JPH0346533B2 - - Google Patents

Info

Publication number
JPH0346533B2
JPH0346533B2 JP56198354A JP19835481A JPH0346533B2 JP H0346533 B2 JPH0346533 B2 JP H0346533B2 JP 56198354 A JP56198354 A JP 56198354A JP 19835481 A JP19835481 A JP 19835481A JP H0346533 B2 JPH0346533 B2 JP H0346533B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
molten
dispersion
particles
molten aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56198354A
Other languages
Japanese (ja)
Other versions
JPS58100643A (en
Inventor
Masamitsu Noguchi
Yutaka Goshima
Kazumi Tsuge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP56198354A priority Critical patent/JPS58100643A/en
Publication of JPS58100643A publication Critical patent/JPS58100643A/en
Publication of JPH0346533B2 publication Critical patent/JPH0346533B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、Al2O3などの物質粒子をアルミ合金
中に分散させて合金強度を向上させた分散強化複
合アルミ合金の製造方法に関するものである。 従来、硬度や強度の向上を目的としたアルミ合
金の分散強化複合合金の製造方法には、表面酸化
法、焼結法、半溶融撹拌法等がある。このうち、
表面酸化法は、表面にAl2O3の薄い酸化被膜を形
成するものであり、表面硬度の向上ははかること
ができるが内部強度の向上をはかることはできな
い。硬度と内部強度の向上を同時にはかるには、
アルミ合金粉末と添加粒子を混合して特殊高温雰
囲気中で焼結させる焼結法や、半溶融状態のアル
ミ合金に分散粒子を混入撹拌した後、押出加工等
により複合合金化する半溶融撹拌法等があるが、
これらは何れもアルミ製品とくに鋳造製品の加
工、製造工程と著しく異なる工程を必要とするた
め、工程が複雑になるとともに製品が高価になる
という問題を有していた。 本発明は、上記問題を解消するために、工程が
簡単でかつ安価に分散粒子を均一に拡散させて、
硬度や強度を向上させた分散強化複合アルミ合金
を得ることを目的とする。 この目的を達成するために、本発明の分散強化
複合アルミ合金の製造方法においては、アルミ合
金はまず680℃ないし800℃に加熱され、粘性の適
度に低い溶湯状態を加熱される。つぎに溶融状態
にされたアルミ合金溶湯中に、分散させようとす
る物質、たとえばAl2O3、ZrO2、SiO2で溶湯中で
大きな沈降または浮上を生じない適当な大きさと
比重を漏つた分散粒子が適当量投入される。ここ
で、分散粒子は、後述するように密度が2.0ない
し10.0g/cm3であるのが望ましく、沈降または浮
上速度が1μ/秒以下であるのが望ましい。また、
投入量はアルミ合金溶湯に対する体積比が0.1%
ないし10%の範囲とするのが望ましい。 分散粒子が投入されたアルミ合金溶湯は、機械
的に撹拌された後、超音波が5分間以上照射さ
れ、分散させようとする粒子の均一化が十分に促
進される。均一分散化がはかられた後、速やかに
溶湯は冷却速度の早い鋳型内に注湯され、分散物
質粒子が大きく沈降または浮上しない間に凝固さ
れ、分散強化複合合金が得られる。 上記の方法により製造される分散強化複合合金
の強度は、分散粒子の大きさ、混入量、分散の均
一性によつて大きく影響を受ける。 分散強化複合金の強度たとえば引張強さσBは、
分散粒子の平均分散粒子間距離λの平方根に反比
例するといわれている。すなわち、 σB=K1・1/√で表わされる。 (K1:定数) また分散合金の平均粒子間距離は一般に分散粒
子半径rに比例し分散粒子体積比S(%)の3乗
根に反比例するといわれている。すなわち、
The present invention relates to a method for manufacturing a dispersion-strengthened composite aluminum alloy in which material particles such as Al 2 O 3 are dispersed in an aluminum alloy to improve alloy strength. Conventionally, methods for producing dispersion-strengthened composite alloys of aluminum alloys for the purpose of improving hardness and strength include surface oxidation methods, sintering methods, semi-molten stirring methods, and the like. this house,
The surface oxidation method forms a thin oxide film of Al 2 O 3 on the surface, and although it can improve the surface hardness, it cannot improve the internal strength. To simultaneously improve hardness and internal strength,
