JP2503664B2 - Progressive focus lens - Google Patents

Progressive focus lens

Info

Publication number
JP2503664B2
JP2503664B2 JP18193689A JP18193689A JP2503664B2 JP 2503664 B2 JP2503664 B2 JP 2503664B2 JP 18193689 A JP18193689 A JP 18193689A JP 18193689 A JP18193689 A JP 18193689A JP 2503664 B2 JP2503664 B2 JP 2503664B2
Authority
JP
Japan
Prior art keywords
curve
main meridian
radius
progressive
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18193689A
Other languages
Japanese (ja)
Other versions
JPH0346616A (en
Inventor
保典 上野
文男 高橋
隆二 会沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP18193689A priority Critical patent/JP2503664B2/en
Priority to US07/551,082 priority patent/US5048945A/en
Priority to DE69019616T priority patent/DE69019616T2/en
Priority to EP90113473A priority patent/EP0408067B1/en
Publication of JPH0346616A publication Critical patent/JPH0346616A/en
Application granted granted Critical
Publication of JP2503664B2 publication Critical patent/JP2503664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、眼の調節力の補助として使用する累進焦点
レンズに関する。
Description: FIELD OF THE INVENTION The present invention relates to a progressive focus lens used as an auxiliary to the accommodation power of the eye.

〔従来技術〕[Prior art]

眼の調節力が衰退して近方視が困難になった場合の調
節力の補助用眼鏡レンズとして、上方の遠用視矯正領域
(以下遠用部という)と下方の近用視矯正領域(以下近
用部という)と両者の中間において連続的に屈折力が変
化する累進領域(以下中間部という)を有する累進焦点
レンズが種々知られている。
As an eyeglass lens for assisting the accommodation power when the accommodation power of the eye declines and near vision becomes difficult, an upper distance vision correction region (hereinafter referred to as a distance portion) and a lower near vision correction region ( Various progressive focus lenses having a progressive region (hereinafter referred to as an intermediate part) in which the refracting power continuously changes between the two are known.

累進焦点レンズにおいて、一般には遠用部と近用部と
の明視域を広く確保し、その間を累進帯で結ぶと、その
累進帯の側方領域にレンズ収差が集中するようになり、
この領域の存在が像のボケをはじめとして、像のゆがみ
を引き起こし、視線を移動したときのゆれとして、装用
者に悪い印象を与える。
In a progressive-focus lens, generally, a wide viewing zone between the distance portion and the near portion is secured, and if a space between them is connected by a progressive zone, lens aberrations will be concentrated in the lateral area of the progressive zone.
The presence of this region causes image blurring and image distortion, and gives a bad impression to the wearer when the eyes move.

このような視覚特性の問題を解決するために、公知の
累進焦点レンズにおいては様々な観点での設計、評価が
なされている。そして、レンズ面の形状に関して、レン
ズ面のほぼ中央に垂直に走る子午線に沿う断面と物体側
レンズ面との交線が、レンズの加入度などの仕様を表す
ための基準線として用いられ、レンズの設計においても
重要な基準線として用いられている。また、レンズの装
用状態において近用部が鼻側に寄ることを考慮して近用
部を非対称な配置とした累進焦点レンズにおいても、遠
用中心と近用中心とを縦に通る1本の中心線が基準線と
して扱われている。本発明においては、これらの基準線
を主子午線曲線という。
In order to solve such a problem of visual characteristics, known progressive lenses have been designed and evaluated from various viewpoints. Then, regarding the shape of the lens surface, an intersection line between a cross section along a meridian running substantially perpendicular to the center of the lens surface and the object side lens surface is used as a reference line for representing specifications such as addition of the lens, It is also used as an important reference line in the design. In addition, even in a progressive lens in which the near portion is asymmetrically arranged in consideration of the near portion approaching the nose side in the wearing state of the lens, one lens that passes vertically through the distance center and the near center is also used. The center line is treated as the reference line. In the present invention, these reference lines are called main meridian curves.

従来の累進焦点レンズとしては、例えば特公昭49−35
95号公報、特公昭52−20271号公報や、特公昭59−42285
号公報に開示されたものが知られている。
As a conventional progressive-focus lens, for example, Japanese Patent Publication No. 49-35
Japanese Patent Publication No. 95, Japanese Patent Publication No. 52-20271 and Japanese Patent Publication No. 59-42285.
The one disclosed in Japanese Patent Publication is known.

〔発明の解決しようとする課題〕[Problems to be Solved by the Invention]

上記の公知技術においては一応の視覚性能の向上を図
ることが可能ではあるが、実用上では未だ不十分なもの
であった。すなわち、特公昭49−3595号公報のもので
は、主子午線曲線と直角な平面と屈折面との成す交線の
形状について、中間部のほぼ中央に相当する点における
交線のみを円形形状とし、それより上部では主子午線曲
線から遠ざかるに従って交線の曲率半径は減少し下部で
は増加するような、いずれも非円形形状とするものであ
り、このように中央部のみを円形形状とし他の領域にお
いて単純な非円形形状としているため、近用部及び遠用
部の明視域(非点隔差が0.5ディオプター以下の範囲)
が狭く、また急激な収差変化を伴うため視野が狭くな
り、像のゆがみ、ゆれが著しいものであった。
Although it is possible to improve the visual performance to some extent in the above-mentioned known techniques, it is still insufficient for practical use. That is, in JP-B-49-3595, the shape of the line of intersection between the plane perpendicular to the main meridian curve and the refracting surface is circular only at the point corresponding to approximately the center of the middle portion, Above that, the radius of curvature of the intersecting line decreases with increasing distance from the main meridian curve, and increases with the lower part, both of which have non-circular shapes. As it has a simple non-circular shape, it has a clear vision area for near and far vision areas (with an astigmatic difference of 0.5 diopter or less).
Is narrow, and the field of view is narrowed due to the abrupt change in aberration, resulting in significant image distortion and fluctuation.

また、特公昭52−20271号公報のものは、前記特公昭4
9−3595号公報に開示された静的視覚の改善にさらに動
的視覚の改良を加えたものであるが、ある程度の動的視
覚の改善は可能となるものの、実用的に十分な性能を達
成することは未だ難しい。
In addition, Japanese Patent Publication No. 52-20271 discloses the above-mentioned Japanese Patent Publication No.
This is a modification of the static vision disclosed in Japanese Patent Publication No. 9-3595 with further improvement of dynamic vision.Although it is possible to improve dynamic vision to some extent, it achieves practically sufficient performance. It's still difficult to do.

