JP2998760B2 - Manufacturing method of aluminum alloy casting - Google Patents
Manufacturing method of aluminum alloy castingInfo
- Publication number
- JP2998760B2 JP2998760B2 JP7557790A JP7557790A JP2998760B2 JP 2998760 B2 JP2998760 B2 JP 2998760B2 JP 7557790 A JP7557790 A JP 7557790A JP 7557790 A JP7557790 A JP 7557790A JP 2998760 B2 JP2998760 B2 JP 2998760B2
- Authority
- JP
- Japan
- Prior art keywords
- casting
- pressure
- treatment
- improvement
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Description
【発明の詳細な説明】 《産業上の利用分野》 本発明は、Siを含むアルミ合金鋳物の製造方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION << Field of Industrial Application >> The present invention relates to a method for producing an aluminum alloy casting containing Si.
《従来の技術》 Al−Si合金鋳物の製造方法については、例えば「軽合
金」(1984)Vol.34,No,8,p477の第1−b図、並びに
「軽金属」(1988)Vol.38,No7,p433第3.2,4項にその記
載がる。前者の例には、Al−8Si合金の溶湯を高圧に加
圧凝固させることにより、金型との熱伝導度を向上(冷
却速度の増大を意味する)させ、Si粒径を通常の重力鋳
造材に比べて20〜30%にできることが示されている。
(このように、溶湯を高圧凝固さえる凝固法は、一般に
「溶湯鍛造」と呼ばれており、本明細書においても以下
この用語を使用することがある。)また、後者の例は、
従来よく知られたAl−Si合金のいわゆる改良処理につい
ての記載であり、改良元素であるNa,Sr,Sb等によってや
はり同程度にSi粒が微細化されることが示されている。<< Prior Art >> For a method of manufacturing an Al-Si alloy casting, see, for example, FIG. 1-b of “Light Alloys” (1984) Vol. 34, No. 8, p477, and “Light Metals” (1988) Vol. 38 No. 7, p433, paragraphs 3.2 and 4. In the former example, the molten metal of Al-8Si alloy is pressurized and solidified under high pressure to improve the thermal conductivity with the mold (meaning an increase in cooling rate) and to reduce the Si particle size by ordinary gravity casting. It is shown that it can be reduced to 20 to 30% compared to wood.
(Thus, the solidification method of solidifying a molten metal under high pressure is generally called “molten forging”, and this term may be used hereinafter in the present specification.)
This document describes a so-called improvement treatment of a conventionally well-known Al-Si alloy, and shows that Si particles are refined to the same extent by Na, Sr, Sb, and the like, which are improvement elements.
上記のようなSi粒の微細化は、Al−Si合金鋳物の疲労
強度に大きく影響することが知られており、例えば「鋳
物」第56巻(1984)、第7号、p391、図14には共晶Si粒
径が小さくなるに従い疲れ限度が大きくなることが示さ
れている。It is known that the refining of Si grains as described above greatly affects the fatigue strength of Al-Si alloy castings. For example, see "Casting" Vol. 56 (1984), No. 7, p391, FIG. Indicates that the fatigue limit increases as the eutectic Si grain size decreases.
《発明が解決しようとする課題》 上記の従来技術の内、前者は高圧凝固(溶湯鍛造)に
より冷却速度の増大を図るものであるが、高圧によって
金型との熱伝導性を向上させても、肉厚部まで冷却速度
を上げることは困難である。また、後者は改良処理元素
(Na,Sr,Sb,Ca等)によってSi結晶粒の成長を制御する
ものであるが、冷却速度が或る程度早くないとその改良
元素の効果がなく、従って肉厚部でその効果が期待でき
ない。両方法とも、肉厚の複雑に異なる鋳物全体に亙っ
てSi粒の微細化を達成するのは困難である。<< Problems to be Solved by the Invention >> Among the above-mentioned prior arts, the former aims to increase the cooling rate by high-pressure solidification (melt forging). However, it is difficult to increase the cooling rate up to the thick part. In the latter, the growth of Si crystal grains is controlled by an improvement treatment element (Na, Sr, Sb, Ca, etc.). The effect cannot be expected in the thick part. In both methods, it is difficult to achieve the refinement of the Si grains throughout the castings with different thicknesses.
