JPH0346477B2 - - Google Patents

Info

Publication number
JPH0346477B2
JPH0346477B2 JP58017527A JP1752783A JPH0346477B2 JP H0346477 B2 JPH0346477 B2 JP H0346477B2 JP 58017527 A JP58017527 A JP 58017527A JP 1752783 A JP1752783 A JP 1752783A JP H0346477 B2 JPH0346477 B2 JP H0346477B2
Authority
JP
Japan
Prior art keywords
formula
thioxo
compound
group
oxazolidide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58017527A
Other languages
Japanese (ja)
Other versions
JPS59144795A (en
Inventor
Eiichi Fujita
Yoshimitsu Nagao
Toshio Kumagai
Takao Abe
Sei Tamai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfizer Japan Inc
Original Assignee
Lederle Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lederle Japan Ltd filed Critical Lederle Japan Ltd
Priority to JP58017527A priority Critical patent/JPS59144795A/en
Publication of JPS59144795A publication Critical patent/JPS59144795A/en
Publication of JPH0346477B2 publication Critical patent/JPH0346477B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thiazole And Isothizaole Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は新規な1,3−オキサゾリジン−又は
1,3−チアゾリジン−2−チオン化合物に関
し、さらに詳しくは1,3−オキサゾリジン−又
は1,3−チアゾリジン−2−チオン化合物のハ
ロゲン化燐誘導体及びその製造方法に関する。 1,3−チアゾリジン−2−チオンがカルボン
酸のカルボキシル基の活性化剤として優れた機能
を有することは既に報告されている。例えば、
Y.Nagao andE.FUJITA,Heterocycles,17
537(1982)参照。この文献には、カルボン酸と
1,3−チアゾリジン−2−チオンとをピリジン
等の塩基性触媒の存在下にジシクロヘキシルカル
ボジイミド(DCC)で脱水縮合させることによ
り得られる3−アシル−1,3−チアゾリジン−
2−チオンは、水素化ホウ素ナトリウムで処理す
ると容易にアルコールに導かれ、ジイソブチルア
ルミニウムヒドリドで処理するとアルデヒドに変
換され、さらに、各種のアミン、アミノアルコー
ル、アミノチオール等で処理することにより選択
的且つ高収率で所望のアミドに誘導することがで
きることが記載され、従つて、1,3−チアゾリ
ジン−2−チオンはカルボン酸の活性化試薬とし
て極めて有用であることが明らかにされている。
しかし、1,3−チアゾリジン−2−チオンはカ
ルボン酸の活性化に際してDCC等の縮合剤を必
要とし、該試薬を工業的に使用するとなると若干
の問題がある。 そこで、本発明者らはカルボン酸の活性化試薬
としてかかるDCC等の副次的な試薬を必要とし
ないカルボン酸の活性化試薬を求めて鋭意研究を
行なつた結果、1,3−オキサゾリジン−又は
1,3−チアゾリジン−2−オン化合物のハロゲ
ン化燐誘導体がカルボン酸の活性化試薬として極
めて適していることを見い出し、本発明を完成す
るに至つた。 しかして、本発明によれば、一般式 式中、 R1はフエニル基又はフエノキシ基を表わし; R2及びR3はそれぞれ独立に水素原子、低級ア
ルキル基又は低級アルコキシカルボニル基を表わ
し; R4及びR5はそれぞれ独立に水素原子又はフエ
ニル基を表わし; Xは塩素原子を表わし; Y及びZはそれぞれ独立に酸素又は硫黄原子を
表わす。 で示される化合物が提供される。 本明細書において、「低級」なる語はこの語が
付された基又は化合物の炭素原子数が6個以下、
好ましくは4個以下であることを意味する。 上記式()において、「低級アルキル基」は
直鎖状又は分枝鎖状のいずれであつてもよく、例
えば、メチル、エチル、n−プロピル、イソプロ
ピル、n−ブチル、イソブチル、sec−ブチル、
tert−ブチル、n−ペンチル、イソアミル、n−
ヘキシル基等が挙げられる。 「低級アルコキシカルボニル基」における低級
アルキル部分は上記の意味を有し、しかして低級
アルコキシカルボニル基の具体例としては、メト
キシカルボニル、エトキシカルボニル、n−プロ
ポキシカルボニル、イソ−プロポキシカルボニル
等が包含される。 前記式()の化合物の代表例を示せば以下の
とおりである。 フエニルクロロチオホスホニツク−N−(2−
チオキソ−1,3−チアゾリジド)、 フエニルクロロチオホスホニツク−N−(2−
チオキソ−1,3−オキサゾリジド)、 フエニルクロロホスホニツク−N−(2−チオ
キソ−1,3−チアゾリジド)、 フエニルクロロホスホニツク−N−(2−チオ
キソ−1,3−オキサゾリジド)、 フエニルクロロホスホニツク−N−(2−チオ
キソ−4−エチル−1,3−オキサゾリジド)、 フエニルクロロホスホニツク−N−(2−チオ
キソ−4−メチル−5−フエニル−1,3−オキ
サゾリジド)、 フエニルクロロホスホニツク−N−(2−チオ
キソ−4−メトキシカルボニル−1,3−オキサ
ゾリジド)、 フエニルクロロホスホニツク−N−(2−チオ
キソ−4,4−ジメチル−1,3−オキサゾリジ
ド)、 フエニルクロロホスホニツク−N−(2−チオ
キソ−4−メトキシカルボニル−1,3−チアゾ
リジド)、 フエニルクロロホスホリツク−N−(2−チオ
キソ−1,3−オキサゾリジド)、 フエニルクロロホスホリツク−N−(2−チオ
キソ−1,3−チアゾリジド)、 フエニルクロロホスホリツク−N−(2−チオ
キソ−4−エチル−1,3−オキサゾリジド)、 フエニルクロロホスホリツク−N−(2−チオ