特公昭59−42285号公報のものでは、同様に主子午線
曲線と直角な平面と屈折力面との成す交線の形状につい
て、遠用部上方では、主子午線曲線より遠ざかるにつれ
て曲率半径が減少し、遠用部の上方にいくに従ってその
減少率が0に近づき上方周辺部では一定の曲率半径と
し、遠用部の下部では曲率半径が単調に減少する非円形
形状とし、さらに中間部では遠用部との接続部を除いて
主子午線曲線から遠ざかるに従って、曲率半径が増加し
減少する非円形形状とし、近用部では主子午線曲線より
遠ざかるにつれて曲率半径が増加して減少する構成とし
ている。このものでは、前記特公昭52−20271号公報の
ものよりはある程度の視覚特性の改良がなされ得るもの
の、遠用部の周辺領域、特に遠用部の中央から下方にか
けて側方領域における残存非点隔差が依然著しく、また
中間部及び近用部の側方領域においても像のゆがみ、ゆ
れが大きく、未だ十分広い視野を得ることが難しいもの
であった。
In the case of Japanese Patent Publication No. 59-42285, similarly, regarding the shape of the line of intersection between the plane perpendicular to the main meridian curve and the refracting power surface, the radius of curvature decreases with increasing distance from the main meridian curve above the distance portion. , The decreasing rate approaches 0 as it goes up in the distance portion, and the radius of curvature is constant in the upper peripheral portion, and the radius of curvature monotonically decreases in the lower portion of the distance portion. The non-circular shape in which the radius of curvature increases and decreases as the distance from the main meridian curve is increased, except for the connecting portion with the portion, and the radius of curvature increases and decreases in the near portion, as the distance from the main meridian curve increases. Although the visual characteristics can be improved to some extent as compared with the Japanese Patent Publication No. 52-20271, the residual astigmatism in the peripheral region of the distance portion, particularly in the lateral region from the center to the lower portion of the distance portion, is improved. The gap is still significant, and the image is greatly distorted and shaken in the lateral regions of the middle portion and the near portion, and it is still difficult to obtain a sufficiently wide field of view.

一般に累進帯としての中間部を短くすると屈折力変化
が急激になるため、収差が急激に増大する。ミンクウィ
ッツの法則からもわかるように、特に主子午線曲線の近
傍においては収差が急激に増大し、累進帯の幅が狭くな
りがちになるばかりではなく、像のゆれ、ゆがみが急激
に増大する。一方、累進帯が比較的長い場合には、屈折
力変化が比較的穏やかなため非点収差や、ゆれ、ゆがみ
を低減しやすい。しかしながら、累進帯が長すぎると装
用時において目線を十分下げないと所望の加入度が得ら
れないため、使用しにくい等の問題があった。
Generally, when the middle part of the progressive zone is shortened, the change in the refractive power becomes rapid, so that the aberration sharply increases. As can be seen from Minkwitz's law, especially near the main meridian curve, the aberration increases rapidly, and not only the width of the corridor tends to be narrowed, but also the image distortion and distortion increase rapidly. On the other hand, when the corridor is relatively long, the change in refractive power is relatively gentle, so that astigmatism, shaking, and distortion are easily reduced. However, if the corridor is too long, a desired addition degree cannot be obtained unless the line of sight is lowered sufficiently at the time of wearing.

本発明は、上述の如き従来の欠点を解消し、累進帯と
しての中間部が短くなった場合においても、収差的にバ
ランスのとれた累進焦点レンズを提供しようとするもの
であり、具体的には遠用部の下方においても広い視野を
有し、実用上不便のない広さの明視域を有する中間部及
び近用部を有し、その周辺においても像のゆがみ、ゆれ
を極力低減し側方視においても不快感を感ずることのな
い累進焦点レンズを提供することを目的としている。
The present invention intends to solve the above-mentioned conventional drawbacks and to provide a progressive focus lens that is well-balanced in terms of aberrations even when the intermediate portion as a progressive zone is shortened. Has a wide field of view even below the distance part, and has an intermediate part and a near part having a clear viewing area that is practically inconvenient, and also reduces the image distortion and shake in the periphery as much as possible. It is an object of the present invention to provide a progressive-focus lens that does not cause discomfort even when viewed laterally.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は主子午線曲線に沿って遠景に対応する屈折力
を有する遠用部Fと、近景に対応する屈折力を有する近
用部Nと、前記遠用部と前記近用部との間において両部
の屈折力を連続的になめらかに接続する中間部Pとを有
する第1図の如き累進焦点レンズにおいて、中間部が短
くなった場合に屈折表面の縦断面形状について、各部の
最適形状を見出し、屈折面全域における収差バランスの
最適化を図ったものである。
The present invention provides a distance portion F having a refractive power corresponding to a distant view along a main meridian curve, a near portion N having a refractive power corresponding to a near view, and between the distance portion and the near portion. In a progressive-focus lens as shown in FIG. 1 having an intermediate portion P that continuously and smoothly connects the refracting powers of both portions, when the intermediate portion becomes short, the optimum cross-sectional shape of each portion is defined as the longitudinal cross-sectional shape of the refracting surface. The finding is to optimize the aberration balance in the entire refracting surface.

具体的には、遠用部Fの上部において屈折表面の縦断
面形状は、横断面曲線に沿って主子午線曲線MM′との交
点から遠ざかるに従って縦曲率半径の値が増加し、遠用
部Fの下部において屈折表面の縦断面形状は、横断面曲
線に沿って主子午線曲線MM′との交点から遠ざかるに従
って縦曲率半径の値が減少し、遠用部Fのほぼ中央部分
において屈折表面の縦曲率半径は横断面曲線に沿ってほ
ぼ一定としている。そして、中間部の上方において屈折
力表面の縦断面形状は前記横断面曲線に沿って主子午線
曲線との交点から遠ざかるに従って縦曲率半径の値が減
少し、中間部の下方及び近用部上方において縦曲率半径
の値は横断面曲線に沿って主子午線曲線との交点から遠
ざかるに従って増加し、その後減少する構成となってい
る。
Specifically, in the upper portion of the distance portion F, the longitudinal cross-sectional shape of the refracting surface has a value of the longitudinal curvature radius that increases as the distance from the intersection with the main meridian curve MM ′ along the transverse sectional curve increases, The vertical cross-sectional shape of the refracting surface in the lower part of is such that the value of the longitudinal curvature radius decreases as the distance from the intersection with the main meridian curve MM ′ along the cross-sectional curve increases, and the longitudinal length of the refracting surface is approximately at the center of the distance portion F. The radius of curvature is almost constant along the curve of the cross section. Then, the vertical cross-sectional shape of the refractive power surface above the middle portion decreases in value of the vertical curvature radius as it goes away from the intersection with the main meridian curve along the cross-section curve, and below the middle portion and above the near portion. The value of the vertical curvature radius increases along the cross-section curve as it moves away from the intersection with the main meridian curve, and then decreases.

