refractive power surface, the radius of curvature decreases as it moves away from the principal meridian curve above the distance viewing portion. The radius of curvature is constant in the upper peripheral part, and the radius of curvature monotonically decreases in the lower part of the distance part. It has a non-circular shape in which the radius of curvature increases and decreases as it moves away from the main meridian curve, except for the connection part with the use part, and the radius of curvature increases and decreases as it moves away from the main meridian curve in the near part. In this case, the above-mentioned Special Publication No. 52-2027
Although the visual characteristics can be improved to some extent compared to those in Publication No. 1, the residual astigmatism difference in the peripheral area of the distance viewing area, especially in the lateral area from the center to the bottom of the distance viewing area, is still significant, and the residual astigmatism difference in the intermediate area is still significant. Image distortion and shaking are large in the lateral areas of the near vision area, and it is still difficult to obtain a sufficiently wide field of view.

一般に累進帯としての中間部を短くすると屈折力変化が
急激になるため、収差が急激に増大する。
Generally, when the intermediate portion as a progressive zone is shortened, the change in refractive power becomes rapid, resulting in a sudden increase in aberrations.

ミンクウィッツの法則からもわかるように、特に主子午
線曲線の近傍においては収差が急激に増大し、累進帯の
幅が狭くなりがちになるばかりではなく、像のゆれ、ゆ
がみが急激に増大する。一方、累進帯が比較的長い場合
には、屈折力変化が比較的穏やかなため非点収差や、ゆ
れ、ゆがみを低減しやすい。しかしながら、累進帯が長
すぎると装用時において目線を十分下げないと所望の加
入度が得られないため、使用しにくい等の問題があった
As can be seen from Minkwitz's law, especially in the vicinity of the principal meridian curve, aberrations increase rapidly, not only does the width of the progressive zone tend to become narrower, but also image shaking and distortion increase rapidly. On the other hand, when the progressive zone is relatively long, the change in refractive power is relatively gentle, making it easy to reduce astigmatism, wobbling, and distortion. However, if the progressive band is too long, the desired addition power cannot be obtained unless the line of sight is sufficiently lowered when wearing the device, which poses problems such as making it difficult to use.

本発明は、上述の如き従来の欠点を解消し、累進帯とし
ての中間部が短くなった場合においても、収差的にバラ
ンスのとれた累進焦点レンズを提供しようとするもので
あり、具体的には遠用部の下方においても広い視野を有
し、実用上不便のない広さの明視域を有する中間部及び
近用部を有し、その周辺においても像のゆがみ、ゆれを
極力低減し側方視においても不快感を感することのない
累進焦点レンズを提供することを目的としている。
The present invention aims to eliminate the above-mentioned conventional drawbacks and provide a progressive focal lens that is aberrationally balanced even when the intermediate portion as a progressive zone is shortened. It has a wide field of view even below the far vision area, and has an intermediate and near vision area that has a clear vision area that is large enough to be practically inconvenient, and also reduces image distortion and shaking as much as possible in the periphery. The object of the present invention is to provide a progressive focus lens that does not cause discomfort even when viewed from the side.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は主子午線曲線に沿って遠景に対応する屈折力を
有する遠用部Fと、近景に対応する屈折力を有する近用
部Nと、前記遠用部と前記近用部との間において両部の
屈折力を連続的になめらかに接続する中間部Pとを有す
る第1図の如き累進焦点レンズにおいて、中間部が短く
なった場合に屈折表面の縦断面形状について、各部の最
適形状を見出し、屈折面全域における収差バランスの最
適化を図ったものである。
The present invention provides a distance part F having a refractive power corresponding to a distant view along a principal meridian curve, a near part N having a refractive power corresponding to a near view, and a distance part F having a refractive power corresponding to a near view, and a distance part F having a refractive power corresponding to a near view, and a distance part F having a refractive power corresponding to a close view, and a distance part F having a refractive power corresponding to a close view, and a distance part F having a refractive power corresponding to a close view, and a distance part F having a refractive power corresponding to a close view. In a progressive focus lens as shown in Fig. 1, which has an intermediate part P that continuously and smoothly connects the refractive powers of both parts, the optimum shape of each part is determined for the vertical cross-sectional shape of the refractive surface when the intermediate part becomes short. The aim is to optimize the aberration balance over the entire refractive surface.

具体的には、遠用部Fの上部において屈折表面の縦断面
形状は、横断面曲線に沿って主子午線曲線MM” との
交点から遠ざかるに従って縦曲率半径の値が増加し、遠
用部Fの下部において屈折表面の縦断面形状は、横断面
曲線に沿って主子午線曲線MM′との交点から遠ざかる
に従って縦曲率半径の値が減少し、遠用部Fのほぼ中央
部分において屈折表面の縦曲率半径は横断面曲線に沿っ
てほぼ一定としている。そして、中間部の上方において
屈折力表面の縦断面形状は前記横断面曲線に沿って主子
午線曲線との交点から遠ざかるに従って縦曲率半径の値
が減少し、中間部の下方及び近用部上方において縦曲率
半径の値は横断面曲線に沿って主子午線曲線との交点か
ら遠ざかるに従って増加し、その後減少する構成となっ
ている。
Specifically, in the vertical cross-sectional shape of the refractive surface in the upper part of the distance part F, the value of the vertical curvature radius increases as the distance from the intersection with the principal meridian curve MM'' increases along the cross-sectional curve, The longitudinal cross-sectional shape of the refractive surface at the bottom of The radius of curvature is approximately constant along the cross-sectional curve.The vertical cross-sectional shape of the refractive power surface above the intermediate portion changes as the value of the vertical radius of curvature increases as the distance from the intersection with the principal meridian curve increases along the cross-sectional curve. decreases, and the value of the vertical radius of curvature increases along the cross-sectional curve as it moves away from the intersection with the principal meridian curve below the intermediate section and above the near section, and then decreases.