本発明は、以上のような従来の方法の欠点に鑑み、肉
厚の複雑に異なるAi−Si合金鋳物においてもその全体に
亙ってSi粒を微細化し、従って鋳物の疲労強度を増大す
ることのできる製造方法を提供しようとするものであ
る。The present invention has been made in view of the above-mentioned drawbacks of the conventional method, and has the object of reducing the Si grains throughout the entire Ai-Si alloy casting even when the thickness of the casting is complicatedly different, thereby increasing the fatigue strength of the casting. It is an object of the present invention to provide a manufacturing method which can be performed.
《課題を解決するための手段》 上記の目的を達成するため、本発明のアルミ合金いも
のの製造方法は、Na,Sr,Sb,Ca等の改良元素を含むフラ
ックスによってAl−Si合金溶湯を改良処理し、その後、
この改良処理されたAl−Si合金溶湯を高圧凝固させるも
のである。<< Means for Solving the Problems >> In order to achieve the above object, the method for producing an aluminum alloy braid according to the present invention improves the molten Al-Si alloy by a flux containing an improving element such as Na, Sr, Sb, and Ca. Process, and then
This improved Al-Si alloy melt is solidified under high pressure.
《作用》 以上の構成の本発明の製造方法によれば、溶湯の高圧
凝固(溶湯鍛造)による冷却速度増大の作用に改良元素
による改良処理の効果が複合され、比較的加圧力の低い
(すなわち冷却速度の遅い)時期から著しいSi粒の微細
化効果があらわれ、鋳物の肉厚部分においてもSi粒微細
化が充分に進み、粒物全体に亙って結晶粒が微細化して
鋳物の疲労強度が向上する。また、Siの微細化に加え
て、高圧凝固によって鋳物のポーロシティが減少し、機
械的性質が向上する。<< Operation >> According to the production method of the present invention having the above configuration, the effect of the improvement treatment by the improvement element is combined with the effect of the cooling rate increase by the high-pressure solidification (molten forging) of the molten metal, and the pressing force is relatively low (ie, (Since the cooling rate is slow), the remarkable effect of Si grain refinement appears, and the Si grain refinement proceeds sufficiently even in the thick part of the casting, and the crystal grains are refined over the entire grain, resulting in the fatigue strength of the casting. Is improved. In addition to the refinement of Si, the porosity of the casting is reduced by high-pressure solidification, and the mechanical properties are improved.
《実施例》 本発明の方法と、従来の方法とにより、アルミ合金鋳
物の製造試験を実施し、その結果について比較を行なっ
た。<< Examples >> A production test of an aluminum alloy casting was performed by the method of the present invention and a conventional method, and the results were compared.
供試材として、下記表1の化学組成のAC8A材合金を黒
鉛ルツボで溶解し、本発明方法及び従来方法によって鋳
造を行なった。As a test material, an AC8A material alloy having a chemical composition shown in Table 1 below was melted in a graphite crucible and cast by the method of the present invention and the conventional method.
第1図は、本試験に使用した金型の形状、寸法を示し
た断面図である。図中、10はモールド、20は加圧パン
チ、30は溶湯である。凝固温度の測定は、型底部から35
mmの図示1,2,3の位置において行なった。1はモールド1
0の中心部分、3は側壁に近い部分、2は1,3の中間部分
である。 FIG. 1 is a sectional view showing the shape and dimensions of a mold used in the present test. In the figure, 10 is a mold, 20 is a pressure punch, and 30 is a molten metal. The solidification temperature is measured from the bottom of the mold by 35
The measurement was performed at the positions 1, 2, and 3 shown in mm. 1 is mold 1
0 is a central portion, 3 is a portion near the side wall, and 2 is an intermediate portion of 1,3.