ここで、中間部の下方及び近用部上方において、縦曲
率半径の値は横断面曲線に沿って主子午線曲線との交点
から遠ざかるに従って増加しその後減少する位置は、近
用部に近づくに従って主子午線曲線から離れた位置にな
り、少なくとも主子午線曲線から垂直方向に15mmの位置
より離れるように構成することが有効である。
Here, in the lower part of the middle part and the upper part of the near portion, the value of the vertical curvature radius increases along the transverse curve with increasing distance from the intersection with the main meridian curve, and then the position where it decreases decreases toward the near portion. It is effective to be located away from the meridian curve and at least 15 mm away from the main meridian curve in the vertical direction.

さらに、近用部Nの中心付近では、屈折表面の縦断面
曲率半径は、横断面曲線に沿って主子午線曲線MM′との
交点から遠ざかるに従って増加しその後ほぼ一定とする
ことが有効である。
Further, in the vicinity of the center of the near portion N, it is effective that the radius of curvature of the longitudinal section of the refracting surface increases along the transverse section curve as the distance from the intersection with the main meridian curve MM ′ increases, and then becomes substantially constant.

また、近用部Nの側方における縦断面曲率半径が増加
から一定になる位置は、該累進焦点レンズの半径をWと
するとき、前記主子午線曲線から垂直方向にW/4〜3W/4
だけ離れた領域内に存在する構成とすることが好まし
い。
In addition, the position where the radius of curvature of the vertical section on the side of the near portion N becomes constant from the increase is W / 4 to 3W / 4 in the vertical direction from the main meridian curve when the radius of the progressive-focus lens is W.
It is preferable to have a configuration in which the regions are separated from each other.

〔作用〕[Action]

上記の如き本発明による構成においては、まず遠用部
の上方において、屈折表面の縦断面形状が横断面曲線に
沿って主子午線曲線から遠ざかるに従って増加し、一方
遠用部の下方においてはこの逆の傾向をもち、遠用部の
ほぼ中央においてほぼ一定となるため、遠用部Fを極め
て広く確保しつつ、中間部とのなめらかな接続を可能と
して、中間部Pの側方部での非点隔差の集中を弱めるこ
とを可能とし、中間部の下方及び近用部上方において縦
曲率半径の値は横断面曲線に沿って主子午線曲線との交
点から遠ざかるに従って増加しその減少する構成とする
ことによって、中間部が短くても、中間部Pでの明視域
をより広くかつ周辺での像のゆがみ、ゆれの軽減を達成
したものである。
In the structure according to the present invention as described above, first, above the distance portion, the vertical cross-sectional shape of the refracting surface increases as the distance from the main meridian curve along the cross-section curve increases, while on the other hand, below the distance portion, the reverse. Has a tendency to be almost constant in the center of the distance portion. Therefore, while ensuring the distance portion F to be extremely wide, a smooth connection with the middle portion is possible, and non-contact at the side portion of the middle portion P is possible. It is possible to weaken the concentration of point gaps, and the value of the longitudinal curvature radius below the middle part and above the near vision part increases and decreases as it goes away from the intersection with the main meridian curve along the cross-section curve. As a result, even if the intermediate portion is short, the clear vision area in the intermediate portion P is widened, and distortion of the image in the periphery and reduction of the fluctuation are achieved.

また、近用部Nの中心において、屈折表面の縦断面形
状が、横断面曲線に沿って主子午線曲線との交点から遠
ざかるに従って縦曲率半径の値が増加して後ほぼ一定と
なっているため、上記の如き遠用部の形状による広い遠
用明視域を有するにもかかわらず、中間部及び近用部で
の非点隔差の集中をバランス良く軽減し、側方領域での
像のゆれ、ゆがみ等をやわらげ、視覚の改良を可能とし
ている。
Also, at the center of the near portion N, since the vertical cross-sectional shape of the refracting surface increases along with the horizontal cross-section curve and away from the intersection point with the main meridian curve, the value of the vertical curvature radius increases and becomes substantially constant thereafter. , In spite of having a wide distance clear vision area due to the shape of the distance portion as described above, the concentration of astigmatic difference in the middle portion and the near portion is reduced in a well-balanced manner, and the image shake in the lateral region is reduced. , Softens distortions and enables visual improvement.

〔実施例〕〔Example〕

以下に本発明の実施例について述べるが、まず本発明
における横断面及び縦断面について説明する。
Examples of the present invention will be described below. First, the cross section and the vertical section of the present invention will be described.

第2図(A)及び(B)はレンズの屈折表面σについ
ての横断面及び縦断面を説明するための斜視図である。
レンズの幾何中心OGに光軸をとりこれをx軸とし、幾何
中心OGにおける屈折表面の曲率中心位置を中心OOとし、
幾何中心OGにおける屈折表面の曲率半径R0を半径とする
球面を基準球面としている。従って、基準球面はレンズ
の屈折表面σと幾何中心OGにおいて接している。基準球
面の中心OOを原点として、垂直方向にy軸を、水平方向
z軸をとっている。
FIGS. 2A and 2B are perspective views for explaining a horizontal section and a vertical section of the refracting surface σ of the lens.
The geometric center O G of the lens takes the optical axis which is x-axis, the center O O curvature center position of the refractive surface in the geometric center O G,
A spherical surface having a radius of curvature R 0 of the refracting surface at the geometric center O G as a reference spherical surface. Therefore, the reference spherical surface is in contact with the refracting surface σ and the geometric center O G of the lens. With the center O O of the reference spherical surface as the origin, the y axis is taken in the vertical direction and the z axis is taken in the horizontal direction.