キソ−4−メチル−5−フエニル−1,3−オキ
サゾリジド)、 フエニルクロロホスホニツク−N−(2−チオ
キソ−4−メトキシカルボニル−1,3−チアゾ
リジド)、 フエニルクロロホスホニツク−N−(2−チオ
キソ−4,4−ジメチル−1,3−オキサゾリジ
ド)、 フエニルクロロホスホニツク−N−(2−チオ
キソ−4−メチル−1,3−オキサゾリジド)、 フエニルクロロホスホニツク−N−(2−チオ
キソ−4−イソプロピル−1,3−オキサゾリジ
ド)、 フエニルクロロホスホニツク−N−(2−チオ
キソ−5−フエニル−1,3−オキサゾリジド)、 など。 本発明に従えば、前記式()の化合物は一般
式中、 R1、X及びYは前記の意味を有する、 の化合物を一般式 式中、 R2,R3,R4,R5及びZは前記の意味を有す
る、 の化合物と塩基の存在下に反応させることにより
製造することができる。 式()の化合物と式()の化合物の反応は
一般に不活性有機溶媒、例えば、ジエチルエーテ
ル、ジメトキシエタン、テトラヒドロフラン、ジ
オキサン、ジグライム等のエーテル類;ジメチル
ホルムアミド、ジメチルアセトアミド、ヘキサメ
チルホスホルアミド等のアミド類;ベンゼン、ト
ルエン、キシレン、シクロヘキサン等の炭化水素
類;ジクロルメタン、四塩化炭素等のハロゲン化
炭化水素類:ジメチルスルホキシドなどの中で行
なわれる。反応温度は厳密に制約されるものでは
なく、出発原料の種類等により広範に変えること
ができるが、一般には約−20℃〜約40℃、好まし
くは約0℃乃至室温の範囲内の温度を使用するこ
とができる。 式()の化合物に対する式()の化合物の
使用量は厳密に制限されるものではなく、式
()及び()の化合物の種類等に応じて広範
に変えうるが、一般には、式()の化合物1モ
ルに対して式()の化合物を1〜5モル、殊に
1〜2モルの割合で使用するのが好都合である。 上記反応は塩基の存在下に行なうことができ、
用いうる塩基としては、水素化ナトリウム、水素
化カリウム等のアルカリ金属水素化物;炭酸カリ
ウム、炭酸ナトリウム等のアルカリ金属炭酸塩;
カリウム−t−ブトキシド等の金属アルコキシ
ド;ジイソプロピルエチルアミン、トリエチルア
ミン等のアミン類が挙げられ、これらは式()
の化合物1モルに対して一般に1〜10モル、好ま
しくは1〜6モルの割合で使用することができ
る。 以上述べた条件下に反応は通常10分〜50時間、
より一般的には45分〜25時間程度で終らせること
ができる。 得られる式()の化合物はそれ自体公知の方
法、例えば、再結晶、クロマトグラフイー、抽
出、蒸留等の方法により反応混合物から分離し精
製することができる。 上記方法において出発原料として使用される式
()のリン化合物は公知のものであり、式()
においてXは好ましくは塩素原子である。 また、式()の化合物は少なくとも一部は既
知のものであり、新規なものであつても既知の化
合物と同様に、例えば下記の反応式 式中、 R2,R3,R4,R5及びZは前記の意味を有す
る、 に従い合成することができる〔詳細については例
えばY,Nagao,etal;Chemical Abstract,
53、2529g(1959)及びY.Nagao,etal;
Tetrahedron Letters,23、201(1982)参照〕。 本発明により提供される前記式()の化合物
はカルボン酸のカルボキシル基の活性化剤とし
て、カルボン酸が関与する各種の化学反応におい
て有利に使用することができる。以下、本発明の
式()の化合物を利用した化学反応についてさ
らに詳細に説明する。 (1) 各種のβ−アミノ酸の分子内アミド化(環
化)によるアゼチジノン誘導体の合成: 式中、 R10,R11,R12,R13及びR14はそれぞれ独立に
水素原子又は反応に直接関与しない任意の置換
基、例えば、アルキル、シクロアルキル、アリー
ル、アラルキル、アルケニル、アルキニル、複素
環、アシル化アミノは保護されたアミノ、保護さ
れたカルボキシル、アルコキシ、アルキルチオ、
場合により保護されていてもよい水酸基、保護さ
れたメルカプト、カルバモイル、カルバモイルオ
キシ等の基を表わす。 上記式(A)のβ−アミノ酸の分子内アミド化は、
通常適当な不活性溶媒、例えばテトラヒドロフラ
ン、ジオキサン等のエーテル類;クロロホルム、
塩化メチレン、1,2−ジクロルエタン等のハロ
ゲン化炭化水素類;アセトニトリル、ジメチルホ
ルムアミド、ピリジン、酢酸エチル等又はこれら
の少なくとも1種と水との混合溶媒中、好ましく
は塩基の存在下に、式(A)のβ−アミノ酸を式
()の化合物と接触させることにより行なうこ
とができる。本分子内アミド化反応の温度は式(A)
のβ−アミノ酸及び式()の化合物の化合物の
種類等に応じて広範に変えることができるが、一
般にはほぼ室温乃至反応混合物の還流温度間の温
度を使用することができる。 式()の化合物は式(A)のβ−アミノ酸1モル
に対して一般に1〜10モル、好ましくは1〜5モ
ルの割合で使用するのが好都合である。また、塩
基は式(A)のβ−アミノ酸1モルに対して一般に1
〜10モル、好ましくは1〜5モルの割合で使用す
ることができる。ここで好適に使用できる塩基と
しては、例えば、炭酸ナトリウム、炭酸カリウ
ム、トリエチルアミン、ジイソプロピル、エチル
アミン、ピリジン、ジメチルアミノピリジン、キ
ノリン、2,6−ルチジン等が挙げられる。 上記分子内アミド化は上記条件下に通常10分〜
50時間、より一般的には0.5〜30時間程度で終了
させることができる。 (2) カルボン酸から活性アミドの合成及び該活性
アミドを経由する各種カルボン酸誘導体の合
成: 式中、 R15はカルボン酸残基、例えば直鎖状、分岐鎖
状もしくは環状のアルキル、アルケニルもしくは
アルキニル基、アリール基、アラルキル基又は複
素環式基等を表わし、これらの基はさらに反応に
関与しない原子又は原子団、例えば、ハロゲン原
子、シアノ基、ニトロ基、保護された水酸基、保
護されたメルカプト基、アルコキシカルボニル基
等で置換されていてもよく; R2,R3,R4,R5及びZは前記の意味を有す
る。 上記式(C)のカルボン酸と式()の化合物との
反応は、式(A)のβ−アミノ酸の式()の化合物
による処理について前(1)項に述べたとほぼ同様の
条件下に実施することができ、これにより式(D)の
活性アミドが得られる。この活性アミドは下記反
応式に示すように、還応、或いはグリニヤール試
薬、アミン、アルコール、チオール等の反応に付
すことにより各種のカルボン酸誘導体に導くこと
ができる。 上記反応式に示される各反応はそれ自体公知の
方法により実施することができ、例えば、Y.