A sintering method in which aluminum alloy powder and additive particles are mixed and sintered in a special high-temperature atmosphere, and a semi-molten stirring method in which dispersed particles are mixed into a semi-molten aluminum alloy, stirred, and then formed into a composite alloy by extrusion processing etc. etc., but
All of these require processes that are significantly different from the processing and manufacturing processes of aluminum products, particularly cast products, and therefore have the problem of complicating the process and making the product expensive. In order to solve the above problems, the present invention enables dispersed particles to be uniformly diffused in a simple and inexpensive process.
The aim is to obtain a dispersion-strengthened composite aluminum alloy with improved hardness and strength. In order to achieve this objective, in the method for producing a dispersion-strengthened composite aluminum alloy of the present invention, the aluminum alloy is first heated to 680°C to 800°C to form a molten metal with a moderately low viscosity. Next, in the molten aluminum alloy, the substance to be dispersed, such as Al 2 O 3 , ZrO 2 , SiO 2 , is mixed with an appropriate size and specific gravity that does not cause large settling or floating in the molten metal. An appropriate amount of dispersed particles is added. Here, as described below, the dispersed particles preferably have a density of 2.0 to 10.0 g/cm 3 and a sedimentation or floating speed of 1 μ/sec or less. Also,
The volume ratio of the input amount to the molten aluminum alloy is 0.1%.
It is desirable to set it in the range of 10% to 10%. The molten aluminum alloy containing the dispersed particles is mechanically stirred and then irradiated with ultrasonic waves for 5 minutes or more to sufficiently promote homogenization of the particles to be dispersed. After uniform dispersion is achieved, the molten metal is immediately poured into a mold with a fast cooling rate, and solidified while the dispersed material particles do not significantly settle or float, thereby obtaining a dispersion-strengthened composite alloy. The strength of the dispersion-strengthened composite alloy manufactured by the above method is greatly influenced by the size of the dispersed particles, the amount of the particles mixed therein, and the uniformity of the dispersion. The strength of dispersion-strengthened composite gold, for example, the tensile strength σB, is
It is said that the average dispersed particle distance is inversely proportional to the square root of the interparticle distance λ. That is, it is expressed as σB=K 1・1/√. (K 1 : constant) Furthermore, it is generally said that the average interparticle distance of a dispersed alloy is proportional to the radius r of the dispersed particles and inversely proportional to the cube root of the dispersed particle volume ratio S (%). That is,

