JPH0346517B2 - - Google Patents

Info

Publication number
JPH0346517B2
JPH0346517B2 JP61208016A JP20801686A JPH0346517B2 JP H0346517 B2 JPH0346517 B2 JP H0346517B2 JP 61208016 A JP61208016 A JP 61208016A JP 20801686 A JP20801686 A JP 20801686A JP H0346517 B2 JPH0346517 B2 JP H0346517B2
Authority
JP
Japan
Prior art keywords
thin film
formula
film phosphor
phosphor according
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61208016A
Other languages
Japanese (ja)
Other versions
JPS6363784A (en
Inventor
Hiroshi Hirano
Nagaaki Etsuno
Seiya Ogawa
Hiroshi Kobayashi
Shosaku Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20801686A priority Critical patent/JPS6363784A/en
Publication of JPS6363784A publication Critical patent/JPS6363784A/en
Publication of JPH0346517B2 publication Critical patent/JPH0346517B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔概要〕 本発明は、特にデジタルX線画像システムにお
いて有利に使用することができる。X線画像を電
気信号に変換するための薄膜螢光体に関する。本
発明の薄膜螢光体は、連続した薄膜の形で形成さ
れた螢光体からなりかつこの薄膜は好ましくは真
空蒸着法によつて形成されているので、画像の分
解能を高め、製造工程の簡略化を実施することが
できる。 〔産業上の利用分野〕 本発明は薄膜螢光体に関する。本発明は、さら
に詳しく述べると、特にデジタルX線画像システ
ムにおいて有利に使用することができる放射線画
像変換用薄膜螢光体に関する。本発明の薄膜螢光
体は、医療及び工業の両分野において有用であ
る。 〔従来の技術〕 デジタル放射線画像システムと、そのための放
射線画像変換方法は、数年ほど前から活発に研究
され、特許文献等にもしばしば見い出すことが出
来る(特開昭55−12143号公報、特開昭60−84381
号公報、特開昭60−84382号公報、等を参照され
たい)。この方法は、通常、被写体の透過等によ
つて形成された像状放射線(X線、電子線、紫外
線等)を特定の輝尽発光特性を有する物質に照射
し、さらにこの発光体に選らばれた波長領域の電
磁波を照射して発光体中の蓄積放射線エネルギー
を励起し、よつて、この放射線エネルギーを発光
として像状に放出させることからなつている。こ
の像状発光は、例えば、常用の光電変換装置を用
いて電気信号に変え、さらにこの電気信号を処理
して画像に変えることができる。この方法によれ
ば、例えば、従来のラジオグラフイーに比較して
著しく少ない被曝量をもつてより鮮明な画像を得
ることができる。 最近普及しはじめてきたこのX線等の画像の診
断システムではあるが、医療の分野においては、
早期治療のために微細患部の早期発見が、また、
工業の分野においては、精密装置などの微小欠陥
の検出が、それぞれ要求されており、それ故、X
線画像の高分解能化が必要とされている。また、
従来のデジタルX線画像システムに用いる、X線
画像を電気信号に変換する螢光体の製造方法は、
極めて複雑であり、工程の簡略化が必要とされて
いる。 〔発明が解決しようとする問題点〕 従来のデジタルX線画像システムに用いる螢光
体は、原料の混合、粉砕、乾燥、焼成により製造
された微細な螢光体粒子を、有機樹脂バインダ中
に分散させ、塗布することにより製造されてお
り、したがつて、螢光体粒子を分散状態で含有支
持するバインダからなる螢光体層の構造を有して
いる。すなわち、従来のX線画像変換用螢光体
は、極めて繁雑な製造工程を経て製造されるばか
りでなく、螢光体粒子を有機樹脂バインダ中に分
散させた構造であるため、画像の分解能は通常
100μm、良くても数10μmが限界であつた。医療
の分野、そして特に工業の分野では、数μmのオ
ーダーの画像分解能が望ましい。 本発明の目的は、したがつて、1μm以下に絞
つたレーザ光に対しても十分に満足し得るS/N
比で輝尽発光を生じる薄膜螢光体を提供すること
にある。 〔問題点を解決するための手段〕 本発明者らは、二価ユーロピウム賦活アルカリ
土類金属弗化ハロゲン化物の連続した膜からなる
薄膜螢光体によつて上述の問題点を解決し得ると
いうことを、見い出した。 本発明において連続膜として形成される二価の
ユーロピウム賦活アルカリ土類金属弗化ハロゲン
化物は、次式: RF2・aRX2:bEu2+ (上式において、 Rは同一もしくは異なつていてもよくかつ、そ
れぞれ、Ca,Sr又はBaを表わし、 XはCl,Br又はIを表わし、 aは0.2≦a≦5の範囲に含まれ、そして bは10-4≦b≦0.3の範囲に含まれる)により
表わされる。 上記のような一般式によつて表わされる連続膜
形成性化合物は、好ましくは、BaF2・aBaBr2
bEu2+(0.5≦a≦3、6×10-4≦b≦9×10-2
などである。 また、かかる二価ユーロピウム賦活アルカリ土
類金属弗化ハロゲン化物の連続膜は、粒径0.5μm
以下の結晶粒子からなる微細な結晶粒子で構成さ
れており、したがつて完全な連続体を形成してい
る。 本発明者らは、真空蒸着法により、二価ユーロ
ピウム賦活アルカリ土類金属弗化ハロゲン化物の
連続膜を有利に形成し得るということも見い出し
た。真空蒸着法を実施するに当つては、次式: RF2・aRX2:bEu2+ (式中のR,X,a及びbは前記定義に同じで
ある)により表わされる化合物あるいは、次式: RF2・RX2及びEuX3 (式中のR及びXは前記定義に同じである)に
より表わされる化合物の混合物の蒸発源の原料と
して使用するのが好ましい。また、真空蒸着中
に、前記連続膜が被着されるべき基板を200〜600
℃の温度まで加熱するのが好ましい。さらに、必
要に応じて、真空蒸着法に代えてスパツタリング
等の手法を使用することによつて、螢光体の連続
薄膜を形成することもできる。 〔作 用〕 本発明の薄膜螢光体は、真空蒸着法によつて製
造されるため、従来の螢光体のように有機樹脂バ
インダを含むことがなく、したがつて、均一で連
続な造となつている。従来の螢光体が微粉末状螢
光体の離散した集合体であつたのに対して、完全
な連続体を形成している。 〔実施例〕 本発明をその一実施例について以下に説明する 例 1 175.34gのBaF2,297.15gのBaBr2及び0.1g
のEuBr3・6H2Oを350gの温水に溶解し、混合し
た。得られた混合物を蒸発乾涸し、空気中で500
〜900℃の温度で30分間にわたつて焼成し、さら
にその後、水素ガスフロー中で800〜1000℃の温
度で30分間にわたつて還元焼成した。白色の
BaFBr:Eu2+粉末が得られた。 上記とは別に、蒸着源の原料として使用するた
め、BaF2,BaBr2及びEuBr3からなる混合物を
用意した。 これらの蒸発源原料を、それぞれ、適当な金型
に装填して圧力をかけ、圧粉体ペレツトを作つ
た。次いで、真空容器内に、上記ペレツトと、該
ペレツトの上方に石英(SiO2)ガラス又は保谷
硝子(株)製のNA40(商品名)の基板を置いた。ま
ず真空容器内を10-6〜10-5Torrの真空に引き、
次に電子線を次第に強く原料ペレツトに照射して
蒸発させ、上記の基板に付着させた。この真空蒸
着の間、タングステンヒータにより基板の加熱を
実施した。蒸着レートは、ほぼ15〜20nm/min
であつた。適用した種々の条件を次の第表にま
とめて示す。