Nagao et al,J.Chem.Soc.Chem.Com.,330
(1978)及びY.Nagao et al,Tetrehedron
Letters,21、841(1981)に記載の方法により行
なうことができる。 また、式()の化合物はβ−アミノ酸の分子
内アミド化のみならず、他のアミノ酸の分子内ア
ミド化による環状モノアミドの合成(下記反応式
参照)、或いはジカルボン酸とジアミンとのア
ミド化による環状ジアミドの合成における該ジカ
ルボン酸の活性化(下記反応式参照)に際して
も有利に用いることができる。 これらの環状モノアミド及び環状ジアミドの合
成反応はそれ自体公知の方法により行なうことが
でき、例えば、Y.Nagao etal,Chemistry
Letters,159(1980)に記載の方法により行なう
ことができる。 さらに本発明の式()の化合物はペプチド合
成におけるアミノ酸のカルボキシル基の活性化試
薬として使用することができる。 さらに、R2,R3,R4及びR5のうちのいずれか
1つが水素原子以外の前記定義の基を表わす場合
の式()の化合物は不斉炭素を1個又は2個有
しており、光学活性体として存在することができ
る。そのような光学活性の式()の化合物は該
光学活性化合物をキラルテンプレートとする不斉
アルドール縮合や不斉デイールスアルダー反応等
によりプロスタグランジン、インドールアルカロ
イド、カルコマイシン等の有用な天然物の合成に
利用することが考えられる。そのような不斉合成
の1例を後記参考例2に示す。 以下実施例により本発明をさらに詳細に説明す
る。 実施例1:(+)フエニルクロロホスホニツク−
N−(2−チオキソ−4−エチル−1,3−
オキサゾリジド) (−)2−チオキソ−4−エチル−1,3−オ
キサゾリジン(1.31g、0.01モル)及びトリエチ
ルアミン(1.2g、0.012モル)のジクロルメタン
(20ml)溶液にフエニルホスホン酸ジクロリド
(1.95g、0.01モル)のジクロルメタン(5ml)
溶液を加え、室温で24時間撹拌した。溶媒を減圧
留去した後、残渣をシリカゲルカラムクロマトグ
ラフイー(溶出液:クロロホルム)で精製し、黄
色油状物(2.1g)を得た:収率73% 〔α〕20 D(c=1.0、CHCl3):+110.3゜ NMR(CDCl3、ppm):1.00(m、3H)、2.05(m、
2H)、4.56(m、3H)、7.56(m、3H)、8.00
(m、2H) 元素分析値:C11H13ClNO2PSとして C H Cl N S 計算値(%) 45.60 4.52 12.24 4.84 11.07 実測値(%) 45.41 4.48 12.01 4.89 10.97 以下の化合物を、上記実施例1と同様の方法に
従い、対応する複素環化合物をフエニルホスホン
酸ジクロリドと反応させることにより合成した。
出発複素環化合物名及び生成物の物性値を以下に
示す。 フエニルクロロホスホニツク−N−(2−チオ
キソ−1,3−チアゾリジド) 2−チオキソ−1,3−チアゾリジンから黄色
油状物 NMR(CDCl3、ppm):3.50(m、2H)、4.70(m、
2H)、7.30〜8.20(m、5H) 元素分析値:C9H9ClNOPS2として、 C H Cl N S 計算値(%) 38.92 3.27 12.77 5.04 23.09 実測値(%) 39.15 3.35 12.90 5.06 22.95 フエニルクロロホスホニツク−N−(2−チオ
キソ−1,3−オキサゾリジド) 2−チオキソ−1,3−オキサゾリジンから黄
色油状物 NMR(CDCl3、ppm):4.40(m、2H)、4.70(m、
2H)、7.40〜8.25(m、5H) 元素分析値:C9H9ClNO2PSとして C H Cl N S 計算値(%) 41.31 3.47 13.55 5.35 12.25 実測値(%) 41.09 3.48 13.60 5.31 12.18 フエニルクロロチオホスホニツク−N−(2−
チオキソ−1,3−オキサゾリジド) 2−チオキソ−1,3−オキサゾリジンから 融点:110〜113℃ NMR(CDCl3、ppm):4.30〜4.70(m、4H)、
7.40〜8.20(m、5H) 元素分析値:C9H9ClNOPS2として C H Cl N S 計算値(%) 38.92 3.27 12.77 5.04 23.09 実測値(%) 38.72 3.10 12.90 5.01 23.16 フエニルクロロホスホニツク−N−(2−チオ
キソ−4,4−ジメチル−1,3−オキサゾリ
ジド) 2−チオキソ−4,4−ジメチル−1,3−オ
キサゾリジンから収率70%。 融点:143〜146℃ NMR(CDCl3、ppm):1.82(d、6H)、4.33(8、
2H)、7.56(m、3H)、7.93(m、2H) 元素分析値:C11H13ClNO2PSとして、 C H Cl N S 計算値(%) 45.60 4.52 12.24 4.84 11.07 実測値(%) 45.44 4.54 12.15 4.73 11.05 (+)フエニルクロロホスホニツク−N−(2
−チオキソ−4−メチル−5−フエニル−1,
3−オキサゾリジド) (+)4−チオキソ−4−メチル−5−フエニ
ル−1,3−オキサゾリジンから。 黄色油状物 〔α〕20 D(c=1.0、CHCl3):+110.3゜ NMR(CDCl3、ppm):1.13(d、3H)、5.06(m、
1H)、5.96(d、1H)、7.53〜8.00(m、10H) 元素分析値:C16H15ClNO2PSとして C H Cl N S 計算値(%) 54.63 4.30 10.08 3.98 9.11 実測値(%) 54.57 4.21 10.15 4.08 9.03 (−)フエニルクロロホスホニツク−N−(2
−チオキソ−4−メトキシカルボニル−1,3
−オキサゾリジド) 2−チオキソ−4−メトキシカルボニル−1,
3−オキサゾリジンから。 黄色油状物 〔α〕20 D(c=1.23、CHCl3):−41.7゜ NMR(CDCl3、ppm):3.90(s、3H)、4.30〜
5.40(m、3H)、7.40〜8.40(m、5H) 元素分析値:C11H11ClNO4PSとして C H Cl N S 計算値(%) 41.33 3.47 11.09 4.38 10.03 実測値(%) 41.28 3.45 11.32 4.57 10.15 (−)フエニルクロロホスホニツク−N−(2
−チオキソ−4−メトキシカルボニル−1,3
−チアゾリジド) (−)2−チオキソ−4−メトキシカルボニル
−1,3−チオゾリジンから。 〔α〕20 D(c=1.27、CHCl3):−90.0゜ NMR(CDCl3、ppm):4.00(s、3H)、4.90(d、
2H)、5.45(t、1H)、7.40〜8.70(m、5H) 元素分析値:C11H11ClNO3PS2として C H Cl N S 計算値(%) 39.35 3.30 10.56 4.17 19.10 実測値(%) 39.28 3.19 10.51 4.11 19.01 実施例2:(+)フエニルクロロホスホリツク−
N−(2−チオキソ−4−メチル−5−フエ
ニル−1,3−オキサゾリジド (+)2−チオキソ−4−メチル−5−フエニ
ル−1,3−オキサゾリジン(1.93g、0.01モ
ル)のジクロルメタン(20ml)溶液にトリエチル
アミン(1.2g、0.012モル)を加え、続いて、フ
エニルリン酸ジクロリド(2.1g、0.01モル)の
ジクロルメタン(5ml)溶液を加え、室温で24時
間撹拌した。反応混合物を実施例1と同様の方法
で後処理し、黄色油状物(3.0g)を得た:収率
82%。 〔α〕20 D(c=0.52、CHCl3):+39.9゜ NMR(CDCl3、ppm):1.10(d、3H)、4.90(dq、
1H)、5.90(d、1H)、7.43(m、10H) 元素分析値:C16H15ClNO3PS C H Cl N S 計算値(%) 52.25 4.11 9.64 3.81 8.72 実測値(%) 52.18 4.02 9.50 3.79 8.68 上記実施例2と同様の方法により、以下の化合
物をフエニルリン酸ジクロリドと対応する複素環
化合物とを反応させることによつて合成した。出
発複素環化合物名と生成物の物性値を以下に示
す。 フエニルクロロホスホリツク−N−(2−チオ
キソ−1,3−オキサゾリジド) 2−チオキソ−1,3−オキサゾリジンから。 黄色油状物 NMR(CDCl3、ppm:4.10〜4.80(m、4H)、7.40
(m、5H) 元素分析値:C9H9ClNO3PS C H Cl N S 計算値(%) 39.93 3.27 12.77 5.04 11.55 実測値(%) 39.20 3.21 12.59 5.16 11.48 (−)フエニルクロロホスホリツク−N−(2
−チオキソ−4−エチル−1,3−オキサゾリ
ジド) (−)2−チオキソ−4−エチル−1,3−オ
キサゾリジンから。 〔α〕20 D(c=3.1、CHCl3):−30.4゜ NMR(CDCl3、ppm):1.00(t、3H)、1.90(dq、
2H)、4.30〜4.80(m、3H)、7.35(m、5H) 元素分析値:C11H13ClNO3PSとして、 C H Cl N S 計算値(%) 43.22 4.29 11.60 4.58 10.49 実測値(%) 43.10 4.11 11.53 4.55 10.25 フエニルクロロホスホリツク−N−(2−チオ
キソ−1,3−チアゾリジド) 2−チオキソ−1,3−オキサゾリジドから黄
色油状物 NMR(CDCl3、ppm):3.50(m、2H)、4.63(m、