【式】で表わされる。 したがつて分散強化複合合金の強度を高くする
には、平均分散粒子間距離λを小さくすること、
言いかえれば分散粒子半径rを小さくし、分散粒
子体積比S(%)を大きくすればよいことがわか
る。 また、分散粒子の添加量は分散強化合金の強度
と密接に関連している。添加量が少ないと強度向
上効果が少ないが、逆に添加量が多すぎると、分
散粒子同志が凝集して細粒子分散の効果が得られ
ず、かつ溶湯上へ粒子が密集浮上するので、良質
な鋳物製品が得られない。その添加量は溶湯の
0.1%〜10%程度とするのがよい。 つぎに、分散物質粒子の分散の均一性について
であるが、拡散には機械的撹拌後、超音波照射に
よる分散が行なわれる。 分散強化複合合金の基地を形成するアルミ溶湯
の溶湯温度は、適度な溶湯粘性を与えるため、
680℃〜800℃程度がよく、これ以下では照射され
る超音波の溶湯内減衰が著しく溶湯全体への粒子
分散が得られず、またこれ以上ではアルミ溶湯の
粘度が低くなりすぎて、以下に示すように分散粒
子のアルミ溶湯中での沈降または浮上速度が速く
なりすぎる。 粒子の拡散後、良好な分散性を維持したまま凝
固する必要があるが、そのためには、凝固までの
粒子の沈降または浮上が抑制されなければならな
い。 上記のような均一分散を得るにはアルミ合金の
溶湯中に投入分散された物質粒子が溶湯アルミ合
金が凝固するまでに、比重の違いで沈降や浮上を
生じて分散の均一性が乱れることを防止しなけれ
ばならない。この場合、液体中での分散粒子沈降
(浮上)速度はストークスの法則より V=2g.r2・(d−d0)/9η で表わされる。 ここでV:分散粒子の沈降(浮上)する最終速
度(mm/sec) g:重力加速度(980.665cm/sec2) r:分散粒子半径(cm) d:溶湯の密度(g/cm3) d0:分散粒子密度(g/cm3) η:溶湯の粘度(CP=10-2g/cm・sec) である。 上記理論にもとづきアルミ溶湯粘度、分散粒子
半径および密度を変化させた場合の分散粒子沈降
(浮上)速度の推定計算結果を第1表に示す。
It is represented by [Formula]. Therefore, in order to increase the strength of a dispersion-strengthened composite alloy, the average distance between dispersed particles λ should be reduced;
In other words, it can be seen that the dispersed particle radius r should be made smaller and the dispersed particle volume ratio S (%) should be increased. Furthermore, the amount of dispersed particles added is closely related to the strength of the dispersion strengthened alloy. If the amount added is small, the strength improvement effect will be small, but if the amount added is too large, the dispersed particles will aggregate together, making it impossible to obtain the effect of fine particle dispersion, and the particles will float densely onto the molten metal, resulting in good quality. Unable to obtain quality cast products. The amount added is
It is preferable to set it at about 0.1% to 10%. Next, regarding the uniformity of dispersion of the dispersed material particles, the dispersion is performed by mechanical stirring followed by ultrasonic irradiation. The temperature of the molten aluminum that forms the base of the dispersion-strengthened composite alloy is determined to give an appropriate molten viscosity.
A temperature of about 680°C to 800°C is best; below this, the irradiated ultrasonic waves will be severely attenuated within the molten metal, making it impossible to disperse the particles throughout the molten metal, and above this, the viscosity of the molten aluminum will become too low. As shown, the sedimentation or floating speed of the dispersed particles in the molten aluminum becomes too fast. After the particles are diffused, it is necessary to solidify them while maintaining good dispersibility, but for this purpose, sedimentation or floating of the particles must be suppressed until solidification. In order to obtain the above-mentioned uniform dispersion, it is necessary to ensure that the material particles introduced into the molten aluminum alloy and dispersed before the molten aluminum alloy solidifies will cause sedimentation or floating due to the difference in specific gravity, which will disturb the uniformity of the dispersion. must be prevented. In this case, the sedimentation (floating) velocity of the dispersed particles in the liquid is expressed by Stokes' law as V=2g.r 2 ·(d−d 0 )/9η. Where, V: Final velocity of sedimentation (floating) of dispersed particles (mm/sec) g: Gravitational acceleration (980.665cm/sec 2 ) r: Dispersed particle radius (cm) d: Density of molten metal (g/cm 3 ) d 0 : Dispersed particle density (g/cm 3 ) η: Viscosity of molten metal (CP=10 −2 g/cm·sec). Based on the above theory, Table 1 shows the estimated calculation results of the sedimentation (floating) speed of the dispersed particles when the viscosity of the molten aluminum, the radius and density of the dispersed particles are varied.