上記の供試材を溶解後、Na系フラックスによって溶湯
処理を行ない、N2ガスで30分間脱ガス処理を行なった
後、30分間鎮静させて注湯した。Na改良処理は、フロー
トタイプの添加剤を使用し鎮静後ただちに添加、30分間
保持した後注湯した。Naは添加量は50ppmであった。ま
た溶湯温度は720±15℃、金型温度は150±5℃であっ
た。表2に、各試料の鋳造条件を示す。After dissolving the above test materials, the molten metal was treated with a Na-based flux, degassed with N 2 gas for 30 minutes, calmed down for 30 minutes, and poured. In the Na improvement treatment, a float type additive was used, added immediately after sedation, kept for 30 minutes, and then poured. Na was added in an amount of 50 ppm. The melt temperature was 720 ± 15 ° C. and the mold temperature was 150 ± 5 ° C. Table 2 shows the casting conditions of each sample.
上記の鋳造条件により鋳造した試料の凝固温度測定位
置(第1図参照)のミクロ組織より、デンドライト・ア
ーム・スペーシング(以下、DASと呼ぶ)を画像解析装
置を用いて測定した。DASは冷却温度と相関があり、第
2図はAC8A材の冷却速度とDASの関係を示したものであ
る。 From the microstructure at the solidification temperature measurement position (see FIG. 1) of the sample cast under the above casting conditions, dendrite arm spacing (hereinafter referred to as DAS) was measured using an image analyzer. DAS has a correlation with cooling temperature, and FIG. 2 shows the relationship between the cooling rate of AC8A material and DAS.
第3図に鋳造時の加圧圧力とDASの関係を示す。図
(a)はNa改良処理を行なわないもの(表2の試料No.1
〜4)、(b)はNa改良処理を行なったもの(同5〜
8)を示している。Na改良処理の有無に関係なく、DAS
は加圧圧力500kg/cm2で一定となり、その値は10〜22μ
mとなった。また、試料の中央(1の位置)と外側(3
の位置)の場所によるDAS値の差が、圧力が高くなる程
小さくなっている。このことは、圧力を高くすることに
よって場所の違いによる冷却速度の違いをなくすことが
できることを意味し、これにより一個の鋳物において組
織を均一化できることを示している。FIG. 3 shows the relationship between the pressure applied during casting and the DAS. Figure (a) shows a sample without the Na improvement treatment (Sample No. 1 in Table 2).
4) and (b) are those obtained after the Na improvement treatment (5 to 15)
8). DAS with or without Na improvement treatment
It is constant at the applied pressure 500 kg / cm 2, its value 10~22μ
m. In addition, the center (position 1) and the outside (3
The difference between the DAS values at the position () is smaller as the pressure is higher. This means that a difference in cooling rate due to a difference in location can be eliminated by increasing the pressure, which indicates that the structure can be made uniform in one casting.
重力鋳造(非加圧鋳造)及び溶湯鍛造(加圧鋳造)に
おける冷却速度を、得られたDASの値から算出し、表3
に示す。The cooling rates in gravity casting (non-pressure casting) and squeeze casting (pressure casting) were calculated from the obtained DAS values.
Shown in
溶湯鋳造における冷却速度は、重力鋳造に比べて中心
部で50倍、外側でも3〜4倍早いことが認められる。当
然のことながら、Na処理の有無によって冷却速度(DAS
の値)が大きく異なることはなかった。 It is recognized that the cooling rate in molten casting is 50 times faster at the center and 3 to 4 times faster at the outside than gravity casting. Naturally, the cooling rate (DAS
Was not significantly different.