SUMMARY The present invention can be particularly advantageously used in digital X-ray imaging systems. This invention relates to a thin film phosphor for converting X-ray images into electrical signals. The thin film phosphor of the present invention consists of a phosphor formed in the form of a continuous thin film, and this thin film is preferably formed by a vacuum evaporation method, thereby improving image resolution and reducing the manufacturing process. Simplifications can be implemented. [Industrial Field of Application] The present invention relates to thin film phosphors. More particularly, the present invention relates to thin film phosphors for radiographic image conversion, which can be advantageously used in particular in digital X-ray imaging systems. The thin film phosphors of the present invention are useful in both the medical and industrial fields. [Prior Art] Digital radiation image systems and radiation image conversion methods for them have been actively researched for several years, and can often be found in patent documents (Japanese Patent Laid-Open No. 12143/1983, Kaisho 60-84381
(Please refer to Japanese Patent Application Laid-Open No. 60-84382, etc.). This method usually involves irradiating image radiation (X-rays, electron beams, ultraviolet rays, etc.) formed by transmission through an object onto a substance with specific stimulated luminescent properties, and then This method involves irradiating electromagnetic waves in a specific wavelength range to excite the radiation energy stored in the light emitter, and then emitting this radiation energy in the form of an image as luminescence. This imaged light emission can be converted into an electrical signal using, for example, a commonly used photoelectric conversion device, and further processed to convert this electrical signal into an image. According to this method, for example, clearer images can be obtained with significantly lower radiation exposure than conventional radiography. Diagnostic systems using images such as X-rays have recently become popular, but in the medical field,
Early detection of minute affected areas for early treatment,
In the industrial field, there is a need to detect minute defects in precision equipment, etc., and therefore
There is a need for higher resolution line images. Also,
The method for manufacturing a phosphor that converts X-ray images into electrical signals used in conventional digital X-ray imaging systems is as follows:
It is extremely complex, and there is a need to simplify the process. [Problems to be solved by the invention] The phosphors used in conventional digital X-ray imaging systems are made by mixing fine phosphor particles produced by mixing, pulverizing, drying, and firing raw materials in an organic resin binder. It is manufactured by dispersing and coating and thus has the structure of a phosphor layer consisting of a binder containing and supporting phosphor particles in a dispersed state. In other words, conventional phosphors for X-ray image conversion are not only manufactured through extremely complicated manufacturing processes, but also have a structure in which phosphor particles are dispersed in an organic resin binder, so the image resolution is low. usually
The limit was 100 μm, or at best several tens of μm. In the medical field, and especially in the industrial field, image resolutions on the order of a few μm are desirable. Therefore, the object of the present invention is to achieve a sufficiently satisfactory S/N ratio even for laser beams narrowed down to 1 μm or less.
The object of the present invention is to provide a thin film phosphor that produces stimulated luminescence at a relatively low temperature. [Means for Solving the Problems] The present inventors have proposed that the above-mentioned problems can be solved by a thin film phosphor consisting of a continuous film of divalent europium-activated alkaline earth metal fluorohalide. I discovered that. The divalent europium-activated alkaline earth metal fluorohalide formed as a continuous film in the present invention has the following formula: RF 2 ·aRX 2 :bEu 2+ (In the above formula, R may be the same or different) and respectively represent Ca, Sr or Ba, X represents Cl, Br or I, a is in the range 0.2≦a≦5, and b is in the range 10 -4 ≦b≦0.3 is expressed by The continuous film-forming compound represented by the above general formula is preferably BaF 2 /aBaBr 2 :