本発明における横断面とは、第2図(A)に示す如
く、基準球の中心O0を通り主子午線曲線MM′を含む面
(X−y平面)に直行する平面πjによる屈折表面σの
横断面のことであり、横断面交線Φjとして示してい
る。また、本発明における縦断面とは、第2図(B)に
示す如く、基準球の中心O0を通りy軸を含む平面χj
よる屈折表面σの縦断面のことであり、縦断面交線Σj
として示している。
The cross section in the present invention means, as shown in FIG. 2 (A), a refraction surface σ by a plane π j that passes through the center O 0 of the reference sphere and is orthogonal to the plane containing the main meridian curve MM '(X-y plane). Of the cross section and is shown as a cross section intersection line Φ j . Further, the vertical section in the present invention is a vertical section of a refracting surface σ by a plane χ j passing through the center O 0 of the reference sphere and including the y axis, as shown in FIG. 2 (B). Line Σ j
Is shown as.

このような横断面交線Φj及び縦断面交線Σjのレンズ
屈折表面上での平面的位置の様子を示す平面図が第3図
である。第3図に示した各横断面交線(Φ3,Φ2
Φ1,…)に沿って、縦方向の曲率半径の値を、主子午
線曲線MM′の縦方向の曲率半径を基準として、屈折表面
σの右半分についての変化を示したのが第4図である。
尚、ここに説明した横断面交線Φj及び縦断面交線Σj
は、それぞれ、本発明における横断面曲線及び縦断面曲
線を意味することは言うまでもない。
FIG. 3 is a plan view showing the planar positions of the intersection line Φ j of the transverse section and the intersection line Σ j of the longitudinal section on the lens refracting surface. Each cross-section intersection line (Φ 3 , Φ 2 ,
Fig. 4 shows the variation of the radius of curvature in the vertical direction along Φ 1 , ...) with reference to the radius of curvature of the main meridian curve MM 'in the right half of the refraction surface σ. Is.
Needless to say, the cross-section line Φ j and the vertical cross-section line Σ j described here mean the cross-section curve and the vertical cross-section curve of the present invention, respectively.

より具体的に説明すれば、第4図は、主子午線曲線M
M′と交差する7つの代表的横断面での、各横断面交線
に沿って縦方向の曲率半径の値を、主子午線曲線MM′の
縦方向の曲率半径を基準として、主子午線曲線MM′の右
側半分についてプロットしたものである。ここで、プロ
ットした各曲率半径の値は、第2図(A)(B)におい
て、基準球の中心OOを通り主子午線曲線MM′を含む面
(x−y平面)に直行する平面πjによる屈折表面σの
横断面交線Φjに沿って、y軸を含む垂直面(χj)によ
る縦交線曲線Σiが交差する点Mjにおける縦方向の曲率
半径である。
More specifically, FIG. 4 shows the main meridian curve M
The values of the vertical radii of curvature along the intersection lines of the seven representative cross-sections that intersect M'are the main meridian curve MM based on the vertical radii of curvature of the main meridian curve MM '. This is a plot of the right half of ′. Here, the plotted values of the respective radii of curvature are planes π orthogonal to the plane (xy plane) passing through the center O O of the reference sphere and including the main meridian curve MM 'in FIGS. 2 (A) and 2 (B). along a transverse plane intersection line [Phi j refractive surface σ by j, the vertical intersection line curve sigma i is the longitudinal direction of the radius of curvature at M j point of intersection by the vertical plane including the y-axis (χ j).

そして、基準球の中心を通り主子午線曲線MM′を含む
面(x−y平面)に直行する平面πjが光軸(x軸)と
なす角度Vyを、5.6°毎に変えた7つの面(π3,π2
π1,π0,π-1,π-2,π-3)による、7つの横断面交
線(Φ3,Φ2,Φ1,Φ0,Φ-1,Φ-2,Φ-3)に沿っ
て、それぞれの横断面上で、y軸を含む垂直面(χj
と主子午線曲線MM′を含む平面(x−y平面)との成す
横方向の角度Vzを、5.6°毎にとり、主子午線曲線MM′
の縦方向の曲率半径を基準として、縦方向曲率半径の値
を結んだのが第4図である。
Then, the angle Vy formed by the plane π j with the optical axis (x-axis) passing through the center of the reference sphere and orthogonal to the plane containing the main meridian curve MM ′ (xy plane) is changed every 5.6 °. (Π 3 , π 2 ,
7 cross-section intersection lines (Φ 3 , Φ 2 , Φ 1 , Φ 0 , Φ -1 , Φ -2 , Φ -3 ) by π 1 , π 0 , π -1 , π -2 , π -3 ) ), On each cross-section, in the vertical plane (χ j ) containing the y-axis
The angle Vz in the lateral direction formed by the plane including the main meridian curve MM '(xy plane) is taken every 5.6 °, and the main meridian curve MM' is obtained.
FIG. 4 is a diagram in which the values of the vertical radius of curvature are connected with reference to the vertical radius of curvature.

第4図に示した如く、本実施例においては、該遠用部
Fの上部(16.8°)において屈折表面の縦断面形状は、
主子午線曲線MM′との交点から遠ざかるに従って曲率半
径の値が増加し、遠用部Fの下部(5.6°)において屈
折表面の縦断面形状は、該主子午線曲線MM′との交点か
ら遠ざかるに従って減少し、遠用部Fのほぼ中央部分
(11.2°)において屈折表面の縦断面での曲率半径がほ
ぼ一定となっている。
As shown in FIG. 4, in the present embodiment, the vertical cross-sectional shape of the refracting surface at the upper portion (16.8 °) of the distance portion F is:
The value of the radius of curvature increases as the distance from the intersection with the main meridian curve MM ′ increases, and the vertical cross-sectional shape of the refracting surface at the lower portion (5.6 °) of the distance portion F increases as the distance from the intersection with the main meridian curve MM ′ increases. The radius of curvature in the longitudinal section of the refracting surface is almost constant in the central portion (11.2 °) of the distance portion F.