2H)、7.36(m、5H) 元素分析値:C9H9ClNO2PS2として C H Cl N S 計算値(%) 36.80 3.09 12.07 4.77 21.83 実測値(%) 36.85 3.00 12.01 4.58 21.71 参考例1:β−ラクタムの合成 −1 N−ベンジル−2−アゼチジノン N−ベンジルアミノプロピオン酸(180mg、1
ミリモル)及びフエニルクロロホスホリツク−N
−(2−チオキソ−4−エチル−1,3−オキサ
ゾリジド)(579mg、2ミリモル)のアセトニトリ
ル(200ml)溶液にジイソプロピルエチルアミン
(0.9ml)を加え、1時間還流した。溶媒を減圧留
去し、残渣を3%硝酸銀含有シリカゲルカラムク
ロマトグラフイー(溶出液:酢酸エチル)により
精製して、無色油状物(115mg)を得た:収率71
% NMR(CDCl3、ppm):2.95(2H、t、J=(4)、
3.15(2H、t、J=4)、4.38(2H、s)、
7.31(5H、m) −2 4−フエニル−3−ベンジル−2−ア
ゼチジノン 3−フエニル−3−ベンジルアミノプロピオン
酸(125mg、0.5ミリモル)及びフエニルクロロホ
スホニツク−N−(2−チオキソ−4−メチル−
5−フエニル−1,3−オキサゾリジド)(352
mg、1ミリモル)のアセトニトリル(100ml)溶
液にジイソプロピルエチルアミン(0.45ml)を加
え1時間還流した。参考例−1と同様の後処理
により、微黄色油状物(86mg)を得た:収率72% NMR(CDCl3、ppm):2.88(1H、brd、J=15)、
3.37(1H、dd、J=15.5)、3.78(1H、d、J
=15)、4.43(1H、m)、4.78(1H、d、J=
15)、7.3(10H、m) 元素分析値:C16H15NOとして C H N 計算値(%) 80.98 6.37 5.90 実測値(%) 81.13 6.24 5.87 −3 3−〔(Z)−2−(2−トリチルアミノ
チアゾール−4−イル)−2−メトキシイミノ
アセタミド〕−N−ベンジル−2−アゼチジノ
ン 2−〔(Z)−2−(2−トリチルアミノチアゾー
ル−4−イル)−2−メトキシイミノアセタミド〕
−3−ベンジルアミノプロピオン酸(62mg、0.1
ミリモル)及びフエニルクロロホスホニツク−N
−(2−チオキソ−4,4−ジメチル−1,3−
オキサゾリジン)(58mg、0.2ミリモル)のアセト
ニトリル(20ml)溶液にジイソプロピルエチルエ
チルアミン(0.09ml)を加え、4時間還流した。
参考例−1と同様の方法の方法で後処理し、標
題化合物(36.9mg)を得た:収率62% NMR(CDCl3、ppm):3.82(5H、m)、4.40(3H、
m)、6.80(1H、s)、7.35(20H、m) 参考例2:不斉アルドール縮合 2−1 (+)3−プロピオニル−4−エチル
−1,3−オキサゾリジン−2−チオン プロピオン酸(7.4g、0.1モル)、フエニルク
ロロホスホニツク−N−(2−チオキソ−4−エ
チル−1,3−オキサゾリジド)(29.0g、0.1モ
ル)及びトリエチルアミン(15g)のジメチルホ
ルムアミド(150ml)溶液を室温で24時間撹拌し
た。溶媒を減圧留去し、残渣をシリカゲルカラム
クロマトグラフイー(溶出液:ベンゼン)で精製
し微黄色油状生成物(12.9g)を得た:収率64% 〔α〕20 D(c=1.0、CHCl3):+108゜ NMR(CDCl3、ppm):1.06(m、6H)、1.83(m、
2H)、3.23(m、2H)、4.30(m、3H) 2−2 (−)3−ヒドロキシ−3−フエニル
−2−メチルプロピオン酸メチル 2−1からの生成物(384mg、2ミリモル)の
ジクロルメタン(4ml)溶液を0℃に冷却し、撹
拌下にトリフルオロメタンスルホン酸9−ボラビ
シクロ〔3,3,1〕ノナン(0.6g)及びジイ
ソプロピルエチルアミン(315mg、2.44ミリモル)
を加え、0℃で30分撹拌した。次に反応液を−78
℃に冷却し、ベンズアルデヒド(0.24g、2.26ミ
リモル)を加え、この温度で30分更に室温で1.5
時間撹拌した。反応液をPH7.0のリン酸緩衝液
(5ml)、メタノール(11ml)及び30%過酸化水素
水(5ml)の混液に0℃で加え、1時間撹拌し
た。メタノールを減圧留去した後、エーテル油出
し、抽出液を無水硫酸ナトリウムで乾燥後、エー
テルを減圧留去した。残渣をメタノール(9ml)
に溶解し、0℃に冷却し、ナトリウムメトキシド
(28%メタノール溶液)(0.3ml)を加え、5分間
撹拌した。反応液を飽和食塩水中に注ぎ、ジクロ
ルメタンで抽出し、無水硫酸ナトリウムで乾燥
後、溶媒を減圧下に留去した。残渣をシリカゲル
カラムクロマトグラフイー(溶出液:n−ヘキサ
ン/エーテル=7/3)で精製し、無色油状物
(331mg)を得た:収率84% 〔α〕25 D(c0.12、CHCl3):−20.5゜ NMR(CDCl3、ppm):1.12(d、3H)、2.77(m、
1H)、3.70(s、3H)、5.13(d、1H)、7.41
(s、5H) 参考例3:N−ブチルベンズアミド及びベンズア
ルデヒドの合成 3−1 3−ベンゾイル−2−チオキソ−1,
3−チアゾリジン フエニルクロロホスホニツク−N−(2−チオ
キソ−1,3−チアゾリジド)(1.39g、5ミリ
モル)のアセトニトリル(50ml)溶液に、安息香
酸(6.10g、5ミリモル)及びジイソプロピルエ
チルアミン(2.7ml)を加え1時間還流した。溶
媒を減圧留去し、残渣をシリカゲルクロマトグラ
フイー(溶出液:n−ヘキサン/酢酸エチル=
3/1)により精製し黄色結晶(0.98g)を得
た:収率88%、融点167−168℃ NMR(CDCl3、ppm):3.45(t、2H)、4.54(t、
2H)、7.25〜7.80(m、5H) MS:m/e223(M+) 3−2 N−ブチルベンズアミド 3−ベンゾイル−2−チオキソ−1,3−チア
ゾリジン(2.23g、0.01モル)のジクロルメタン
(15ml)溶液中に、室温撹拌下、n−ブチルアミ
ン(0.8g、0.011モル)のジクロルメタン(5
ml)溶液を加え、はじめの黄色が消えるまで撹拌
を続けた。溶媒を減圧留去後残渣を少量のクロロ
ホルムに溶解し、10%硝酸銀含有シリカゲルカラ
ムクロマトグラフイーにより精製して、無色油状
生成物(1.70g)を得た:収率96% NMR(CDCl3、ppm):0.91(3H、t)、1.1〜1.8
(4H、m)、3.37(2H、q)、7.0〜7.9(6H、
m) 3−3 ベンズアルデヒド 3−ベンゾイル−2−チオキソ−1,3−チア
ゾリジン(112mg、0.5ミリモル)をn−ヘキサン
(12ml/ジクロルメタン(12ml)の無水混合溶媒
に溶解し、窒素気流下、−50℃で、撹拌しながら、
ジイソブチルアルミニウムヒドリドの20%n−ヘ
キサン溶解(1ml)を滴下し、続いて、最初の黄
色が消えるまで撹拌を続けた(約5分間)。反応
液に少量のメタノールを加え、炭酸ナトリウム水
溶液及び水で洗浄した後、溶媒を減圧留去した。
残渣をシリカゲルカラムクロマトグラフイにより
精製し、ベンズアルデヒド(45mg)を無色油状物
として得た:収率85%
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to novel 1,3-oxazolidine- or 1,3-thiazolidine-2-thione compounds, and more particularly to 1,3-oxazolidine- or 1,3-thiazolidine-2-thiones. This invention relates to a halogenated phosphorus derivative of a compound and a method for producing the same. It has already been reported that 1,3-thiazolidine-2-thione has an excellent function as an activator for the carboxyl group of carboxylic acid. for example,
Y.Nagao andE.FUJITA, Heterocycles, 17 ,
See 537 (1982). This document describes that 3-acyl-1,3-thione obtained by dehydrating and condensing carboxylic acid and 1,3-thiazolidine-2-thione with dicyclohexylcarbodiimide (DCC) in the presence of a basic catalyst such as pyridine. Thiazolidine-
2-thione is easily converted into alcohol when treated with sodium borohydride, converted into aldehyde when treated with diisobutylaluminum hydride, and selectively converted into aldehyde when treated with various amines, amino alcohols, aminothiols, etc. It has been described that the desired amides can be derived in high yields, and thus 1,3-thiazolidine-2-thione has been shown to be extremely useful as an activating reagent for carboxylic acids.