bEu 2+ (0.5≦a≦3, 6×10 -4 ≦b≦9×10 -2 )
etc. In addition, such a continuous film of divalent europium-activated alkaline earth metal fluorohalide has a particle size of 0.5 μm.
It is composed of fine crystal grains consisting of the following crystal grains, thus forming a complete continuum: The inventors have also discovered that continuous films of divalent europium-activated alkaline earth metal fluorohalides can be advantageously formed by vacuum evaporation techniques. When carrying out the vacuum evaporation method, a compound represented by the following formula: RF 2 ·aRX 2 :bEu 2+ (in the formula, R, X, a and b are the same as defined above) or a compound represented by the following formula : It is preferable to use it as a raw material for an evaporation source of a mixture of compounds represented by RF 2 .RX 2 and EuX 3 (R and X in the formula are the same as defined above). Also, during vacuum deposition, the substrate to which the continuous film is to be deposited is
Preferably, heating to a temperature of °C. Furthermore, if necessary, a continuous thin film of the phosphor can be formed by using a method such as sputtering instead of the vacuum deposition method. [Function] Since the thin film phosphor of the present invention is manufactured by a vacuum evaporation method, it does not contain an organic resin binder unlike conventional phosphors, and therefore has a uniform and continuous structure. It is becoming. It forms a complete continuum, whereas conventional phosphors are discrete collections of finely powdered phosphors. [Example] The present invention will be described below with respect to one embodiment thereof. Example 1 175.34 g BaF 2 , 297.15 g BaBr 2 and 0.1 g
of EuBr 3 .6H 2 O was dissolved in 350 g of warm water and mixed. The resulting mixture was evaporated to dryness in air for 500 min.
It was fired at a temperature of ~900°C for 30 minutes, and then reductively fired at a temperature of 800-1000°C for 30 minutes in a hydrogen gas flow. white
BaFBr:Eu 2+ powder was obtained. Separately from the above, a mixture consisting of BaF 2 , BaBr 2 and EuBr 3 was prepared for use as a raw material for a vapor deposition source. Each of these evaporation source materials was loaded into a suitable mold and pressure was applied to produce green compact pellets. Next, in a vacuum container, the above pellets and a substrate of quartz (SiO 2 ) glass or NA40 (trade name) manufactured by Hoya Glass Co., Ltd. were placed above the pellets. First, draw a vacuum of 10 -6 to 10 -5 Torr inside the vacuum container.
Next, the raw material pellets were irradiated with electron beams with increasing intensity to evaporate them and adhere to the above-mentioned substrate. During this vacuum deposition, the substrate was heated with a tungsten heater. Deposition rate is approximately 15-20nm/min
It was hot. The various conditions applied are summarized in the table below.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、蒸着成膜法を用いることによ
り、X線画像の高分解能化、螢光体層の薄膜及び
均一化、製造工程の簡略化、などが可能な薄膜螢
光体を提供することができる。
According to the present invention, there is provided a thin film phosphor that can improve the resolution of X-ray images, make the phosphor layer thin and uniform, simplify the manufacturing process, etc. by using a vapor deposition method. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明で用いられる螢光体の輝尽発
光スペクトル図、第2図は、第1図の螢光体の輝
尽励起スペクトル図、第3図は、本発明の薄膜螢
光体表面の結晶粒子構造を示した走査型電子顕微
鏡写真、そして第4図は、本発明の薄膜螢光体の
原料組成比a値と相対輝尽発光強度との関係を示
した相関図である。
FIG. 1 is a stimulated emission spectrum diagram of the phosphor used in the present invention, FIG. 2 is a stimulated emission spectrum diagram of the phosphor shown in FIG. 1, and FIG. A scanning electron micrograph showing the crystal grain structure of the body surface, and FIG. 4 is a correlation diagram showing the relationship between the raw material composition ratio a value and the relative stimulated luminescence intensity of the thin film phosphor of the present invention. .