【表】 この表において、注湯から凝固までの2〜3秒
の時間内に分散粒子間距離に大きな変化をもたら
さない沈降または浮上速度の範囲は大略1μ/秒
以下であることから、太線で囲んだ範囲が分散強
化複合アルミ合金の製造に適していると考えられ
る。 以下に、上記理論にもとづいた本発明の分散強
化複合アルミ合金の製造方法の実施例について説
明する。 まず、純アルミ合金の700℃および750℃の溶湯
中に半径0.04μのα−Al2O3粒子を2%添加し、撹
拌棒による適度の機械的撹拌を与え、一応溶湯と
分散粒子の今後状態とした後、溶湯に28KHzの超
音波を15分間照射した。しかる後できるだけ速や
かに鋳型内へ鋳造した。なお鋳造に際しては凝固
を促進するため水冷金型を用いた。 上記の方法により鋳造したテストピースの硬さ
測定結果を第1図に、またそれらの顕微鏡でみた
金属組織を第2図、ないし第5図に示す。 第1図に示される如く、本実施例においては、
単にAl2O3を添加して鋳造したものに比べて粒子
添加後超音波照射したものは、分散均一性が得ら
れその硬度が著しく向上した。さらに第2図ない
し第5図で明らかなように、超音波照射したもの
はしないものに比べて、添加粒子1がアルミ合金
2の組織中に均一に分散していることが認められ
る。 なお、本発明はアルミ合金に関して説明した
が、溶湯合金と分散粒子との関係が密度比、粘
性、粒度に関して維持される限り、銅合金、鉄合
金など他合金にも応用できる。 以上の通りであるから、本発明の分散強化複合
アルミ合金の製造方法によるときは、アルミ合金
を680℃ないし800℃に加熱して粘性の低い溶融状
態にし、この溶融状態にあるアルミ合金溶湯中
に、溶融アルミ合金中の粒子を分散させる性質を
有しこのアルミ合金溶湯に対する沈降または浮上
速度が1μ/秒以下の分散粒子をアルミ合金溶湯
に対する体積比が0.1%ないし10%の範囲で投入
し、この分散粒子が投入されたアルミ合金溶湯を
機械的に撹拌した後、このアルミ合金溶湯に超音
波を5分間以上照射し、この超音波照射後のアル
ミ合金溶湯を速やかに冷却速度の速い鋳型内に注
湯して鋳造、凝固させるようにしたので、従来の
アルミ鋳造製品の製造方法に近似した方法で鋳造
を行なうことができる。したがつて、製造工程が
複雑になるという問題や、これに起因して製品が
高価になるという問題を解消することができる。 しかも、分散粒子が投入されたアルミ合金溶湯
を機械的に撹拌した後に、このアルミ合金溶湯に
超音波を照射させるようにしているので、比較的
短い時間で分散粒子の拡散を促進させることが可
能となり、分散の均一性を促進させることができ
る。これにより鋳物の硬さを飛躍的に増加させる
ことができる他、機械的強度も高めることができ
る。
[Table] In this table, the range of sedimentation or floating speed that does not cause a large change in the distance between dispersed particles within the 2 to 3 seconds from pouring to solidification is approximately 1μ/s or less, so the thick line indicates The enclosed range is considered suitable for manufacturing dispersion-strengthened composite aluminum alloys. Examples of the method for manufacturing a dispersion-strengthened composite aluminum alloy of the present invention based on the above theory will be described below. First, 2% α-Al 2 O 3 particles with a radius of 0.04 μm were added to a molten metal of pure aluminum alloy at 700°C and 750°C, and moderate mechanical stirring was applied using a stirring rod to temporarily determine the future of the molten metal and dispersed particles. After this, the molten metal was irradiated with 28KHz ultrasonic waves for 15 minutes. Thereafter, it was cast into a mold as quickly as possible. During casting, a water-cooled mold was used to promote solidification. The hardness measurement results of the test pieces cast by the above method are shown in FIG. 1, and the metallographic structures thereof as seen under a microscope are shown in FIGS. 2 to 5. As shown in FIG. 1, in this example,
Compared to those that were cast simply by adding Al 2 O 3 , those that were irradiated with ultrasonic waves after adding particles had more uniform dispersion and significantly improved hardness. Further, as is clear from FIGS. 2 to 5, it is recognized that the additive particles 1 are more uniformly dispersed in the structure of the aluminum alloy 2 in the case where the ultrasonic waves were irradiated compared to the case where it was not irradiated. Although the present invention has been described with respect to an aluminum alloy, it can also be applied to other alloys such as copper alloys and iron alloys as long as the relationship between the molten alloy and the dispersed particles is maintained in terms of density ratio, viscosity, and particle size. As described above, when using the method for producing a dispersion-strengthened composite aluminum alloy of the present invention, the aluminum alloy is heated to 680°C to 800°C to a molten state with low viscosity, and the molten aluminum alloy in this molten state is Dispersed particles having the property of dispersing particles in the molten aluminum alloy and having a sedimentation or floating speed of 1 μ/sec or less relative to the molten aluminum alloy are added in a volume ratio of 0.1% to 10% of the molten aluminum alloy. After mechanically stirring the molten aluminum alloy into which the dispersed particles have been introduced, the molten aluminum alloy is irradiated with ultrasonic waves for 5 minutes or more, and the molten aluminum alloy after