そして、近用部Nの近用中心ON(−11.2°)近傍にお
いて、屈折表面の縦断面形状は、横断面曲線に沿って主
子午線曲線MM′との交点から遠ざかるに従って曲率半径
の値が増加しその後ほぼ一定となっている。この近用中
心ONの近傍における縦曲率半径の増加からほぼ一定に変
化する位置は、該累進焦点レンズの半径をWとすると
き、Wの約半分の位置にあり、実用的には主子午線曲線
から横方向にW/4〜3W/4だけ離れた領域内に存在する構
成とすることが有効である。また、この近用中心の側方
領域における縦断面曲率半径の増加後のほぼ一定となる
値は、その横断面と主子午線曲線との交点における縦断
面曲率半径に対して約13%であり、実用的には10%〜50
%、好ましくは10%〜30%とすることが有効である。
Then, in the vicinity of the near center O N (−11.2 °) of the near portion N, the vertical cross-sectional shape of the refracting surface has a value of the radius of curvature as the distance from the intersection with the main meridian curve MM ′ along the horizontal cross-sectional curve increases. It has increased and has been almost constant since then. The position near the near center O N , where the vertical curvature radius increases and changes almost constantly, is about half of W when the radius of the progressive-focus lens is W, and practically the main meridian. It is effective to adopt a configuration in which it exists in a region distant from the curve by W / 4 to 3W / 4 in the lateral direction. Further, the value which becomes almost constant after the increase of the radius of curvature of the vertical section in the lateral region of the near center is about 13% with respect to the radius of curvature of the vertical section at the intersection of the horizontal section and the main meridian curve, Practically 10% to 50
%, Preferably 10% to 30% is effective.

ところで、第5図は縦方向の曲率半径に対応する縦方
向の屈折力について、縦交線曲線Σiに沿った変化を示
すものである。即ち、屈折表面σでの前述したy軸を含
む垂直面(χj)による縦交線曲線Σiに沿って、各点で
の縦方向の屈折力をプロットした図であり、屈折表面σ
の縦方向曲率半径の縦の変化を示すものでもある。すな
わち、曲率半径と屈折力とは密接な関係にあり、曲率半
径をRとし,レンズの屈折率をnとするとき、曲率ρ
は、 ρ=1/R で表され、屈折力Dは、 D=(n−1)1/R=(n−1)ρ の関係になる。ここで、曲率半径Rをメートル単位とす
る場合に、屈折力Dはディオプター単位で表される。
By the way, FIG. 5 shows changes in the vertical refracting power corresponding to the radius of curvature in the vertical direction along the vertical intersection curve Σ i . That is, it is a diagram in which the refractive power in the vertical direction at each point is plotted along the vertical intersection curve Σ i by the vertical plane (χ j ) including the above-mentioned y axis on the refractive surface σ.
It also indicates the vertical change in the radius of curvature in the vertical direction. That is, there is a close relationship between the radius of curvature and the refractive power, and when the radius of curvature is R and the refractive index of the lens is n, the curvature ρ
Is represented by ρ = 1 / R, and the refractive power D has a relationship of D = (n−1) 1 / R = (n−1) ρ. Here, when the radius of curvature R is in units of meters, the refractive power D is expressed in units of diopters.

第5図における縦断面交線Σ0は主子午線曲線MM′(V
z=0°)に一致し、この主子午線曲線に沿った縦方向
の屈折力の変化を曲線e0で示す。そして、Σ1,Σ2,Σ
3はそれぞれ、Vz=5.6°,11.2°,16.8°に対応し、それ
ぞれの縦断面交線に沿った縦方向屈折力の変化を曲線
e1,e2,e3で示している。ここで、Vz=16.8°が累進焦
点レンズとしての最大有効口径にほぼ対応するものとす
れば、Σ1,Σ2,Σ3はそれぞれ、レンズの半径Wに対
して、W/3、2W/3,Wに対応することになる。
The vertical cross section Σ 0 in Fig. 5 is the main meridian curve MM '(V
z = 0 °), and the change in refractive power in the longitudinal direction along this main meridian curve is shown by the curve e 0 . And Σ 1 , Σ 2 , Σ
3 corresponds to Vz = 5.6 °, 11.2 °, 16.8 °, respectively, and shows the change in the longitudinal refractive power along each vertical cross-section line.
It is shown by e 1 , e 2 , and e 3 . Assuming that Vz = 16.8 ° corresponds to the maximum effective aperture of the progressive-focus lens, Σ 1 , Σ 2 , and Σ 3 are W / 3 and 2W / with respect to the radius W of the lens, respectively. It corresponds to 3, W.

第5図のe3に示される如く、遠用部Fの上方において
は、主子午線曲線上の縦方向屈折力(e0)に対して、レ
ンズの側縁部(Σ3)における縦方向屈折力がより大き
く、レンズ側方中間部(Σ1,Σ2)における縦方向屈折
力(e1,e2)がより小さくなっており、遠用部Fの中間
でこれらがほぼ等しい屈折力となっている。
As shown by e 3 in FIG. 5, above the distance portion F, the longitudinal refraction at the side edge portion (Σ 3 ) of the lens with respect to the longitudinal refracting power (e 0 ) on the main meridian curve is increased. force greater, the lens side middle part (Σ 1, Σ 2) vertical direction power in (e 1, e 2) has become smaller, substantially equal refractive power thereof in the middle of the distance portion F and Has become.

また、遠用部F下端の遠用アイポイント位置において
は、最も小さい屈折力となる主子午線曲線上の屈折力
(e0)に対して、レンズ側方中間部(Σ1,Σ2)におけ
る屈折力(e1,e2)よりも、レンズの側縁部(Σ3)に
おける屈折力が大きくなっている。
Further, at the distance eyepoint position at the lower end of the distance portion F, the lens lateral side intermediate portions (Σ 1 , Σ 2 ) are different from the refractive power (e 0 ) on the main meridian curve having the smallest refractive power. The refractive power at the side edge portion (Σ 3 ) of the lens is larger than the refractive power (e 1 , e 2 ).

そして、中間部Pのほぼ中央においては、e0,e1,e2
がほぼ一致し、e3が図中より上にあり、縦断面屈折力が
横断面曲線に沿ってほぼ一定でありその後減少している
ことが分かる。また、中間部Pの下方においては、主子
午線曲線上の屈折力(e0)が最大となり、側方に行くに
従って屈折力が減少しその後増加する。この傾向は近用
部Nの上方まで続いている。
Then, at the approximate center of the intermediate portion P, e 0 , e 1 , e 2
It can be seen that is almost the same, e 3 is higher than in the figure, and the refractive power in the longitudinal section is almost constant along the curve of the transverse section and then decreases. Further, below the middle portion P, the refracting power (e 0 ) on the main meridian curve becomes maximum, and the refracting power decreases as it goes to the side and then increases. This tendency continues above the near portion N.