However, 1,3-thiazolidine-2-thione requires a condensing agent such as DCC when activating the carboxylic acid, and there are some problems when using this reagent industrially. Therefore, the present inventors conducted extensive research in search of a carboxylic acid activation reagent that does not require secondary reagents such as DCC, and found that 1,3-oxazolidine- Alternatively, the inventors discovered that halogenated phosphorus derivatives of 1,3-thiazolidin-2-one compounds are extremely suitable as activating reagents for carboxylic acids, leading to the completion of the present invention. Therefore, according to the present invention, the general formula In the formula, R 1 represents a phenyl group or a phenoxy group; R 2 and R 3 each independently represent a hydrogen atom, a lower alkyl group, or a lower alkoxycarbonyl group; R 4 and R 5 each independently represent a hydrogen atom or a phenyl group; represents a group; X represents a chlorine atom; Y and Z each independently represent an oxygen or sulfur atom; A compound represented by is provided. In this specification, the term "lower" refers to groups or compounds to which this term is attached, in which the number of carbon atoms is 6 or less;
This means that the number is preferably 4 or less. In the above formula (), the "lower alkyl group" may be linear or branched, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl,
tert-butyl, n-pentyl, isoamyl, n-
Examples include hexyl group. The lower alkyl moiety in the "lower alkoxycarbonyl group" has the above meaning, and specific examples of the lower alkoxycarbonyl group include methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, iso-propoxycarbonyl, etc. . Representative examples of the compound of the formula () are as follows. Phenylchlorothiophosphonic-N-(2-
thioxo-1,3-thiazolidide), phenylchlorothiophosphonic-N-(2-
thioxo-1,3-oxazolidide), phenylchlorophosphonic-N-(2-thioxo-1,3-thiazolidide), phenylchlorophosphonic-N-(2-thioxo-1,3-oxazolidide), Enylchlorophosphonic-N-(2-thioxo-4-ethyl-1,3-oxazolidide), Phenylchlorophosphonic-N-(2-thioxo-4-methyl-5-phenyl-1,3-oxazolidide) , phenylchlorophosphonic-N-(2-thioxo-4-methoxycarbonyl-1,3-oxazolidide), phenylchlorophosphonic-N-(2-thioxo-4,4-dimethyl-1,3-oxazolidide) ), phenylchlorophosphonic-N-(2-thioxo-4-methoxycarbonyl-1,3-thiazolidide), phenylchlorophosphonic-N-(2-thioxo-1,3-oxazolidide), phenylchloro Phosphoric-N-(2-thioxo-1,3-thiazolidide), Phenylchlorophosphoric-N-(2-thioxo-4-ethyl-1,3-oxazolidide), Phenylchlorophosphoric-N-( 2-thioxo-4-methyl-5-phenyl-1,3-oxazolidide), phenylchlorophosphonic-N-(2-thioxo-4-methoxycarbonyl-1,3-thiazolidide), phenylchlorophosphonic- N-(2-thioxo-4,4-dimethyl-1,3-oxazolidide), phenylchlorophosphonic-N-(2-thioxo-4-methyl-1,3-oxazolidide), phenylchlorophosphonic- N-(2-thioxo-4-isopropyl-1,3-oxazolidide), phenylchlorophosphonic-N-(2-thioxo-5-phenyl-1,3-oxazolidide), and the like. According to the invention, the compound of formula () is of the general formula In the formula, R 1 , X and Y have the above meanings, and a compound of the general formula In the formula, R 2 , R 3 , R 4 , R 5 and Z have the above-mentioned meanings, and can be produced by reacting the compound in the presence of a base. The reaction between the compound of formula () and the compound of formula () is generally carried out in an inert organic solvent, such as ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran, dioxane, and diglyme; dimethylformamide, dimethylacetamide, hexamethylphosphoramide, etc. amides; hydrocarbons such as benzene, toluene, xylene, and cyclohexane; halogenated hydrocarbons such as dichloromethane and carbon tetrachloride; and dimethyl sulfoxide. The reaction temperature is not strictly limited and can be varied widely depending on the type of starting materials, etc., but generally the temperature is within the range of about -20°C to about 40°C, preferably about 0°C to room temperature. can be used. The amount of the compound of formula () to be used for the compound of formula () is not strictly limited and can vary widely depending on the type of compound of formula () and (), but generally, the amount of the compound of formula () used is not strictly limited. It is advantageous to use 1 to 5 mol, in particular 1 to 2 mol, of the compound of formula () per mol of compound. The above reaction can be carried out in the presence of a base,
Examples of bases that can be used include alkali metal hydrides such as sodium hydride and potassium hydride; alkali metal carbonates such as potassium carbonate and sodium carbonate;
Metal alkoxides such as potassium t-butoxide; amines such as diisopropylethylamine and triethylamine; these are represented by the formula ()
It can be used generally in a proportion of 1 to 10 mol, preferably 1 to 6 mol, per 1 mol of the compound. Under the conditions mentioned above, the reaction usually lasts for 10 minutes to 50 hours.