第4図は、鋳造圧力とSi粒径の関係を示したものであ
る。第3図の場合と同様、図(a)はNa処理を行なわな
いもの(試料No.1〜4)、(b)はNa改良処理を行なっ
たもの(同5〜8)を示している。Na改良処理を行なっ
たものにおいては、加圧圧力200kg/cm2で既に粒径10μ
m前後となり、圧力が高くなるにつれて場所による粒径
の差が小さくなっているのに対し、無処理のものでは、
圧力増とともに小さくなる傾向はあるものの、200kg/cm
2でもまだ中央部では20μm程度と比較的大きい。この
ことは言いかえれば、Na改良処理して溶湯鋳造すれば、
無処理で溶湯鋳造した場合に比べて、低い圧力(すなわ
ち、遅い冷却速度)からSi粒の微細化が達成できるとい
うことを意味する。また、Na改良処理のみ(加圧圧力
0)では、微細化効果は冷却速度の早い部分(位置3)
に限られる。このように、DASの場合と同様に、場所に
よらず微細のSi径を得るには、本発明方法のNa改良処理
を施しかつ溶湯鋳造をすることがきわめて効果的である
ことが判る。FIG. 4 shows the relationship between casting pressure and Si grain size. As in the case of FIG. 3, FIG. (A) shows the case where the Na treatment was not performed (samples Nos. 1 to 4), and FIG. In those subjected to Na improving treatment, already particle size 10μ in applied pressure 200 kg / cm 2
m, and the difference in particle size depending on the location decreases as the pressure increases.
200 kg / cm, although it tends to decrease with increasing pressure
2 is still relatively large at about 20 μm at the center. In other words, if the molten metal is cast after improving Na,
This means that Si grains can be refined from a lower pressure (that is, a slower cooling rate) than in the case of casting without processing. In addition, with only Na improvement treatment (pressurization pressure 0), the refining effect is a part where the cooling rate is high (position 3).
Limited to Thus, as in the case of DAS, in order to obtain a fine Si diameter regardless of the location, it is found that it is extremely effective to perform the Na improvement treatment of the method of the present invention and perform molten casting.
第5図はDASとSi粒径の関係を示したものである。図
に見られるように、DASが25μm以下でNa改良処理によ
るSiの微細化の程度が著しく、25μm以上及び10μm以
下では無処理との差が小さくなる。DAS10〜25μmは、
高圧凝固によって達成される範囲である。従って、本発
明方法の[Na改良処理+溶湯鍛造]によって従来方法で
ある[無処理+重力鍛造]、[Na改良処理+重力鋳造]
及び[無処理+溶湯鍛造]よりも、Siが微細化されるこ
とが知られる。FIG. 5 shows the relationship between DAS and Si particle size. As shown in the figure, when DAS is 25 μm or less, the degree of miniaturization of Si by the Na improvement treatment is remarkable, and when it is 25 μm or more and 10 μm or less, the difference from non-treatment becomes small. DAS10 ~ 25μm
This is the range achieved by high pressure solidification. Therefore, the [Na improvement treatment + gravity forging] and the [Na improvement treatment + gravity casting] which are the conventional methods by the [Na improvement treatment + molten forging] of the method of the present invention.
It is known that Si is finer than that of [No treatment and molten metal forging].
前述のように、Si粒の微細化は鋳物の疲労強度に大き
く影響することが知られており、本発明方法によれば、
従来方法に比べてより大きく疲労強度が向上することが
推察される。本発明方法と従来方法による前記鋳造試験
試料(加圧圧力20kg/cm2及び0のもの)について疲労試
験を行なった結果を表4に示す。ただし、熱処理は510
℃×1.5Hr溶体化処理後、200℃×6Hr時効処理を行なっ
た。As described above, it is known that the refinement of Si grains greatly affects the fatigue strength of a casting, and according to the method of the present invention,
It is presumed that the fatigue strength is greatly improved as compared with the conventional method. Table 4 shows the results of a fatigue test performed on the casting test samples (with a pressure of 20 kg / cm 2 and 0) according to the method of the present invention and the conventional method. However, heat treatment is 510
After the solution treatment at 1.5 ° C. × 1.5Hr, aging treatment at 200 ° C. × 6Hr was performed.
このように、本発明方法によれば、鋳物の疲労強度が
従来方法に比べて大きく向上することが実証された。 Thus, according to the method of the present invention, it was demonstrated that the fatigue strength of the casting was greatly improved as compared with the conventional method.
なお、上記証明はNaにより改良処理を行なうものにつ
いて述べたが、前述のようにSr,Sb,Ca等の他の改良元素
によっても同様に改良処理を行ない類似の効果を得るこ
とができ、本発明方法にこれらの改良元素を使用するこ
とも可能である。Although the above proof describes the case where improvement processing is performed with Na, as described above, similar improvement effects can be obtained by performing similar improvement processing with other improvement elements such as Sr, Sb, Ca, etc. It is also possible to use these improving elements in the inventive method.