近用部Nにおいては、近用中心の近傍で最大の屈折力
を持つ主子午線曲線上の縦断面屈折力(e0)に対して、
e1,e2,e3の順で小さくなっている。
In the near vision portion N, with respect to the longitudinal cross-section refractive power (e 0 ) on the main meridian curve having the maximum refractive power in the vicinity of the near vision center,
It becomes smaller in the order of e 1 , e 2 , and e 3 .

ところで、上記の如き実施例において、主子午線曲線
に沿った平均屈折力の分布の状態は、第6図に示すごと
くである。本実施例は遠用部Fの平均屈折度数(ベース
カーブ)が4.0ディオプターで、加入度2.5ディオプター
の累進焦点レンズであるから、遠用中心OFにおいてほぼ
4.0ディオプターであり、近用中心ONにおいて平均屈折
度数はほぼ6.5ディオプターとなっている。
By the way, in the embodiment as described above, the distribution of the average refractive power along the main meridian curve is as shown in FIG. This embodiment is an average refractive power (base curve) is 4.0 diopter distance portion F, from a progressive lens addition power 2.5 diopters, approximately in the far viewing center O F
It is 4.0 diopters, and the average refractive power is about 6.5 diopters in the near center O N.

このような加入度曲線を有するレンズ面の設計におい
ては、レンズとしての円形形状の範囲内のみにおいて面
形状を設計評価するのではなく、レンズ面の円形形状を
含む第3図に示した如き四角形を想定し、この四角形内
での面形状の設計と評価を行った。このように、レンズ
の円形形状を覆うより大きな面での曲面を最適化するこ
とによって、実用的レンズ面をよりなめらかな優れた形
状とすることが可能となるのである。
In the design of the lens surface having such an addition curve, the surface shape is not designed and evaluated only within the range of the circular shape as the lens, but the square shape as shown in FIG. As a result, the design and evaluation of the surface shape within this square were performed. Thus, by optimizing the curved surface on a larger surface covering the circular shape of the lens, it becomes possible to make the practical lens surface smoother and superior.

上記の如き実施例の面形状を有する累進焦点レンズに
ついて、性能評価を行った結果を示したのが、第7図の
等非点隔差曲線図である。この図において、等非点隔差
曲線は0.5ディオプターごとの値としている。
The result of performance evaluation of the progressive-focus lens having the surface shape of the above-described embodiment is shown in the isoastigmatic difference curve diagram of FIG. In this figure, the equi-astigmatic difference curve is a value for each 0.5 diopter.

本実施例との比較のために、第8図に従来の累進焦点
レンズについての等非点隔差曲線図及び主子午線曲線上
の屈折力分布曲線図の概要を示した。この図において
も、等非点隔差曲線は0.5ディオプターごとの値として
いる。
For comparison with the present embodiment, FIG. 8 shows an outline of an isoastigmatic difference curve diagram and a refractive power distribution curve diagram on the main meridian curve for a conventional progressive-focus lens. Also in this figure, the isoastigmatic difference curve is set to a value every 0.5 diopter.

従来の累進焦点レンズにおいては、本発明による上記
の如き構成ではないため、第8図に示す如く、非点隔差
の密度が高くなり、非点隔差量及び非点隔差の勾配が急
激なものとなり、結果として像のゆがみが大きくなり、
視線を移動したときに像のゆれを感ずることになる。ま
た、遠用部下方の側方領域には、中間部の側方領域から
の非点隔差の収差がしみ出して、この領域へ眼を向けた
場合には、像のボケばかりではなく、像のゆがみ、ゆれ
が著しくなっている。
Since the conventional progressive-focus lens does not have the above-mentioned configuration according to the present invention, as shown in FIG. , As a result, the distortion of the image becomes large,
When you move your line of sight, you will feel the shaking of the image. Also, astigmatism aberration seeps out from the lateral region of the middle portion in the lateral region below the distance portion, and when the eye is directed to this region, not only the image blur, but also the image Distortion and shaking are noticeable.

これに対し、本実施例においては第7図に示す如く、
累進帯としての中間部が短くなったにもかかわらず、表
面屈折力の非点隔差の密度も低下し、非点隔差の勾配も
ゆるやかになり、像のゆがみもゆれも軽減されているこ
とが明らかである。
On the other hand, in this embodiment, as shown in FIG.
Despite the shortening of the intermediate part of the progressive zone, the astigmatic density of the surface refractive power also decreases, the astigmatic gradient becomes gentle, and the distortion and shake of the image are reduced. it is obvious.

ここで、上記実施例の加入度曲線を示した第6図を用
いて、本発明による累進焦点レンズの主要な点について
説明しておく。
Here, the main points of the progressive-focus lens according to the present invention will be described with reference to FIG. 6 showing the addition curve of the above-mentioned embodiment.

遠用中心OFとは、遠用部での所定の表面屈折平均度数
を有する主子午線曲線上の位置であり、実用上は遠用部
の測定基準点とされる点である。また、近用中心ON
は、近用部での所定の表面屈折平均度数を有する主子午
線曲線上の位置であり、実用上は近用部の測定基準点と
される点である。
The distance center O F, a position on the principal meridional curve having a predetermined surface refractive average power in the distance portion, practically is that it is a reference point of the distance portion. Further, the near vision center O N, a position on the principal meridional curve having a predetermined surface refractive mean power in the near portion, practically is that it is a reference point of the near portion.

そして、遠用アイポイントEは、レンズを眼鏡フレー
ムに枠入れする際の基準とされる位置であり、眼鏡フレ
ームを装用した状態において遠用視線通過位置と合致す
る遠用基準点となる。このような遠用アイポイントEの
位置は、第6図の主子午線曲線上の平均屈折力分布曲線
に示す如く、レンズの幾何中心とは独立に定められてお
り、本発明においては以下のように定義する。すなわ
ち、主子午線曲線上の表面屈折力の平均度数を主子午線
曲線上の各位置ごとにプロットした第6図の如き加入度
曲線において、遠用部Fの遠用中心OFと近用部Nの近用
中心ONとを結ぶ直線aと平行で、加入度曲線と遠用部F
側で接する直線bが、遠用中心OFでの平均屈折力を表す
直線cとの交点Eを遠用アイポイントとする。
The distance eye point E is a position used as a reference when the lens is framed in the spectacle frame, and is a distance reference point that matches the distance line of sight passage position when the spectacle frame is worn. The position of such a distance eye point E is determined independently of the geometric center of the lens as shown in the average refractive power distribution curve on the main meridian curve in FIG. Defined in That is, in the addition curve as shown in FIG. 6 in which the average power of the surface refractive power on the main meridian curve is plotted for each position on the main meridian curve, the distance center OF of the distance portion F and the near portion N Parallel to the straight line a connecting the near center O N of
Line b in contact with the side is, the distance eye point to the intersection E between the straight line c representing an average refracting power of the far viewing center O F.