More generally, it can be completed in about 45 minutes to 25 hours. The resulting compound of formula () can be separated from the reaction mixture and purified by methods known per se, such as recrystallization, chromatography, extraction, distillation, etc. The phosphorus compound of the formula () used as a starting material in the above method is a known one, and the phosphorus compound of the formula ()
In, X is preferably a chlorine atom. In addition, at least a part of the compound of formula () is known, and even if it is new, it can be treated as a known compound, for example, by the following reaction formula. In the formula, R 2 , R 3 , R 4 , R 5 and Z have the above meanings, and can be synthesized according to [For details, see for example Y, Nagao, etal; Chemical Abstract,
53, 2529g (1959) and Y. Nagao, etal;
See Tetrahedron Letters, 23 , 201 (1982)]. The compound of formula () provided by the present invention can be advantageously used as an activator for the carboxyl group of carboxylic acid in various chemical reactions involving carboxylic acid. Hereinafter, chemical reactions using the compound of formula () of the present invention will be explained in more detail. (1) Synthesis of azetidinone derivatives by intramolecular amidation (cyclization) of various β-amino acids: In the formula, R 10 , R 11 , R 12 , R 13 and R 14 are each independently a hydrogen atom or any substituent that does not directly participate in the reaction, such as alkyl, cycloalkyl, aryl, aralkyl, alkenyl, alkynyl, hetero ring, acylated amino is protected amino, protected carboxyl, alkoxy, alkylthio,
Represents a hydroxyl group, protected mercapto, carbamoyl, carbamoyloxy, or other group that may be optionally protected. The intramolecular amidation of the β-amino acid of the above formula (A) is
Usually suitable inert solvents such as ethers such as tetrahydrofuran and dioxane; chloroform,
In a halogenated hydrocarbon such as methylene chloride, 1,2-dichloroethane; acetonitrile, dimethylformamide, pyridine, ethyl acetate, etc. or a mixed solvent of at least one of these and water, preferably in the presence of a base, the formula ( This can be carried out by contacting the β-amino acid of A) with a compound of formula (). The temperature of this intramolecular amidation reaction is expressed by formula (A)
The temperature can be varied widely depending on the type of the β-amino acid and the compound of formula (), but generally a temperature between about room temperature and the reflux temperature of the reaction mixture can be used. It is convenient to use the compound of formula () in a proportion of generally 1 to 10 mol, preferably 1 to 5 mol, per 1 mol of β-amino acid of formula (A). In addition, the base is generally 1 mole of the β-amino acid of formula (A).
It can be used in a proportion of 1 to 10 mol, preferably 1 to 5 mol. Examples of bases that can be suitably used here include sodium carbonate, potassium carbonate, triethylamine, diisopropyl, ethylamine, pyridine, dimethylaminopyridine, quinoline, and 2,6-lutidine. The above intramolecular amidation is usually carried out for 10 minutes or more under the above conditions.
It can be completed in 50 hours, more commonly 0.5 to 30 hours. (2) Synthesis of active amide from carboxylic acid and synthesis of various carboxylic acid derivatives via the active amide: In the formula, R 15 represents a carboxylic acid residue, such as a linear, branched, or cyclic alkyl, alkenyl, or alkynyl group, aryl group, aralkyl group, or heterocyclic group; May be substituted with non-participating atoms or atomic groups, such as halogen atoms, cyano groups, nitro groups, protected hydroxyl groups, protected mercapto groups, alkoxycarbonyl groups; R 2 , R 3 , R 4 , R 5 and Z have the meanings given above. The reaction between the carboxylic acid of formula (C) above and the compound of formula () is carried out under substantially the same conditions as described in the previous section (1) for the treatment of the β-amino acid of formula (A) with the compound of formula (). The active amide of formula (D) is obtained. This activated amide can be converted into various carboxylic acid derivatives by reduction or reaction with a Grignard reagent, amine, alcohol, thiol, etc., as shown in the reaction formula below. Each reaction shown in the above reaction formula can be carried out by a method known per se. For example, Y.
Nagao et al, J.Chem.Soc.Chem.Com., 330
(1978) and Y. Nagao et al, Tetrehedron
Letters, 21 , 841 (1981). In addition, the compound of formula () can be synthesized not only by intramolecular amidation of β-amino acid, but also by intramolecular amidation of other amino acids to synthesize a cyclic monoamide (see reaction formula below), or by amidation of dicarboxylic acid and diamine. It can also be advantageously used in the activation of the dicarboxylic acid in the synthesis of cyclic diamide (see reaction formula below). The synthesis reaction of these cyclic monoamides and cyclic diamides can be carried out by methods known per se. For example, Y. Nagao etal, Chemistry
Letters, 159 (1980). Furthermore, the compound of formula () of the present invention can be used as a reagent for activating the carboxyl group of an amino acid in peptide synthesis. Furthermore, when any one of R 2 , R 3 , R 4 and R 5 represents a group as defined above other than a hydrogen atom, the compound of formula () has one or two asymmetric carbon atoms. and can exist as an optically active form. Such an optically active compound of formula () can be used to produce useful natural products such as prostaglandins, indole alkaloids, and calcomycin by asymmetric aldol condensation or asymmetric Diels-Alder reaction using the optically active compound as a chiral template. It is possible to use it for synthesis. An example of such asymmetric synthesis is shown in Reference Example 2 below. The present invention will be explained in more detail with reference to Examples below. Example 1: (+) Phenylchlorophosphonic
N-(2-thioxo-4-ethyl-1,3-
oxazolidide) (-)2-thioxo-4-ethyl-1,3-oxazolidine (1.31 g, 0.01 mol) and triethylamine (1.2 g, 0.012 mol) in dichloromethane (20 ml) was dissolved in phenylphosphonic acid dichloride (1.95 g, 0.01 mol). Dichloromethane (5ml)
The solution was added and stirred at room temperature for 24 hours. After evaporating the solvent under reduced pressure, the residue was purified by silica gel column chromatography (eluent: chloroform) to obtain a yellow oil (2.1 g): yield 73% [α] 20 D (c = 1.0, CHCl 3 ): +110.3°NMR (CDCl 3 , ppm): 1.00 (m, 3H), 2.05 (m,
2H), 4.56 (m, 3H), 7.56 (m, 3H), 8.00
(m, 2H) Elemental analysis value: C 11 H 13 ClNO 2 PS Calculated value (%) 45.60 4.52 12.24 4.84 11.07 Actual value (%) 45.41 4.48 12.01 4.89 10.97 The following compounds were used in the above example The corresponding heterocyclic compound was synthesized by reacting it with phenylphosphonic acid dichloride according to a method similar to 1.