ここで、中間部の下方及び近用部上方において、縦曲率
半径の値は横断面曲線に沿って主子午線曲線との交点か
ら遠ざかるに従って増加しその後減少する位置は、近用
部に近づくに従って主子午線曲線から離れた位置になり
、少なくとも主子午線曲線から垂直方向に15mmの位
置より離れるように構成することが有効である。
Here, below the intermediate part and above the near part, the value of the vertical radius of curvature increases as it moves away from the intersection with the principal meridian curve along the cross-sectional curve, and then decreases. It is effective to configure it so that it is located away from the meridian curve, and at least 15 mm away from the main meridian curve in the vertical direction.

さらに、近用部Nの中心付近では、屈折表面の縦断面曲
率半径は、横断面曲線に沿って主子午線曲線MM’ と
の交点から遠ざかるに従って増加しその後ほぼ一定とす
ることが有効である。
Further, near the center of the near portion N, it is effective that the radius of curvature of the longitudinal section of the refractive surface increases as it moves away from the intersection with the principal meridian curve MM' along the cross-sectional curve, and then remains approximately constant.

また、近用部Nの側方における縦断面曲率半径が増加か
ら一定になる位置は、該累進焦点レンズの半径をWとす
るとき、前記主子午線曲線から垂直方向にW74〜3W
/4だけ離れた領域内に存在する構成とすることか好ま
しい。
Further, the position where the radius of curvature of the longitudinal section on the side of the near vision part N changes from increasing to constant is W74 to 3W in the vertical direction from the principal meridian curve, when the radius of the progressive focus lens is W.
It is preferable to have a configuration in which the two regions are located within a region separated by /4.

〔作用〕[Effect]

上記の如き本発明による構成においては、まず遠用部の
上方において、屈折表面の縦断面形状が横断面曲線に沿
って主子午線曲線から遠ざかるに従って増加し、一方遠
用部の下方においてはこの逆の傾向をもち、遠用部のほ
ぼ中央においてほぼ一定となるため、遠用部Fを極めて
広く確保しつつ、中間部とのなめらかな接続を可能とし
て、中間部Pの側方部での非点隔差の集中を弱めること
を可能とし、中間部の下方及び近用部上方において縦曲
率半径の値は横断面曲線に沿って主子午線曲線との交点
から遠ざかるに従って増加しその後減少する構成とする
ことによって、中間部が短くても、中間部Pでの明視域
をより広くかつ周辺での像のゆがみ、ゆれの軽減を達成
したものである。
In the configuration according to the present invention as described above, firstly, above the distance portion, the longitudinal cross-sectional shape of the refractive surface increases along the cross-sectional curve as it moves away from the principal meridian curve, while below the distance portion, this is reversed. This tendency is almost constant at almost the center of the distance vision part, so while ensuring the distance vision part F is extremely wide, it is possible to smoothly connect it with the intermediate part, and to reduce the non-uniformity at the lateral part of the middle part P. It is possible to weaken the concentration of point distance differences, and the value of the radius of vertical curvature increases along the cross-sectional curve as it moves away from the intersection with the principal meridian curve, and then decreases below the intermediate section and above the near section. As a result, even if the intermediate portion is short, the clear visual field at the intermediate portion P can be made wider and image distortion and shaking at the periphery can be reduced.

また、近用部Nの中心において、屈折表面の縦断面形状
が、横断面曲線に沿って主子午線曲線との交点から遠ざ
かるに従って縦曲率半径の値が増加して後ほぼ一定とな
っているため、上記の如き遠用部の形状による広い遠用
明視域を有するにもかかわらず、中間部及び近用部での
非点隔差の集中をバランス良く軽減し、側方領域での像
のゆれ、ゆがみ等をやわらげ、視覚の改良を可能として
いる。
In addition, at the center of the near portion N, the vertical cross-sectional shape of the refractive surface increases as the distance from the intersection with the principal meridian curve along the cross-sectional curve increases, and then remains almost constant. , despite having a wide distance clear vision area due to the shape of the distance portion as described above, it reduces the concentration of astigmatism difference in the intermediate and near portions in a well-balanced manner, and reduces image fluctuation in the lateral regions. , it softens distortion and makes it possible to improve visual acuity.

〔実施例〕〔Example〕

以下に本発明の実施例について述べるが、まず本発明に
おける横断面及び縦断面について説明する。
Examples of the present invention will be described below, but first, a cross section and a longitudinal section in the present invention will be explained.