尚、一般に累進焦点レンズは眼鏡フレームに合わせて
加工されるため、遠用部、中間部及び近用部の各領域、
特に周辺部を含む遠用部と近用部の領域は、フレームの
形状によって異なることとなるが、加工前の累進焦点レ
ンズは一般に直径60mm程度以上の円形レンズであり、こ
の円形形状のまま眼鏡小売店に供給され、小売店におい
て所望の眼鏡フレーム形状に合わせて加工されている。
従って、本発明における累進焦点レンズの面形状の規定
においてはこのような加工前の形状を基準とするもので
ある。そして、累進焦点レンズの最適面形状の設計にお
いては、使用頻度の高い中心領域のみではなく使用され
る有効領域を含むより広い領域における面形状をも考慮
して収差バランスを図ることが肝要である。
In addition, since a progressive-focus lens is generally processed according to the spectacle frame, each region of the distance portion, the middle portion, and the near portion,
In particular, the distance portion and the near portion including the peripheral portion will differ depending on the shape of the frame, but the progressive lens before processing is generally a circular lens with a diameter of about 60 mm or more, and this circular shape is used for glasses. It is supplied to retailers and processed at retailers to have a desired spectacle frame shape.
Therefore, the definition of the surface shape of the progressive lens in the present invention is based on such a shape before processing. In designing the optimal surface shape of the progressive-focus lens, it is important to balance aberrations by considering not only the central region that is frequently used but also the surface shape in a wider region including an effective region to be used. .

また、一般の累進焦点レンズでは、主子午線曲線に沿
って、全線を微視的な球面の連続とする所謂臍点曲線と
したものや、主子午線曲線上の一部の領域において臍点
ではなく、互いに直行する方向での曲率半径が異なる面
形状とするものが提案されており、主子午線曲線上の面
形状についてみれば主子午線曲線の全線にわたって臍点
状としたものと、主子午線曲線上の少なくとも一部にお
いて臍点ではなくして、主子午線曲線に沿う方向の曲率
半径とそれに直角な方向での曲率半径とを異なる値とし
たものとに2大別されるが、本発明においてはこれらの
何れの場合にも有効である。
Further, in a general progressive-focus lens, along the main meridian curve, a so-called umbilical point curve in which all lines are continuous microscopic spherical surfaces, or not a umbilical point in a part of the main meridian curve , It is proposed to have surface shapes with different radii of curvature in the directions perpendicular to each other. Regarding surface shapes on the main meridian curve, umbilical points are formed over the whole line of the main meridian curve and on the main meridian curve. At least part of which is not an umbilical point, but is roughly divided into a radius of curvature in a direction along the main meridian curve and a radius of curvature in a direction perpendicular to the main meridian curve, which are different values in the present invention. It is effective in both cases.

〔発明の効果〕〔The invention's effect〕

以上の如き本発明によれば、累進帯としての中間部を
短くしても、遠用部の下方においても広い視野を有し、
実用上不便のない広さの明視域を有する中間部及び近用
部を有し、その周辺においても像のゆがみ、ゆれを極力
低減し側方視においても不快感を感ずることがなく、収
差的にバランスのとれた累進焦点レンズを実現すること
が可能となり、この種のレンズを初めて用いる人にも違
和感なく装用し得る累進焦点レンズを達成することがで
きる。
According to the present invention as described above, even if the intermediate portion as a progressive zone is shortened, it has a wide field of view even below the distance portion,
It has an intermediate part and a near part that have a clear vision area that is practically inconvenient, and image distortion and shake in the periphery are reduced as much as possible, and there is no discomfort in side view, and aberration It is possible to realize a well-balanced progressive-focus lens, and it is possible to achieve a progressive-focus lens that can be worn by a person who is new to this type of lens without feeling uncomfortable.

【図面の簡単な説明】[Brief description of drawings]

第1図本発明の累進焦点レンズの領域区分の概要を示す
平面図であり、第2図(A)及び(B)は本発明による
屈折表面の横断面及び縦断面を説明するための斜視図、
第3図は本発明による横断面交線及び縦断面交線の様子
を示すための平面図、第4図は本発明による実施例の横
断面に沿った縦方向曲率半径の変化を示す図、第5図は
縦方向の屈折力について縦断面交線に沿った変化を示す
図、第6図は実施例における加入度曲線を示す図、第7
図は本発明による実施例についての等非点隔差曲線図、
第8図は従来の累進焦点レンズについての等非点隔差曲
線図である。 〔主要部分の符号の説明〕 F……遠用部、OF……遠用中心 P……中間部、ON……近用中心 N……近用部、E……遠用アイポイント
FIG. 1 is a plan view showing the outline of the area division of the progressive-focus lens of the present invention, and FIGS. 2 (A) and 2 (B) are perspective views for explaining a transverse section and a longitudinal section of a refracting surface according to the present invention. ,
FIG. 3 is a plan view showing a state of a cross section intersection line and a vertical section intersection line according to the present invention, and FIG. 4 is a view showing a change of a longitudinal curvature radius along a cross section of an embodiment according to the present invention, FIG. 5 is a diagram showing a change in longitudinal power along an intersection line of a longitudinal section, FIG. 6 is a diagram showing an addition curve in the embodiment, and FIG.
The figure is an isoastigmatic difference curve diagram for an embodiment according to the present invention,
FIG. 8 is an isoastigmatic difference curve diagram for a conventional progressive-focus lens. Description of reference numerals of main parts] F ...... distance portion, O F ...... distance center P ...... intermediate portion, O N ...... center N ...... near portion for near, eye point distance E ......