The name of the starting heterocyclic compound and the physical property values of the product are shown below. Phenylchlorophosphonic-N-(2-thioxo-1,3-thiazolidide) Yellow oil NMR from 2-thioxo-1,3-thiazolidine ( CDCl3 , ppm): 3.50 (m, 2H), 4.70 (m,
2H), 7.30-8.20 (m, 5H) Elemental analysis value: C 9 H 9 ClNOPS 2 , C H Cl N S Calculated value (%) 38.92 3.27 12.77 5.04 23.09 Actual value (%) 39.15 3.35 12.90 5.06 22.95 Phenyl Chlorophosphonic-N-(2-thioxo-1,3-oxazolidide) 2-thioxo-1,3-oxazolidine to yellow oil NMR ( CDCl3 , ppm): 4.40 (m, 2H), 4.70 (m,
2H), 7.40-8.25 (m, 5H) Elemental analysis value: C 9 H 9 ClNO 2 PS Calculated value (%) 41.31 3.47 13.55 5.35 12.25 Actual value (%) 41.09 3.48 13.60 5.31 12.18 Phenyl Chlorothiophosphonic-N-(2-
Thioxo-1,3-oxazolidide) From 2-thioxo-1,3-oxazolidine Melting point: 110-113°C NMR ( CDCl3 , ppm): 4.30-4.70 (m, 4H),
7.40-8.20 (M, 5h) element analysis values: C 9 h 9 Clnops 2 C H Clnops 2 C H CL N S calculation value (%) 38.92 3.27 12.77 5.09 Actual measurement value (%) 38.72 3.10 12.90 5.01 23.16 Fenylclorohos Honitsuku N-(2-thioxo-4,4-dimethyl-1,3-oxazolidide) Yield 70% from 2-thioxo-4,4-dimethyl-1,3-oxazolidine. Melting point: 143-146°C NMR ( CDCl3 , ppm): 1.82 (d, 6H), 4.33 (8,
2H), 7.56 (m, 3H), 7.93 (m, 2H) Elemental analysis value: As C 11 H 13 ClNO 2 PS, C H Cl N S Calculated value (%) 45.60 4.52 12.24 4.84 11.07 Actual value (%) 45.44 4.54 12.15 4.73 11.05 (+) Phenylchlorophosphonic-N-(2
-thioxo-4-methyl-5-phenyl-1,
3-oxazolidide) (+) From 4-thioxo-4-methyl-5-phenyl-1,3-oxazolidine. Yellow oil [α] 20 D (c=1.0, CHCl 3 ): +110.3° NMR (CDCl 3 , ppm): 1.13 (d, 3H), 5.06 (m,
1H), 5.96 (d, 1H), 7.53-8.00 (m, 10H) Elemental analysis value: C H Cl N S Calculated value (%) as C 16 H 15 ClNO 2 PS 54.63 4.30 10.08 3.98 9.11 Actual value (%) 54.57 4.21 10.15 4.08 9.03 (-) Phenylchlorophosphonic-N-(2
-thioxo-4-methoxycarbonyl-1,3
-oxazolidide) 2-thioxo-4-methoxycarbonyl-1,
From 3-oxazolidine. Yellow oil [α] 20D (c=1.23, CHCl3 ): -41.7°NMR ( CDCl3 , ppm): 3.90 (s, 3H), 4.30 ~
5.40 (m, 3H), 7.40 - 8.40 (m, 5H) Elemental analysis value: C 11 H 11 ClNO 4 As PS C H Cl N S Calculated value (%) 41.33 3.47 11.09 4.38 10.03 Actual value (%) 41.28 3.45 11.32 4.57 10.15 (-)Phenylchlorophosphonic-N-(2
-thioxo-4-methoxycarbonyl-1,3
-thiazolidide) From (-)2-thioxo-4-methoxycarbonyl-1,3-thiozolidine. [α] 20 D (c=1.27, CHCl 3 ): −90.0° NMR (CDCl 3 , ppm): 4.00 (s, 3H), 4.90 (d,
2H), 5.45 (t, 1H), 7.40-8.70 (m, 5H) Elemental analysis value: C H Cl N S Calculated value (%) as C 11 H 11 ClNO 3 PS 2 39.35 3.30 10.56 4.17 19.10 Actual value (% ) 39.28 3.19 10.51 4.11 19.01 Example 2: (+) Phenylchlorophosphoric
N-(2-thioxo-4-methyl-5-phenyl-1,3-oxazolidide To a solution of (+)2-thioxo-4-methyl-5-phenyl-1,3-oxazolidine (1.93 g, 0.01 mol) in dichloromethane (20 ml) was added triethylamine (1.2 g, 0.012 mol), followed by phenyl phosphate. A solution of dichloride (2.1 g, 0.01 mol) in dichloromethane (5 ml) was added and stirred at room temperature for 24 hours. The reaction mixture was worked up in the same manner as in Example 1 to give a yellow oil (3.0 g): Yield
82%. [α] 20 D (c=0.52, CHCl 3 ): +39.9° NMR (CDCl 3 , ppm): 1.10 (d, 3H), 4.90 (dq,
1H), 5.90 (d, 1H), 7.43 (m, 10H) Elemental analysis value: C 16 H 15 ClNO 3 PS C H Cl N S Calculated value (%) 52.25 4.11 9.64 3.81 8.72 Actual value (%) 52.18 4.02 9.50 3.79 8.68 In the same manner as in Example 2 above, the following compounds were synthesized by reacting phenylphosphoric acid dichloride and the corresponding heterocyclic compound. The name of the starting heterocyclic compound and the physical properties of the product are shown below. Phenylchlorophosphoric-N-(2-thioxo-1,3-oxazolidide) From 2-thioxo-1,3-oxazolidine. Yellow oil NMR ( CDCl3 , ppm: 4.10-4.80 (m, 4H), 7.40
(m, 5H) Elemental analysis value: C 9 H 9 ClNO 3 PS C H Cl N S Calculated value (%) 39.93 3.27 12.77 5.04 11.55 Actual value (%) 39.20 3.21 12.59 5.16 11.48 (-) Phenylchlorophosphoric- N-(2
-thioxo-4-ethyl-1,3-oxazolidide) From (-)2-thioxo-4-ethyl-1,3-oxazolidine. [α] 20 D (c=3.1, CHCl 3 ): −30.4° NMR (CDCl 3 , ppm): 1.00 (t, 3H), 1.90 (dq,
2H), 4.30-4.80 (m, 3H), 7.35 (m, 5H) Elemental analysis value: As C 11 H 13 ClNO 3 PS, C H Cl N S Calculated value (%) 43.22 4.29 11.60 4.58 10.49 Actual value (% ) 43.10 4.11 11.53 4.55 10.25 Phenylchlorophosphoric-N-(2-thioxo-1,3-thiazolidide) NMR of yellow oil from 2-thioxo-1,3-oxazolidide ( CDCl3 , ppm): 3.50 (m, 2H), 4.63 (m,
2H), 7.36 (m, 5H) Elemental analysis value: C 9 H 9 ClNO 2 PS 2 Calculated value (%) 36.80 3.09 12.07 4.77 21.83 Actual value (%) 36.85 3.00 12.01 4.58 21.71 Reference example 1 : Synthesis of β-lactam-1 N-benzyl-2-azetidinone N-benzylaminopropionic acid (180 mg, 1
mmol) and phenylchlorophosphoric-N
Diisopropylethylamine (0.9 ml) was added to a solution of -(2-thioxo-4-ethyl-1,3-oxazolidide) (579 mg, 2 mmol) in acetonitrile (200 ml), and the mixture was refluxed for 1 hour. The solvent was distilled off under reduced pressure, and the residue was purified by column chromatography on silica gel containing 3% silver nitrate (eluent: ethyl acetate) to obtain a colorless oil (115 mg): Yield 71
% NMR (CDCl 3 , ppm): 2.95 (2H, t, J = (4),
3.15 (2H, t, J=4), 4.38 (2H, s),
7.31 (5H, m) -2 4-Phenyl-3-benzyl-2-azetidinone 3-phenyl-3-benzylaminopropionic acid (125 mg, 0.5 mmol) and phenylchlorophosphonic-N-(2-thioxo-4 -Methyl-
5-phenyl-1,3-oxazolidide) (352
(mg, 1 mmol) in acetonitrile (100 ml) was added diisopropylethylamine (0.45 ml) and refluxed for 1 hour. A slightly yellow oil (86 mg) was obtained by the same post-treatment as in Reference Example-1: Yield 72% NMR (CDCl 3 , ppm): 2.88 (1H, brd, J = 15),
3.37 (1H, dd, J = 15.5), 3.78 (1H, d, J
= 15), 4.43 (1H, m), 4.78 (1H, d, J =
15), 7.3 (10H, m) Elemental analysis value: C 16 H 15 as NO C H N Calculated value (%) 80.98 6.37 5.90 Actual value (%) 81.13 6.24 5.87 -3 3-[(Z)-2-( 2-Tritylaminothiazol-4-yl)-2-methoxyiminoacetamide]-N-benzyl-2-azetidinone 2-[(Z)-2-(2-tritylaminothiazol-4-yl)-2- Methoxyiminoacetamide]
-3-Benzylaminopropionic acid (62 mg, 0.1
mmol) and phenylchlorophosphonic-N
-(2-thioxo-4,4-dimethyl-1,3-
Diisopropylethylethylamine (0.09 ml) was added to a solution of oxazolidine (58 mg, 0.2 mmol) in acetonitrile (20 ml) and refluxed for 4 hours.