第2図(A)及び(B)はレンズの屈折表面σについて
の横断面及び縦断面を説明するための斜視図である。レ
ンズの幾何中心06に光軸をとりこれをX軸とし、幾何
中心06における屈折表面の曲率中心位置を中心O6と
じ、幾何中心○。における屈折表面の曲率半径R0を半
径とする球面を基準球面としている。従って、基準球面
はレン1 ズの屈折表面σと幾何中心06において接している。基
準球面の中心O0を原点として、垂直方向にy軸を、水
平方向に2軸をとっている。
FIGS. 2(A) and 2(B) are perspective views for explaining the cross section and longitudinal section of the refractive surface σ of the lens. The optical axis is set at the geometric center 06 of the lens, and this is taken as the X axis, and the center of curvature of the refractive surface at the geometric center 06 is set as the center O6, and the geometric center ○. The spherical surface whose radius is the radius of curvature R0 of the refractive surface in is used as the reference spherical surface. Therefore, the reference spherical surface is in contact with the refractive surface σ of the lens 1 at the geometric center 06. With the center O0 of the reference spherical surface as the origin, the y-axis is vertical and the two axes are horizontal.

本発明における横断面とは、第2図(A)に示す如く、
基準球の中心○。を通り主子午線曲線MM′を含む面(
x−y平面)に直交する平面π。
The cross section in the present invention is as shown in FIG. 2(A),
Center of reference sphere ○. A plane (
a plane π perpendicular to the x-y plane).

による屈折表面σの横断面のことであり、横断面交線Φ
、として示している。また、本発明における縦断面とは
、第2図(B)に示す如く、基準球の中心○。を通りy
軸を含む平面χ1による屈折表面σの縦断面のことであ
り、縦断面交線Σ、として示している。
is the cross section of the refractive surface σ, and the cross section intersection line Φ
, is shown as . In addition, the longitudinal section in the present invention is the center ○ of the reference sphere, as shown in FIG. 2(B). through y
It is a vertical cross section of the refractive surface σ along the plane χ1 including the axis, and is shown as a vertical cross section intersection line Σ.

このような横断面交線Φ、及び縦断面交線Σ。Such a transverse section intersection line Φ and a longitudinal section intersection line Σ.

のレンズ屈折表面上での平面的位置の様子を示す平面図
が第3図である。第3図に示した各横断面交線(Φ3Φ
2Φ1.・・・)に沿って、縦方向の曲率半径の値を、
主子午線曲線MM′の縦方向の曲率半径を基準として、
屈折表面σの右半分についての変化を示したのが第4図
である。尚、ここに説明した横断面交線Φ、及び縦断面
交線Σ、とは、 9 それぞれ、本発明における横断面曲線及び縦断面曲線を
意味することは言うまでもない。
FIG. 3 is a plan view showing the planar position of the lens on the refractive surface of the lens. Each cross-sectional intersection line (Φ3Φ
2Φ1. ), the value of the radius of curvature in the vertical direction is
Based on the longitudinal radius of curvature of the principal meridian curve MM′,
FIG. 4 shows changes in the right half of the refractive surface σ. Incidentally, it goes without saying that the cross-sectional intersection line Φ and the vertical cross-section intersection line Σ described here mean the transverse cross-sectional curve and the longitudinal cross-sectional curve in the present invention, respectively.

より具体的に説明すれば、第4図は、主子午線曲線MM
′と交差する7つの代表的横断面での、各横断面交線に
沿って縦方向の曲率半径の値を、主子午線曲線MM′の
縦方向の曲率半径を基準として、主子午線曲線MM′の
右側半分についてプロットしたものである。ここで、プ
ロットした各曲率半径の値は、第2図(A)(B)にお
いて、基準球の中心O6を通り主子午線曲線MM’を含
む面(x−y平面)に直交する平面π1による屈折表面
σの横断面交線Φ、に沿って、y軸を含む垂直面(χ、
)による縦交線曲線Σ1が交差する点M1における縦方
向の曲率半径である。
To explain more specifically, FIG. 4 shows the principal meridian curve MM.
The value of the radius of curvature in the longitudinal direction along each cross-sectional intersection line in seven representative cross-sections intersecting with the main meridian curve MM' This is a plot of the right half of . Here, the values of each radius of curvature plotted are determined by the plane π1 passing through the center O6 of the reference sphere and perpendicular to the plane (xy plane) containing the principal meridian curve MM' in FIGS. 2(A) and (B). Along the cross-sectional intersection line Φ of the refractive surface σ, a vertical plane (χ,
) is the radius of curvature in the vertical direction at the point M1 where the vertical intersection curve Σ1 intersects.

そして、基準球の中心を通り主子午線曲線MM′を含む
面(x−y平面)に直交する平面πjが光軸(X軸)と
なす角度Vyを、5.6°毎に変えた7つの面(π3.
π2.π1π0.π−1,π−2,π3)による、7つ
の横断面交線(Φ3.Φ2.Φ1.Φ。、Φ−1.Φ−
2.Φ−3)に沿って、それぞれの横断面上で、y軸を
含む垂直面(χ、)と主子午線曲線MM′を含む平面(
x−y平面)との成す横方向の角度Vzを、5.6°毎
にとり、主子午線曲線MM′の縦方向の曲率半径を基準
として、縦方向曲率半径の値を結んだのが第4図である
Then, the angle Vy between the optical axis (X-axis) and the plane πj, which passes through the center of the reference sphere and is perpendicular to the plane (x-y plane) containing the principal meridian curve MM', is changed every 5.6 degrees. Surface (π3.
π2. π1π0. π-1, π-2, π3), seven cross-sectional intersection lines (Φ3.Φ2.Φ1.Φ., Φ-1.Φ-
2. Φ-3), on each cross-section, a vertical plane (χ,) containing the y-axis and a plane (x,) containing the principal meridian curve MM'.
The horizontal angle Vz formed with the x-y plane) is taken every 5.6 degrees, and the values of the longitudinal radius of curvature are connected based on the longitudinal radius of curvature of the principal meridian curve MM'. It is a diagram.