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主子午線曲線に沿って遠景に対応する屈折
力を有する遠用部と、近景に対応する屈折力を有する近
用部と、前記遠用部と前記近用部との間において両部の
屈折力を連続的になめらかに接続する中間部とを有する
累進焦点レンズであって、前記遠用部の上方において屈
折表面の縦断面形状は、横断面曲線に沿って該主子午線
曲線との交点から遠ざかるに従って縦曲率半径の値が増
加し、該遠用部の下部において屈折表面の縦断面形状
は、横断面曲線に沿って該主子午線曲線との交点から遠
ざかるに従って縦曲率半径の値が減少し、該遠用部のほ
ぼ中央部分において、横断面曲線に沿って屈折表面の縦
曲率半径はほぼ一定であり、前記中間部の上方において
屈折力表面の縦断面形状は前記横断面曲線に沿って主子
午線曲線との交点から遠ざかるに従って縦曲率半径の値
が減少し、中間部の下方及び近用部上方において縦曲率
半径の値は横断面曲線に沿って主子午線曲線との交点か
ら遠ざかるに従って増加し、その後減少することを特徴
とする累進焦点レンズ。
1. A distance portion having a refractive power corresponding to a distant view along a main meridian curve, a near portion having a refractive power corresponding to a near view, and between the distance portion and the near portion. A progressive-focus lens having an intermediate portion that continuously and smoothly connects the refracting powers of both portions, wherein the longitudinal cross-sectional shape of the refracting surface above the distance portion is a main meridian curve along a transverse sectional curve. The value of the vertical radius of curvature increases as the distance from the intersection with and the vertical cross-sectional shape of the refracting surface in the lower portion of the distance portion is longer than the intersection with the main meridian curve along the cross-section curve. The radius of curvature of the refracting surface is substantially constant along the transverse section curve in the substantially central portion of the distance portion, and the longitudinal cross-sectional shape of the refracting surface is above the intermediate section. Is it the intersection with the main meridian curve along the curve? The value of the longitudinal radius of curvature decreases as the distance increases, and the values of the longitudinal radius of curvature in the lower part of the middle part and the upper part of the near part increase along the transverse section curve from the point of intersection with the main meridian curve, and then decrease. Characteristic progressive lens.
【請求項2】前記中間部の下方及び近用部上方におい
て、縦曲率半径の値は横断面曲線に沿って主子午線曲線
との交点から遠ざかるに従って増加しその後減少する位
置は、近用部に近づくに従って主子午線曲線から離れた
位置になり、少なくとも主子午線曲線から垂直方向に15
mmの位置より離れていることを特徴とする請求項1記載
の累進焦点レンズ。
2. The lower part of the middle portion and the upper part of the near portion, the value of the longitudinal curvature radius increases along the transverse curve with increasing distance from the intersection with the main meridian curve, and the position where the value decreases thereafter is in the near portion. As it gets closer, it moves away from the main meridian curve and at least 15 vertically from the main meridian curve.
The progressive-focus lens according to claim 1, wherein the progressive-focus lens is separated from a position of mm.
【請求項3】前記近用部の近用中心近傍においては、横
断面曲線に沿って主子午線曲線から遠ざかるに従って縦
断面曲率半径は増加し、その後ほぼ一定となることを特
徴とする請求項1記載の累進焦点レンズ。
3. The radius of curvature of the longitudinal section increases in the vicinity of the near center of the near portion along the transverse curve and further away from the main meridian curve, and then becomes substantially constant. Progressive focus lens described.
【請求項4】前記近用部において、横断面曲線に沿う屈
折表面の縦断面曲率半径が増加から一定に変化する位置
は、該累進焦点レンズの半径をWとするとき、前記主子
午線曲線から垂直方向にW/4〜3W/4だけ離れた領域内に
存在することを特徴とする請求項3記載の累進焦点レン
ズ。
4. The position at which the radius of curvature of the longitudinal section of the refracting surface along the transverse curve changes from an increase to a constant value in the near portion from the main meridian curve when the radius of the progressive-focus lens is W. The progressive-focus lens according to claim 3, wherein the progressive-focus lens is present in a region separated by W / 4 to 3W / 4 in the vertical direction.
JP18193689A 1989-07-14 1989-07-14 Progressive focus lens Expired - Lifetime JP2503664B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18193689A JP2503664B2 (en) 1989-07-14 1989-07-14 Progressive focus lens
US07/551,082 US5048945A (en) 1989-07-14 1990-07-11 Progressive power lens
DE69019616T DE69019616T2 (en) 1989-07-14 1990-07-13 Progressive power lens.
EP90113473A EP0408067B1 (en) 1989-07-14 1990-07-13 Progressive power lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18193689A JP2503664B2 (en) 1989-07-14 1989-07-14 Progressive focus lens

Publications (2)

Publication Number Publication Date
JPH0346616A JPH0346616A (en) 1991-02-27
JP2503664B2 true JP2503664B2 (en) 1996-06-05

Family

ID=16109486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18193689A Expired - Lifetime JP2503664B2 (en) 1989-07-14 1989-07-14 Progressive focus lens

Country Status (1)

Country Link
JP (1) JP2503664B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5897260B2 (en) * 2011-02-24 2016-03-30 イーエイチエス レンズ フィリピン インク Progressive power lens and design method thereof

Also Published As

Publication number Publication date
JPH0346616A (en) 1991-02-27

Similar Documents

Publication Publication Date Title
US5812238A (en) Progressive multifocal ophthalmic lens pair
US5488442A (en) Progressive multifocal ophthalmic lens
JPH0690368B2 (en) Progressive multifocal lens and glasses
JPS5942286B2 (en) eyeglass lenses
US5048945A (en) Progressive power lens
US4988182A (en) Ophthalmic lenses having a progressively variable focal power
JP3381314B2 (en) Progressive focus lens
JP3690427B2 (en) Progressive multifocal lens and spectacle lens
EP0627647B1 (en) Progressive multifocal lens
US5510860A (en) Progressive multifocal lens
JP2503665B2 (en) Progressive focus lens
US5805265A (en) Progressive lens
JP3381306B2 (en) Progressive focus lens
JP2503664B2 (en) Progressive focus lens
JP3691876B2 (en) Lens for correcting presbyopia
JP3611155B2 (en) Progressive multifocal lens
JP2580683B2 (en) Progressive multifocal lens
JPH0581886B2 (en)
JP2518344B2 (en) Progressive multifocal lens
JP3611153B2 (en) Progressive multifocal lens
JP3033110B2 (en) Progressive focus lens for glasses
JP2503665C (en)
JP2536195B2 (en) Progressive focus lens
JPS6338688B2 (en)
JPS6248205B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14