being irradiated with ultrasonic waves is quickly molded into a mold with a high cooling rate. Since the molten metal is poured into the mold and then cast and solidified, it is possible to perform casting using a method similar to the manufacturing method of conventional aluminum casting products. Therefore, it is possible to solve the problem that the manufacturing process becomes complicated and the problem that the product becomes expensive due to this. Furthermore, after the molten aluminum alloy containing the dispersed particles is mechanically stirred, the molten aluminum alloy is irradiated with ultrasonic waves, making it possible to promote the diffusion of the dispersed particles in a relatively short period of time. Therefore, uniformity of dispersion can be promoted. This not only dramatically increases the hardness of the casting, but also increases its mechanical strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各種条件で分散強化した複合アルミ合
金と硬さとの関係図、第2図は、溶湯温度750℃、
粒子添加なし、超音波照射なしの条件で製造され
た分散強化複合アルミ合金の200倍に拡大した金
属組織図、第3図は、溶湯温度750℃、α−
Al2O32%添加、超音波照射なしの条件で製造さ
れた分散強化複合アルミ合金の200倍に拡大した
金属組織図、第4図は、溶湯温度750℃、α−
Al2O32%添加、超音波照射有の条件で製造され
た分散強化複合アルミ合金の200倍に拡大した金
属組織図、第5図は、溶湯温度700℃、α−
Al2O32%添加、超音波照射有の条件で製造され
た分散強化複合アルミ合金の200倍に拡大した金
属組織図、である。 1……分散粒子、2……アルミ合金。
Figure 1 shows the relationship between hardness and composite aluminum alloys that have been dispersion strengthened under various conditions. Figure 2 shows the relationship between the molten metal temperature of 750°C,
Figure 3 is a metallographic diagram enlarged 200 times for a dispersion-strengthened composite aluminum alloy produced without particle addition and without ultrasonic irradiation.
Figure 4 is a metallographic diagram enlarged 200 times for a dispersion-strengthened composite aluminum alloy manufactured under the conditions of 2% Al 2 O 3 addition and no ultrasonic irradiation.
Figure 5 is a metallographic diagram enlarged 200 times for a dispersion-strengthened composite aluminum alloy produced under the conditions of 2% Al 2 O 3 addition and ultrasonic irradiation.
This is a 200 times enlarged metallographic diagram of a dispersion-strengthened composite aluminum alloy produced with 2% Al 2 O 3 addition and ultrasonic irradiation. 1... Dispersed particles, 2... Aluminum alloy.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミ合金を680℃ないし800℃に加熱して粘
性の低い溶融状態にし、該溶融状態にあるアルミ
合金溶湯中に、溶融アルミ合金中の粒子を分散さ
せる性質を有する物質であつて該溶融アルミ合金
溶湯に対する沈降または浮上速度が1μ/秒以下
となる粒子径と比重を有する分散粒子を、前記ア
ルミ合金溶湯に対する体積比が0.1%ないし10%
の範囲で投入し、該分散粒子が投入されたアルミ
合金溶湯を機械的に撹拌した後、該アルミ合金溶
湯に超音波を5分間以上照射し、該超音波照射後
のアルミ合金溶湯を速やかに冷却速度の速い鋳型
内に注湯して鋳造、凝固させることを特徴とする
分散強化複合アルミ合金の製造方法。
1 A substance that has the property of heating an aluminum alloy to 680°C to 800°C to make it into a molten state with low viscosity and dispersing particles in the molten aluminum alloy into the molten aluminum alloy in the molten state. Dispersed particles having a particle size and specific gravity such that the sedimentation or flotation speed relative to the molten alloy is 1 μ/sec or less are used at a volume ratio of 0.1% to 10% relative to the molten aluminum alloy.
After mechanically stirring the molten aluminum alloy into which the dispersed particles have been introduced, the molten aluminum alloy is irradiated with ultrasonic waves for 5 minutes or more, and the molten aluminum alloy after the ultrasonic irradiation is immediately A method for manufacturing a dispersion-strengthened composite aluminum alloy, which is characterized by pouring the metal into a mold with a fast cooling rate, casting, and solidifying it.
JP56198354A 1981-12-11 1981-12-11 Production of dispersion reinforced composite aluminum alloy Granted JPS58100643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56198354A JPS58100643A (en) 1981-12-11 1981-12-11 Production of dispersion reinforced composite aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56198354A JPS58100643A (en) 1981-12-11 1981-12-11 Production of dispersion reinforced composite aluminum alloy