第4図に示した如く、本実施例においては、該遠用部F
の上部(16,8°)において屈折表面の縦断面形状は
、主子午線曲線MM’ との交点から遠ざかるに従って
曲率半径の値が増加し、遠用部Fの下部(5,6°)に
おいて屈折表面の縦断面形状は、該主子午線曲線MM”
との交点から遠ざかるに従って減少し、遠用部Fのほぼ
中央部分(]、1.2°)において屈折表面の縦断面で
の曲率半径がほぼ一定となっている。
As shown in FIG. 4, in this embodiment, the distance portion F
The vertical cross-sectional shape of the refractive surface at the upper part (16,8°) of The vertical cross-sectional shape of the surface is based on the principal meridian curve MM”
The radius of curvature in the longitudinal section of the refractive surface decreases as it moves away from the intersection with F, and the radius of curvature in the longitudinal section of the refractive surface is approximately constant at approximately the center (], 1.2°) of the distance portion F.

そして、近用部Nの近用中心○N  (1]、、2°)
近傍において、屈折表面の縦断面形状は、横断面曲線に
沿って主子午線曲線MM′との交点から遠ざかるに従っ
て曲率半径の値が増加しその後ほぼ一定となっている。
And the near center of the near part N ○N (1], 2°)
In the vicinity, the longitudinal cross-sectional shape of the refractive surface has a radius of curvature that increases as it moves away from the intersection with the principal meridian curve MM' along the cross-sectional curve and then remains approximately constant.

この近用中心011の近傍における縦曲率半径の増加か
らほぼ一定に変化する位置は、該累進焦点レンズの半径
をWとするとき、Wの約半分の位置にあり、実用的には
主子午線曲線から横方向にW74〜3W/4だけ離れた
領域内に存在する構成とすることが有効である。また、
この近用中心の側方領域における縦断面曲率半径の増加
後のほぼ一定となる値は、その横断面と主子午線曲線と
の交点における縦断面曲率半径に対して約13%であり
、実用的には10%〜50%、好ましくは10%〜30
%とすることが有効である。
The position where the radius of vertical curvature changes almost constantly from the increase in the radius of curvature in the vicinity of the center of near vision 011 is at a position approximately half of W when the radius of the progressive focusing lens is W, and in practical terms, it is located on the principal meridian curve. It is effective to configure the structure to exist in a region spaced apart from W74 to 3W/4 in the lateral direction. Also,
The value that becomes almost constant after increasing the radius of curvature of the longitudinal section in the lateral region of the center of near vision is approximately 13% of the radius of curvature of the longitudinal section at the intersection of the cross section and the principal meridian curve, which is a practical value. 10% to 50%, preferably 10% to 30%
% is effective.

ところで、第5図は縦方向の曲率半径に対応する縦方向
の屈折力について、縦交線曲線Σ1に沿った変化を示す
ものである。即ち、屈折表面σでの前述したy軸を含む
垂直面(χ1)による縦交線曲線Σ1に沿って、各点で
の縦方向の屈折力をプロットした図であり、屈折表面σ
の縦方向曲率半径の縦の変化を示すものでもある。すな
わち、曲率半径と屈折力とは密接な関係にあり、曲率半
径をRとし、レンズの屈折率をnとするとき、曲率ρは
、 ρ−1/R で表され、屈折ノEDは、 D= (n−1) 1/R= (n−1,) 0の関係
になる。ここで、曲率半径Rをメートル単位とする場合
に、屈折力りはデイオプター単位で表される。
By the way, FIG. 5 shows the change along the vertical intersection line curve Σ1 with respect to the vertical refractive power corresponding to the radius of curvature in the vertical direction. In other words, it is a diagram in which the refractive power in the vertical direction at each point is plotted along the vertical intersection curve Σ1 by the vertical plane (χ1) including the above-mentioned y-axis at the refractive surface σ.
It also shows the vertical change in the longitudinal radius of curvature. That is, there is a close relationship between the radius of curvature and the refractive power, and when the radius of curvature is R and the refractive index of the lens is n, the curvature ρ is expressed as ρ-1/R, and the refraction ED is D = (n-1) 1/R= (n-1,) 0. Here, when the radius of curvature R is expressed in units of meters, the refractive power is expressed in units of diopters.

第5図における縦断面交線Σ。は主子午線曲線MM” 
 (Vz =0°)に一致し、この主子午線曲線に沿っ
た縦方向の屈折力の変化を曲線e。で示す。そして、Σ
1.Σ2.Σ3はそれぞれ、Vz=5゜6°、]、1.
2°、 16.8°に対応し、それぞれの縦断面交線に
沿った縦方向屈折力の変化を曲線e1.e2elで示し
ている。ここで、Vz=]、6.8°が累進焦点レンズ
としての最大有効口径にほぼ対応するものとすれば、Σ
1Σ2.Σ3はそれぞれ、レンズの半径Wに対して、W
/3.2W/3.Wに対応することになる。
Vertical section intersection line Σ in FIG. is the principal meridian curve MM”
(Vz = 0°) and the longitudinal power change along this principal meridian curve is curve e. Indicated by And Σ
1. Σ2. Σ3 are Vz=5°6°, ], 1.
2° and 16.8°, and the changes in longitudinal refractive power along the respective longitudinal section intersection lines are represented by curves e1. It is shown as e2el. Here, if Vz=] and 6.8° approximately correspond to the maximum effective aperture as a progressive focus lens, then Σ
1Σ2. Σ3 is W for the radius W of the lens, respectively.
/3.2W/3. This corresponds to W.