《発明の効果》 以上の説明より明らかな通り、本発明のアルミ合金鋳
物の製造方法は、Na,Sr,Sb,Ca等の改良元素を含むフラ
ックスによって改良処理されたAl−Si合金溶湯を高圧凝
固させ、Si粒を微細化させるものであるから、改良処理
と高圧凝固との複合効果によって比較的冷却速度の遅い
部分においてもSi粒が微細化し、鋳物全体に亙って微細
化効果を得ることができ、疲労強度を鋳物全体に均一に
向上させることができる。また、結晶の微細化に加え
て、高圧凝固によって鋳物のポーロシティが減少し、鋳
物の機械的性質を向上させる効果も得られる。<< Effects of the Invention >> As is clear from the above description, the method for producing an aluminum alloy casting of the present invention employs a high pressure molten Al-Si alloy melt treated with a flux containing an improvement element such as Na, Sr, Sb, and Ca. Because it solidifies and refines Si particles, Si particles are refined even at relatively slow cooling speeds by the combined effect of improved treatment and high-pressure solidification, and a refinement effect is obtained over the entire casting. And the fatigue strength can be uniformly improved throughout the casting. Further, in addition to the refinement of the crystal, the porosity of the casting is reduced by the high-pressure solidification, and the effect of improving the mechanical properties of the casting is also obtained.
第1図は本発明方法及び従来方法によるアルミ合金鋳物
の製造試験に使用した金型の形状、寸法を示す断面図、
第2図はAC8A材の冷却速度とDASの関係を示す線図、第
3図は鋳造時の加圧圧力とDASの関係を示す線図、第4
図は鋳造圧力とSi粒径の関係を示す線図、第5図はDAS
とSi粒径の関係を示す線図である。FIG. 1 is a cross-sectional view showing the shape and dimensions of a mold used for a production test of an aluminum alloy casting according to the method of the present invention and a conventional method,
FIG. 2 is a diagram showing the relationship between the cooling rate of the AC8A material and DAS, FIG. 3 is a diagram showing the relationship between the pressure applied during casting and DAS, and FIG.
The figure shows a diagram showing the relationship between casting pressure and Si grain size.
FIG. 3 is a diagram showing the relationship between and Si grain size.
フロントページの続き (56)参考文献 特開 昭57−185941(JP,A) 藤井ら”高圧下で凝固した Al−8 %Si合金の肉厚感受性について”軽金 属(1984)Vol.34 No.8 P 446−453 北岡ら”Al−Si軽合金”軽金属 (1988),Vol.38 No.7 P 426−448 SAE TECHNICAL PAP ER SERIES 910434 (58)調査した分野(Int.Cl.7,DB名) C22C 1/02 B22D 18/02 B22D 21/04 Continuation of the front page (56) References JP-A-57-185941 (JP, A) Fujii et al. "On the wall thickness sensitivity of Al-8% Si alloy solidified under high pressure", Light Metals (1984) Vol. 34 No. 8 P 446-453 Kitaoka et al., "Al-Si Light Alloy", Light Metal (1988), Vol. 38 No. 7 P 426-448 SAE TECHNICAL PAPER SERIES 910434 (58) Fields investigated (Int. Cl. 7 , DB name) C22C 1/02 B22D 18/02 B22D 21/04
Claims (1)
スによってAl−Si合金溶湯を改良処理し、 その後、この改良処理されたAl−Si合金溶湯を高圧凝固
させることを特徴とするアルミ合金鋳物の製造方法。The present invention is characterized in that an Al-Si alloy melt is improved by a flux containing an improvement element such as Na, Sr, Sb, Ca, etc., and then the improved Al-Si alloy melt is solidified under high pressure. Aluminum alloy casting manufacturing method.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7557790A JP2998760B2 (en) | 1990-03-27 | 1990-03-27 | Manufacturing method of aluminum alloy casting |
GB9106311A GB2243620B (en) | 1990-03-27 | 1991-03-25 | Improvements in and relating to forming aluminium-silicon alloy |
US07/675,330 US5211778A (en) | 1990-03-27 | 1991-03-26 | Method for forming aluminum-silicon alloy |
DE4110145A DE4110145A1 (en) | 1990-03-27 | 1991-03-27 | METHOD FOR SHAPING ALUMINUM SILICON ALLOY |