Publications (2)

Publication Number Publication Date
JPS58100643A JPS58100643A (en) 1983-06-15
JPH0346533B2 true JPH0346533B2 (en) 1991-07-16

Family

ID=16389709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56198354A Granted JPS58100643A (en) 1981-12-11 1981-12-11 Production of dispersion reinforced composite aluminum alloy

Country Status (1)

Country Link
JP (1) JPS58100643A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297529A (en) * 1987-05-28 1988-12-05 Sumitomo Electric Ind Ltd Production of composite material
US5094700A (en) * 1990-03-22 1992-03-10 University Of Cincinnati Solder and brazing alloys having improved properties and method of preparation
CN102108450B (en) 2009-12-25 2012-08-29 清华大学 Method for preparing magnesium-based composite material
CN102108455B (en) * 2009-12-25 2013-11-06 清华大学 Preparation method of aluminum-base composite material
CN101851716B (en) * 2010-06-14 2014-07-09 清华大学 Magnesium base composite material and preparation method thereof, and application thereof in sounding device
CN103451456A (en) * 2013-06-26 2013-12-18 浙江天乐新材料科技有限公司 Method for forcibly dispersing nano particle-reinforced aluminum alloy by using ultrasonic remelting dilution precast block
JP7297201B2 (en) * 2019-06-10 2023-06-26 日本マテリアル株式会社 Manufacturing method of magnesium alloy molded article and additive for magnesium alloy
CN111663061B (en) * 2020-06-23 2021-11-23 江苏大学 Method for preparing Al-Si alloy grain refiner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192709A (en) * 1975-02-12 1976-08-14 KAKYOSHOARUMINIUMUUKEISOKEIGOKINNO SHOSHOKEISOBISAIKAHO
JPS52132374A (en) * 1976-04-30 1977-11-07 Tokushiyu Muki Zairiyou Kenkiy Siliconncarbide composite electric contact material and method of manufacturing it
JPS5432103A (en) * 1977-08-16 1979-03-09 Nissan Motor Co Ltd Preparing apparatus for composite molten metal containing solid particles in dispersed state
JPS564133A (en) * 1979-06-22 1981-01-17 Olympus Optical Co Ltd Information display device of automatic strobe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119775Y2 (en) * 1971-02-16 1976-05-25
JPS54663Y2 (en) * 1973-03-22 1979-01-13
JPS5326011Y2 (en) * 1973-03-30 1978-07-03
JPS5334822U (en) * 1976-09-01 1978-03-27

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192709A (en) * 1975-02-12 1976-08-14 KAKYOSHOARUMINIUMUUKEISOKEIGOKINNO SHOSHOKEISOBISAIKAHO
JPS52132374A (en) * 1976-04-30 1977-11-07 Tokushiyu Muki Zairiyou Kenkiy Siliconncarbide composite electric contact material and method of manufacturing it
JPS5432103A (en) * 1977-08-16 1979-03-09 Nissan Motor Co Ltd Preparing apparatus for composite molten metal containing solid particles in dispersed state
JPS564133A (en) * 1979-06-22 1981-01-17 Olympus Optical Co Ltd Information display device of automatic strobe

Also Published As

Publication number Publication date
JPS58100643A (en) 1983-06-15

Similar Documents

Publication Publication Date Title
US3515542A (en) Method of making dispersion-strengthened ductile materials
US3410331A (en) Method of casting an aluminumbased bearing alloy
JPH0346533B2 (en)
JPH03162502A (en) Manufacture of iron base powder mixed material for powder metallurgy
JPH0122342B2 (en)
US4057227A (en) Method for making ceramic casting slurries
US4560404A (en) Method of producing material for superconductor
JPH0456702A (en) Raw material powder for powder metallurgy and manufacture thereof
JP3216685B2 (en) Forming method of semi-molten metal
CN113136491B (en) Metal grain refining method
DE2300073A1 (en) PROCESS FOR PRODUCING ABRASIVE GRIT
US3578478A (en) Slip casting of tungsten
JP2836232B2 (en) Alloy gold clay
JP3339333B2 (en) Method for forming molten metal
JPS63293138A (en) Intermetallic compound grain dispersion strengthened type alloy and its production
JPH0320453B2 (en)
Sidel’nikov et al. Investigation of Metal Structure Formation During Ingotless Rolling-Extrusion of Aluminum and Its Alloys
JP2998760B2 (en) Manufacturing method of aluminum alloy casting
JP2876506B2 (en) Material modification method by casting with sintering, and casting material
JPH04231168A (en) Manufacture of metal base composite material
JPS6272461A (en) Production of partially dispersion strengthened type alloy
US3528806A (en) Method for producing binary aluminium-niobium alloys
JPS63213627A (en) Manufacture of dispersion-strengthened-type alloy
JPS596339A (en) Preparation of aluminum alloy
JP2639812B2 (en) Magnetic alloy powder for sintering