第5図の03に示される如く、遠用部Fの上方において
は、主子午線曲線上の縦方向屈折力(eo)に対して、
レンズの側縁部(Σ3)における縦方向屈折力がより大
きく、レンズ側方中間部(ΣΣ2)における縦方向屈折
力(el、e2)がより小さくなっており、遠用部Fの
中間でこれらがほぼ等しい屈折力となっている。
As shown at 03 in FIG. 5, above the distance portion F, for the longitudinal refractive power (eo) on the principal meridian curve,
The longitudinal refractive power at the side edge part (Σ3) of the lens is larger, and the longitudinal refractive power (el, e2) at the lateral middle part of the lens (ΣΣ2) is smaller. have almost the same refractive power.

また、遠用部F下端の遠用アイポイント位置においては
、最も小さい屈折力となる主子午線曲線」二の屈折力(
eo)に対して、レンズ側方中間部(Σ1.Σ2)にお
ける屈折力(el、e2)よりも、レンズの側縁部(Σ
3)における屈折力が大きくなっている。
In addition, at the distance eye point position at the lower end of the distance part F, the refractive power (
eo), the refractive power (el, e2) at the lens side intermediate portion (Σ1, Σ2) is greater than the refractive power (el, e2) at the side edge part (Σ
The refractive power in 3) is increased.

そして、中間部Pのほぼ中央においては、eo+el、
e2がほぼ一致し、e3が図中より上にあり、縦断面屈
折力が横断面曲線に沿ってほぼ一定でありその後減少し
ていることが分かる。また、中間部Pの下方においては
、主子午線曲線上の屈折力(eo )が最大となり、側
方に行くに従って屈折力が減少しその後増加する。この
傾向は近用部Nの上方まで続いている。
Then, at approximately the center of the intermediate portion P, eo+el,
It can be seen that e2 is almost the same, e3 is above the figure, and the longitudinal cross-sectional refractive power is approximately constant along the cross-sectional curve and then decreases. Further, below the intermediate portion P, the refractive power (eo) on the principal meridian curve is maximum, and as it goes to the side, the refractive power decreases and then increases. This tendency continues up to the upper part of the near vision area N.

近用部Nにおいては、近用中心の近傍で最大の屈折力を
持つ主子午線曲線上の縦断面屈折力(e。)に対して、
e++e2+e+の順で小さくなっている。
In the near vision area N, for the longitudinal section refractive power (e.) on the principal meridian curve, which has the maximum refractive power near the center of near vision,
It becomes smaller in the order of e++e2+e+.

ところで、上記の如き実施例において、主子午線曲線に
沿った平均屈折力の分布の状態は、第6図に示すごとく
である。本実施例は遠用部Fの平均屈折度数(ベースカ
ーブ)が4.0デイオプターで、加入度2.5デイオプ
ターの累進焦点レンズであるから、遠用中心O2におい
てほぼ4.0デイオプターであり、近用中心ONにおい
て平均屈折度数はほぼ6.5デイオプターとなっている
Incidentally, in the above embodiment, the distribution of the average refractive power along the principal meridian curve is as shown in FIG. This example is a progressive lens with an average refractive power (base curve) of the distance portion F of 4.0 dayopters and an addition power of 2.5 dayopters, so it is approximately 4.0 dayopters at the distance center O2, The average refractive power at the near center ON is approximately 6.5 dayopters.

このような加入度曲線を有するレンズ面の設計において
は、レンズとしての円形形状の範囲内のみにおいて面形
状を設計評価するのではなく、レンズ面の円形形状を含
む第3図に示した如き四角形を想定し、この四角形内で
の面形状の設計と評価を行った。このように、レンズの
円形形状を覆うより大きな面での曲面を最適化すること
によって、実用的レンズ面をよりなめらかな優れた形状
とすることが可能となるのである。
When designing a lens surface having such an addition curve, the surface shape should not be designed and evaluated only within the circular shape of the lens, but should be evaluated in a rectangular shape as shown in Figure 3, which includes the circular shape of the lens surface. Assuming this, we designed and evaluated the surface shape within this rectangle. In this way, by optimizing the curved surface of the larger surface that covers the circular shape of the lens, it becomes possible to make the practical lens surface a smoother and better shape.

上記の如き実施例の面形状を有する累進焦点レンズにつ
いて、性能評価を行った結果を示したのが、第7図の等
非点隔差曲線図である。この図において、等非点隔差曲
線は0.5デイオプターごとの値としている。
The isoastigmatism curve diagram in FIG. 7 shows the results of performance evaluation of the progressive focal length lens having the surface shape of the example described above. In this figure, the isostigmatism difference curve has a value every 0.5 diopter.

本実施例との比較のために、第8図に従来の累進焦点レ
ンズについての等非点隔差曲線図及び主子午線曲線上の
屈折力分布曲線図の概要を示した。
For comparison with this example, FIG. 8 shows an outline of an isoastigmatism curve diagram and a refractive power distribution curve diagram on a principal meridian curve for a conventional progressive focus lens.

この図においても、等非点隔差曲線は0.5デイオプタ
ーごとの値としている。
In this figure as well, the isostigmatism difference curve is set to values every 0.5 diopters.