US07/993,629 US5303764A (en) | 1990-03-27 | 1992-12-21 | Die for forming aluminum silicon alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7557790A JP2998760B2 (en) | 1990-03-27 | 1990-03-27 | Manufacturing method of aluminum alloy casting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03277732A JPH03277732A (en) | 1991-12-09 |
JP2998760B2 true JP2998760B2 (en) | 2000-01-11 |
Family
ID=13580188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7557790A Expired - Lifetime JP2998760B2 (en) | 1990-03-27 | 1990-03-27 | Manufacturing method of aluminum alloy casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2998760B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4584682B2 (en) * | 2004-11-12 | 2010-11-24 | ヤマハ発動機株式会社 | Method for removing oxide from casting aluminum alloy |
-
1990
- 1990-03-27 JP JP7557790A patent/JP2998760B2/en not_active Expired - Lifetime
Non-Patent Citations (3)
Title |
---|
SAE TECHNICAL PAPER SERIES 910434 |
北岡ら"Al−Si軽合金"軽金属(1988),Vol.38 No.7 P426−448 |
藤井ら"高圧下で凝固した Al−8%Si合金の肉厚感受性について"軽金属(1984)Vol.34 No.8 P446−453 |
Also Published As
Publication number | Publication date |
---|---|
JPH03277732A (en) | 1991-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hegde et al. | Modification of eutectic silicon in Al–Si alloys | |
CA2574962C (en) | An al-si-mg-zn-cu alloy for aerospace and automotive castings | |
Westengen | Formation of intermetallic compounds during DC casting of a commercial purity Al-Fe-Si alloy | |
JPH04231435A (en) | Strontium-containing magnesium alloy with high mechanical strength and preparation thereof by means of rapid coagulation | |
WO2006014948A2 (en) | An al-si-mg-zn-cu alloy for aerospace and automotive castings | |
JPH0673485A (en) | Thixotropic magnesium alloy and its production | |
US4053304A (en) | Flux for refinement of pro-eutectic silicon crystal grains in high-silicon aluminum alloys | |
US4808374A (en) | Method for producing aluminum alloy castings and the resulting product | |
JPS62133037A (en) | Alloy for grain refining and its manufacture | |
Kumar et al. | Metallurgical and mechanical characterization of A319 aluminum alloy casting solidified under mold oscillation | |
US5087298A (en) | Process of producing continuous thin sheet of tial intermetallic using pair of cooling rolls | |
EP0171798B1 (en) | High strength material produced by consolidation of rapidly solidified aluminum alloy particulates | |
Bloyce et al. | Static and dynamic properties of squeeze-cast A357-SiC particulate Duralcan metal matrix composite | |
JP2998760B2 (en) | Manufacturing method of aluminum alloy casting | |
US5205986A (en) | Aluminium-strontium master alloy and process of making the alloy | |
Puparattanapong et al. | Effect of scandium on porosity formation in Al–6Si–0.3 Mg alloys | |
Paradis et al. | Effect of mold type on the microstructure and tensile properties of A356 alloy | |
JPH0261023A (en) | Heat-resistant and wear-resistant aluminum alloy material and its manufacture | |
Wang et al. | Influence of Sr Content on the Modification of Si Particles in Al-Sı Alloys | |
JP3003031B1 (en) | Method for refining primary crystal Si in molten Al-Si alloy | |
JPH0517845A (en) | Hypereutectic aluminum-silicon alloy powder and production thereof | |
KR910006021B1 (en) | Al alloy for head drum of audio tape recorder and the method | |
JP3216685B2 (en) | Forming method of semi-molten metal | |
Güler et al. | A comparative study on the microstructure evaluation of thixoforged A356 and A380 aluminium alloys | |
JP2869889B2 (en) | Thixocasting method |