Claims (1)

【特許請求の範囲】 1 次式: RF2・aRX2:bEu2+ (上式において、 Rは同一もしくは異なつてもいてもよくかつ、
それぞれ、Ca,Sr又はBaを表わし、 XはCl,Br又はIを表わし、 aは0.2≦a≦5の範囲に含まれ、そして bは10-4≦b≦0.3の範囲に含まれる)により
表わされる二価ユーロピウム賦活アルカリ土類金
属弗化ハロゲン化物の、粒径0.5μm以下の微細な
結晶粒子からなる膜厚2〜3μmの連続膜である、
薄膜螢光体。 2 真空蒸着法によつて連続膜を形成した、特許
請求の範囲第1項に記載の薄膜螢光体。 3 次式:RF2・aRX2:bEu2+ (式中のR,X,a及びbは前記定義に同じで
ある)により表わされる化合物の蒸発源の原料と
して使用した、特許請求の範囲第2項に記載の薄
膜螢光体。 4 次式:RF2,RX2及びEuX3 (式中のR及びXは前記定義に同じである)に
より表わされる化合物の混合物を蒸発源の原料と
して使用した、特許請求の範囲第2項に記載の薄
膜螢光体。 5 真空蒸着中に、前記連続膜が被着されるべき
基板を200〜600℃の温度まで加熱した、特許請求
の範囲第2項に記載の薄膜螢光体。 6 デジタルX線画像システム用である、特許請
求の範囲第1項〜第5項のいずれか1項に記載の
薄膜螢光体。
[Claims] Primary formula: RF 2 ·aRX 2 :bEu 2+ (In the above formula, R may be the same or different, and
each represents Ca, Sr or Ba; A continuous film with a thickness of 2 to 3 μm consisting of fine crystal grains with a particle size of 0.5 μm or less of divalent europium-activated alkaline earth metal fluorohalide,
Thin film phosphor. 2. The thin film phosphor according to claim 1, wherein a continuous film is formed by a vacuum evaporation method. Claim No. 3 used as a raw material for an evaporation source of a compound represented by the following formula: RF 2 ·aRX 2 :bEu 2+ (R, X, a, and b in the formula are the same as defined above). The thin film phosphor according to item 2. 4. Claim 2, in which a mixture of compounds represented by the following formulas: RF 2 , RX 2 and EuX 3 (R and X in the formula are the same as defined above) is used as a raw material for the evaporation source. The thin film phosphor described above. 5. The thin film phosphor according to claim 2, wherein the substrate to which the continuous film is to be applied is heated to a temperature of 200 to 600° C. during vacuum deposition. 6. The thin film phosphor according to any one of claims 1 to 5, which is used for a digital X-ray imaging system.
JP20801686A 1986-09-05 1986-09-05 Thin-film phosphor Granted JPS6363784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20801686A JPS6363784A (en) 1986-09-05 1986-09-05 Thin-film phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20801686A JPS6363784A (en) 1986-09-05 1986-09-05 Thin-film phosphor