従来の累進焦点レンズにおいては、本発明による上記の
如き構成ではないため、第8図に示す如く、非点隔差の
密度が高くなり、非点隔差量及び非点隔差の勾配が急激
なものとなり、結果として像のゆがみが大きくなり、視
線を移動したときに像のゆれを感することになる。また
、遠用部下方の側方領域には、中間部の側方領域からの
非点隔差の収差がしみ出して、この領域へ眼を向けた場
合には、像のボケばかりではなく、像のゆがみ、ゆれが
著しくなっている。
Since the conventional progressive focus lens does not have the above-described configuration according to the present invention, the density of the astigmatism difference becomes high, and the amount of astigmatism difference and the gradient of the astigmatism difference become steep, as shown in FIG. As a result, the distortion of the image becomes large, and you will feel the image shaking when you move your line of sight. In addition, the astigmatism aberration from the intermediate lateral region seeps into the lower lateral region for distance vision, and when you turn your eyes to this region, you will not only see a blurred image, but also a blurred image. Distortion and shaking have become noticeable.

これに対し、本実施例においては第7図に示す如く、累
進帯としての中間部か短くなったにもかかわらず、表面
屈折力の非点隔差の密度も低下し、非点隔差の勾配もゆ
るやかになり、像のゆがみもゆれも軽減されていること
か明らかである。
On the other hand, in this example, as shown in FIG. 7, although the middle part of the progressive zone is shortened, the density of the astigmatism difference of the surface refractive power also decreases, and the gradient of the astigmatism difference also decreases. It is clear that the image becomes smoother and the distortion and shaking of the image are reduced.

ここで、上記実施例の加入度曲線を示した第6図を用い
て、本発明による累進焦点レンズの主要な点について説
明しておく。
Here, the main points of the progressive focus lens according to the present invention will be explained using FIG. 6 showing the addition curve of the above embodiment.

遠用中心O2とは、遠用部での所定の表面屈折平均度数
を有する主子午線曲線上の位置であり、実用上は遠用部
の測定基準点とされる点である。
The distance center O2 is a position on the principal meridian curve having a predetermined average surface refraction power in the distance portion, and is a point that is practically used as a measurement reference point for the distance portion.

また、近用中心ONとは、近用部での所定の表面屈折平
均度数を有する主子午線曲線上の位置であり、実用上は
近用部の測定基準点とされる点である。
Further, the near vision center ON is a position on the principal meridian curve having a predetermined average surface refractive power in the near vision area, and is a point that is practically used as a measurement reference point for the near vision area.

そして、遠用アイポイントEは、レンズを眼鏡フレーム
に枠入れする際の基準とされる位置であり、眼鏡フレー
ムを装用した状態において遠用視線通過位置と合致する
遠用基準点となる。このような遠用アイポインhEの位
置は、第6図の主子午線曲線上の平均屈折力分布曲線に
示す如く、レンズの幾何中心とは独立に定められており
、本発9 明においては以下のように定義する。すなわち、主子午
線曲線上の表面屈折力の平均度数を主子午線曲線上の各
位置ごとにプロットした第6図の如き加入度曲線におい
て、遠用部Fの遠用中心O1と近用部Nの近用中心ON
とを結ぶ直線aと平行で、加入度曲線と遠用部F側で接
する直線すが、遠用中心O2での平均屈折力を表す直線
Cとの交点Eを遠用アイポイントとする。
The distance eye point E is a position that is used as a reference when fitting the lens into the eyeglass frame, and serves as a distance reference point that matches the distance line of sight passing position when the eyeglass frame is worn. The position of such a distance eye point hE is determined independently of the geometric center of the lens, as shown in the average refractive power distribution curve on the principal meridian curve in FIG. Define it as follows. That is, in the addition curve as shown in FIG. 6, in which the average power of the surface refractive power on the principal meridian curve is plotted for each position on the principal meridian curve, the distance center O1 of the distance section F and the center of near vision N are Near center ON
The distance eye point is defined as the intersection point E of the straight line C, which is parallel to the straight line a connecting these lines and touches the addition curve on the distance part F side, and represents the average refractive power at the distance center O2.

尚、一般に累進焦点レンズは眼鏡フレームに合わせて加
工されるため、遠用部、中間部及び近用部の各領域、特
に周辺部を含む遠用部と近用部の領域は、フレームの形
状によって異なることとなるが、加工前の累進焦点レン
ズは一般に直径60mm程度以上の円形レンズであり、
この円形形状のまま眼鏡小売店に供給され、小売店にお
いて所望の眼鏡フレーム形状に合わせて加工されている
。従って、本発明における累進焦点レンズの面形状の規
定においてはこのような加工前の形状を基準とするもの
である。そして、累進焦点レンズの最適面形状の設計に
おいては、使用頻度の高い中心領0 域のみではなく使用される有効領域を含むより広い領域
における面形状をも考慮して収差バランスを図ることが
肝要である。
In addition, since progressive focus lenses are generally processed to fit the eyeglass frame, the distance, intermediate, and near vision areas, especially the distance and near vision areas including the peripheral area, depend on the shape of the frame. Although it differs depending on the situation, the progressive focus lens before processing is generally a circular lens with a diameter of about 60 mm or more,
This circular shape is supplied to an eyeglass retailer, where it is processed into a desired eyeglass frame shape. Therefore, in defining the surface shape of the progressive focus lens in the present invention, the shape before processing is used as a reference. When designing the optimal surface shape of a progressive focus lens, it is important to balance the aberrations by considering the surface shape not only in the frequently used central region 0 but also in a wider region including the effective region used. It is.

また、一般の累進焦点レンズでは、主子午線曲線に沿っ
て、全線を微視的な球面の連続とする所謂原点曲線とし
たものや、主子午線曲線上の一部の領域において膀点で
はなく、互いに直交する方向での曲率半径が異なる面形
状とするものが提案されており、主子午線曲線上の面形
状についてみれば主子午線曲線の全線にわたって原点状
としたものと、主子午線曲線上の少なくとも一部におい
て原点ではなくして、主子午線曲線に沿う方向の曲率半
径とそれに直角な方向での曲率半径とを異なる値とした
ものとに2大別されるが、本発明においてはこれらの何
れの場合にも有効である。
In addition, in general progressive focus lenses, the entire line is a so-called origin curve that is a series of microscopic spherical surfaces along the principal meridian curve, and some areas on the principal meridian curve are not bladder points. Surface shapes with different radii of curvature in directions orthogonal to each other have been proposed. Looking at the surface shapes on the principal meridian curve, there are two types: one where the surface shape is like the origin over the entire principal meridian curve, and one where the radius of curvature is different in directions perpendicular to each other. In some cases, the radius of curvature in the direction along the principal meridian curve and the radius of curvature in the direction perpendicular to the principal meridian curve are different values, instead of the origin. It is also effective in cases where

〔発明の効果〕〔Effect of the invention〕

以上の如き本発明によれば、累進帯としての中間部を短
くしても、遠用部の下方においても広い視野を有し、実
用上不便のない広さの明視域を有する中間部及び近用部
を有し、その周辺においても像のゆがみ、ゆれを極力低
減し側方視においても不快感を感することがなく、収差
的にバランスのとれた累進焦点レンズを実現することが
可能となり、この種のレンズを初めて用いる人にも違和
感なく装用し得る累進焦点レンズを達成することができ
る。
According to the present invention as described above, even if the intermediate portion as a progressive zone is shortened, the intermediate portion and It has a near vision area, which minimizes image distortion and wobbling in the periphery, causing no discomfort even when viewed from the side, making it possible to create a progressive focal lens with well-balanced aberrations. Therefore, it is possible to achieve a progressive focal length lens that can be worn comfortably even by a person using this type of lens for the first time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図本発明の累進焦点レンズの領域区分の概要を示す
平面図であり、第2図(A)及び(B)は本発明による
屈折表面の横断面及び縦断面を説明するための斜視図、
第3図は本発明による横断面交線及び縦断面交線の様子
を示すための平面図、第4図は本発明による実施例の横
断面に沿った縦方向曲率半径の変化を示す図、第5図は
縦方向の屈折力について縦断面交線に沿った変化を示す
図、第6図は実施例における加入度曲線を示す図、第7
図は本発明による実施例についての等非点隔差曲線図、
第8図は従来の累進焦点レンズについての等非点隔差曲
線図である。 F・・・遠用部 P・・・中間部 N・・・近用部 〔主要部分の符号の説明〕 ○、・・・遠用中心 ON・・・近用中心 E・・・遠用アイポイント
FIG. 1 is a plan view showing an outline of the area division of the progressive focus lens of the present invention, and FIGS. 2(A) and (B) are perspective views for explaining the cross section and longitudinal section of the refractive surface according to the present invention. ,
FIG. 3 is a plan view showing the cross-sectional intersection line and longitudinal section intersection line according to the present invention; FIG. 4 is a diagram showing changes in the longitudinal radius of curvature along the cross-section of the embodiment according to the present invention; FIG. 5 is a diagram showing the change in longitudinal refractive power along the longitudinal section intersection line, FIG. 6 is a diagram showing the addition curve in the example, and FIG.
The figure is an isoastigmatic difference curve diagram for an example according to the present invention,
FIG. 8 is an isoastigmatism curve diagram for a conventional progressive focus lens. F...Distance part P...Intermediate part N...Near part [Explanation of symbols of main parts] ○,...Distance center ON...Near center E...Distance eye point

Claims (1)