Publications (2)

Publication Number Publication Date
JPS6363784A JPS6363784A (en) 1988-03-22
JPH0346517B2 true JPH0346517B2 (en) 1991-07-16

Family

ID=16549279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20801686A Granted JPS6363784A (en) 1986-09-05 1986-09-05 Thin-film phosphor

Country Status (1)

Country Link
JP (1) JPS6363784A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097165B2 (en) 2009-05-22 2012-12-12 三菱電機株式会社 Vehicle control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270784A (en) * 1976-12-16 1977-06-13 Toshiba Corp Fluorescent screen
JPS6173100A (en) * 1984-09-18 1986-04-15 コニカ株式会社 Radiation picture converting panel and manufacture thereof
JPS61196365A (en) * 1985-02-27 1986-08-30 Fujitsu Ltd Credit authorization system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270784A (en) * 1976-12-16 1977-06-13 Toshiba Corp Fluorescent screen
JPS6173100A (en) * 1984-09-18 1986-04-15 コニカ株式会社 Radiation picture converting panel and manufacture thereof
JPS61196365A (en) * 1985-02-27 1986-08-30 Fujitsu Ltd Credit authorization system

Also Published As

Publication number Publication date
JPS6363784A (en) 1988-03-22

Similar Documents

Publication Publication Date Title
US3795814A (en) X-ray image converters utilizing lanthanum and gadolinium oxyhalide luminous materials activated with thulium
EP1203394B1 (en) METHOD FOR PREPARING A CsX PHOTOSTIMULABLE PHOSPHOR AND PHOSPHORS THEREFROM
JP3827298B2 (en) Manufacturing method of radiation image conversion panel
US6899962B2 (en) Europium activated cesium bromide phosphor and radiation image storage sheet
EP1217633B1 (en) A cesium bromide storage phosphor with narrow emission spectrum upon UV-excitation
CA1040323A (en) Luminescent screen
US4107070A (en) Process for improving the properties of oxysulfide phosphor materials
Schmitt et al. Structured alkali halides for medical applications
JPH07116432B2 (en) Phosphor, manufacturing method and application
WO2007060814A1 (en) Scintillator plate for radiation
JPH0346517B2 (en)
JP3260541B2 (en) Phosphor powder, ceramic scintillator and method for producing the same
JP2002020742A (en) Alkali halide-based fluorescent substance and radiographic transformation panel
JP3920100B2 (en) Radiation image conversion panel
JP3813794B2 (en) Alkali halide phosphor and radiation image conversion panel
JP3967916B2 (en) Method for producing a cesium halide storage phosphor having a narrow emission spectrum under UV excitation
JP2757882B2 (en) Stimulable phosphor
CN110699074B (en) Divalent europium-doped barium bromofluoride luminescent material and preparation method and application thereof
JP2005091200A (en) Radiological image conversion panel, its manufacturing method, and radiation detection instrument using it
WO2007058022A1 (en) Radiation scintillator plate
JPH06306358A (en) Production of stimulable phosphor
JP2004245640A (en) Radiation image conversion panel
JPH02276999A (en) Radiation image converting panel and production thereof
JPH0543871A (en) Manufacture of stimulable phosphor material
JPH06158041A (en) Production of stimulable phosphor, and x-ray image conversion panel obtained using the stimulable phosphor