【特許請求の範囲】 1)主子午線曲線に沿って遠景に対応する屈折力を有す
る遠用部と、近景に対応する屈折力を有する近用部と、
前記遠用部と前記近用部との間において両部の屈折力を
連続的になめらかに接続する中間部とを有する累進焦点
レンズであって、前記遠用部の上方において屈折表面の
縦断面形状は、横断面曲線に沿って該主子午線曲線との
交点から遠ざかるに従って縦曲率半径の値が増加し、該
遠用部の下部において屈折表面の縦断面形状は、横断面
曲線に沿って該主子午線曲線との交点から遠ざかるに従
って縦曲率半径の値が減少し、該遠用部のほぼ中央部分
において、横断面曲線に沿って屈折表面の縦曲率半径は
ほぼ一定であり、前記中間部の上方において屈折力表面
の縦断面形状は前記横断面曲線に沿って主子午線曲線と
の交点から遠ざかるに従って縦曲率半径の値が減少し、
中間部の下方及び近用部上方において縦曲率半径の値は
横断面曲線に沿って主子午線曲線との交点から遠ざかる
に従って増加し、その後減少することを特徴とする累進
焦点レンズ。 2)前記中間部の下方及び近用部上方において、縦曲率
半径の値は横断面曲線に沿って主子午線曲線との交点か
ら遠ざかるに従って増加しその後減少する位置は、近用
部に近づくに従って主子午線曲線から離れた位置になり
、少なくとも主子午線曲線から垂直方向に15mmの位
置より離れていることを特徴とする請求項1記載の累進
焦点レンズ。 3)前記近用部の近用中心近傍においては、横断面曲線
に沿って主子午線曲線から遠ざかるに従って縦断面曲率
半径は増加し、その後ほぼ一定となることを特徴とする
請求項1記載の累進焦点レンズ。 4)前記近用部において、横断面曲線に沿う屈折表面の
縦断面曲率半径が増加から一定に変化する位置は、該累
進焦点レンズの半径をWとするとき、前記主子午線曲線
から垂直方向にW/4〜3W/4だけ離れた領域内に存
在することを特徴とする請求項3記載の累進焦点レンズ
[Scope of Claims] 1) A distance part having a refractive power corresponding to a distant view along the principal meridian curve, and a near part having a refractive power corresponding to a near view;
A progressive focusing lens having an intermediate portion between the distance portion and the near portion that continuously and smoothly connects the refractive powers of both portions, the longitudinal section of the refractive surface above the distance portion; The vertical curvature radius increases as the shape moves away from the intersection with the principal meridian curve along the cross-sectional curve, and the vertical cross-sectional shape of the refractive surface at the lower part of the distance portion changes along the cross-sectional curve. The value of the vertical radius of curvature decreases as it moves away from the point of intersection with the principal meridian curve, and the vertical radius of curvature of the refractive surface is approximately constant along the cross-sectional curve in approximately the central portion of the distance portion, and In the upper part, the vertical cross-sectional shape of the refractive power surface has a radius of vertical curvature that decreases as it moves away from the intersection with the principal meridian curve along the cross-sectional curve,
A progressive focusing lens characterized in that the value of the vertical radius of curvature increases along the cross-sectional curve and moves away from the intersection with the principal meridian curve below the intermediate section and above the near section, and then decreases. 2) Below the intermediate section and above the near section, the value of the vertical radius of curvature increases as it moves away from the intersection with the principal meridian curve along the cross-sectional curve, and then decreases as it approaches the near section. 2. The progressive lens according to claim 1, wherein the progressive focus lens is located away from the meridian curve and is at least 15 mm away from the principal meridian curve in the vertical direction. 3) In the vicinity of the center of near vision in the near vision section, the radius of curvature of the longitudinal section increases as it moves away from the principal meridian curve along the cross sectional curve, and then becomes approximately constant. focal lens. 4) In the near vision section, the position where the longitudinal cross-sectional curvature radius of the refractive surface changes from increasing to constant along the cross-sectional curve is the position in the vertical direction from the principal meridian curve, when the radius of the progressive focusing lens is W. 4. The progressive focus lens according to claim 3, wherein the progressive focus lens exists in a region separated by W/4 to 3W/4.
JP18193689A 1989-07-14 1989-07-14 Progressive focus lens Expired - Lifetime JP2503664B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18193689A JP2503664B2 (en) 1989-07-14 1989-07-14 Progressive focus lens
US07/551,082 US5048945A (en) 1989-07-14 1990-07-11 Progressive power lens
EP90113473A EP0408067B1 (en) 1989-07-14 1990-07-13 Progressive power lens
DE69019616T DE69019616T2 (en) 1989-07-14 1990-07-13 Progressive power lens.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18193689A JP2503664B2 (en) 1989-07-14 1989-07-14 Progressive focus lens

Publications (2)

Publication Number Publication Date
JPH0346616A true JPH0346616A (en) 1991-02-27
JP2503664B2 JP2503664B2 (en) 1996-06-05

Family

ID=16109486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18193689A Expired - Lifetime JP2503664B2 (en) 1989-07-14 1989-07-14 Progressive focus lens

Country Status (1)

Country Link
JP (1) JP2503664B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173674A (en) * 2011-02-24 2012-09-10 Seiko Epson Corp Progressive refractive power lens and designing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173674A (en) * 2011-02-24 2012-09-10 Seiko Epson Corp Progressive refractive power lens and designing method thereof

Also Published As

Publication number Publication date
JP2503664B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
US5812238A (en) Progressive multifocal ophthalmic lens pair
JPH0690368B2 (en) Progressive multifocal lens and glasses
EP0408067B1 (en) Progressive power lens
JP2576054B2 (en) Progressive multifocal lens
JP3381314B2 (en) Progressive focus lens
JP3690427B2 (en) Progressive multifocal lens and spectacle lens
JP2001318346A (en) Progressive power lens
EP0627647B1 (en) Progressive multifocal lens
US5510860A (en) Progressive multifocal lens
JPH11125799A (en) Progressive focus lens for spectacles and spectacles using same
JP3381306B2 (en) Progressive focus lens
JPH07294859A (en) Progressive multi-focus lens
JP2503665B2 (en) Progressive focus lens
JPH0346616A (en) Progressive focal lens
JPH0581886B2 (en)
JP4450480B2 (en) Progressive multifocal lens series
JP2580683B2 (en) Progressive multifocal lens
JP3013396B2 (en) Eyeglass lens
JP2518344B2 (en) Progressive multifocal lens
JP2536195B2 (en) Progressive focus lens
JP2861892B2 (en) Progressive multifocal lenses and glasses
JPS6338688B2 (en)
JPH10123467A (en) Progressive multifocus lens
JP2503665C (en)
JPS6248205B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14