Post-treatment was performed in the same manner as in Reference Example-1 to obtain the title compound (36.9 mg): yield 62% NMR (CDCl 3 , ppm): 3.82 (5H, m), 4.40 (3H,
m), 6.80 (1H, s), 7.35 (20H, m) Reference example 2: Asymmetric aldol condensation 2-1 (+) 3-propionyl-4-ethyl-1,3-oxazolidine-2-thione Propionic acid ( 7.4 g, 0.1 mol), phenylchlorophosphonic-N-(2-thioxo-4-ethyl-1,3-oxazolidide) (29.0 g, 0.1 mol) and triethylamine (15 g) in dimethylformamide (150 ml). Stirred at room temperature for 24 hours. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: benzene) to obtain a slightly yellow oily product (12.9 g): yield 64% [α] 20 D (c = 1.0, CHCl 3 ): +108°NMR (CDCl 3 , ppm): 1.06 (m, 6H), 1.83 (m,
2H), 3.23 (m, 2H), 4.30 (m, 3H) 2-2 (-) Methyl 3-hydroxy-3-phenyl-2-methylpropionate of the product from 2-1 (384 mg, 2 mmol) A dichloromethane (4 ml) solution was cooled to 0°C, and with stirring trifluoromethanesulfonic acid 9-borabicyclo[3,3,1]nonane (0.6 g) and diisopropylethylamine (315 mg, 2.44 mmol) were added.
was added and stirred at 0°C for 30 minutes. Next, add the reaction solution to -78
Cool to 1.5 °C, add benzaldehyde (0.24 g, 2.26 mmol) and incubate at this temperature for 30 min.
Stir for hours. The reaction solution was added to a mixture of phosphate buffer (5 ml) of pH 7.0, methanol (11 ml) and 30% hydrogen peroxide (5 ml) at 0°C, and stirred for 1 hour. After methanol was distilled off under reduced pressure, the ether oil was extracted, and the extract was dried over anhydrous sodium sulfate, and then the ether was distilled off under reduced pressure. Add the residue to methanol (9 ml)
The mixture was dissolved in water, cooled to 0°C, added with sodium methoxide (28% methanol solution) (0.3 ml), and stirred for 5 minutes. The reaction solution was poured into saturated brine, extracted with dichloromethane, dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (eluent: n-hexane/ether = 7/3) to obtain a colorless oil (331 mg): yield 84% [α] 25 D (c0.12, CHCl 3 ): -20.5°NMR ( CDCl3 , ppm): 1.12 (d, 3H), 2.77 (m,
1H), 3.70 (s, 3H), 5.13 (d, 1H), 7.41
(s, 5H) Reference Example 3: Synthesis of N-butylbenzamide and benzaldehyde 3-1 3-benzoyl-2-thioxo-1,
3-Thiazolidine A solution of phenylchlorophosphonic-N-(2-thioxo-1,3-thiazolidide) (1.39 g, 5 mmol) in acetonitrile (50 ml) was added with benzoic acid (6.10 g, 5 mmol) and diisopropylethylamine ( 2.7 ml) was added and refluxed for 1 hour. The solvent was distilled off under reduced pressure, and the residue was subjected to silica gel chromatography (eluent: n-hexane/ethyl acetate =
3/1) to obtain yellow crystals (0.98 g): yield 88%, melting point 167-168°C NMR (CDCl 3 , ppm): 3.45 (t, 2H), 4.54 (t,
2H), 7.25-7.80 (m, 5H) MS: m/e223 (M + ) 3-2 N-butylbenzamide 3-benzoyl-2-thioxo-1,3-thiazolidine (2.23 g, 0.01 mol) in dichloromethane ( n-butylamine (0.8 g, 0.011 mol) was added to dichloromethane (5 ml) solution under stirring at room temperature.
ml) solution and continued stirring until the initial yellow color disappeared. After evaporation of the solvent under reduced pressure, the residue was dissolved in a small amount of chloroform and purified by silica gel column chromatography containing 10% silver nitrate to obtain a colorless oily product (1.70 g): yield 96% NMR (CDCl 3 , ppm): 0.91 (3H, t), 1.1-1.8
(4H, m), 3.37 (2H, q), 7.0~7.9 (6H,
m) 3-3 Benzaldehyde 3-benzoyl-2-thioxo-1,3-thiazolidine (112 mg, 0.5 mmol) was dissolved in an anhydrous mixed solvent of n-hexane (12 ml/dichloromethane (12 ml)) and heated to −50° C. under a nitrogen stream. °C, with stirring.
A 20% solution of diisobutylaluminum hydride in n-hexane (1 ml) was added dropwise, followed by continued stirring until the initial yellow color disappeared (approximately 5 minutes). A small amount of methanol was added to the reaction mixture, and the mixture was washed with an aqueous sodium carbonate solution and water, and then the solvent was distilled off under reduced pressure.
The residue was purified by silica gel column chromatography to obtain benzaldehyde (45 mg) as a colorless oil: yield 85%.

Claims (1)

【特許請求の範囲】 1 一般式 式中、 R1はフエニル基又はフエノキシ基を表わし; R2及びR3はそれぞれ独立に水素原子、低級ア
ルキル基又は低級アルコキシカルボニル基を表わ
し; R4及びR5はそれぞれ独立に水素原子又はフエ
ニル基を表わし; Xは塩素原子を表わし; Y及びZはそれぞれ独立に酸素又は硫黄原子を
表わす、 で示される化合物。 2 一般式 式中 R1はフエニル基又はフエノキシ基を表わし; Xは塩素原子を表わし; Yは酸素又は硫黄原子を表わす、 の化合物を一般式 『 式中、 R2及びR3はそれぞれ独立に水素原子、低級ア
ルキル基又は低級アルコキシカルボニル基を表わ
し; R4及びR5はそれぞれ独立に水素原子又はフエ
ニル基を表わし; Zは酸素又は硫黄原子を表わす、 の化合物と塩基の存在下に反応させることを特徴
とする一般式 式中、 R1,R2,R3,R4,R5,X、Y及びZは上記の
意味を有する、 で示される化合物の製造方法』。
[Claims] 1. General formula In the formula, R 1 represents a phenyl group or a phenoxy group; R 2 and R 3 each independently represent a hydrogen atom, a lower alkyl group, or a lower alkoxycarbonyl group; R 4 and R 5 each independently represent a hydrogen atom or a phenyl group; represents a group; X represents a chlorine atom; Y and Z each independently represent an oxygen or a sulfur atom. 2 General formula In the formula, R 1 represents a phenyl group or a phenoxy group; X represents a chlorine atom; Y represents an oxygen or sulfur atom; In the formula, R 2 and R 3 each independently represent a hydrogen atom, a lower alkyl group, or a lower alkoxycarbonyl group; R 4 and R 5 each independently represent a hydrogen atom or a phenyl group; Z represents an oxygen or sulfur atom. A general formula characterized by reacting the compound represented by in the presence of a base. In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , X, Y and Z have the above meanings.
JP58017527A 1983-02-07 1983-02-07 Heterocyclic five-membered ring derivative halide Granted JPS59144795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58017527A JPS59144795A (en) 1983-02-07 1983-02-07 Heterocyclic five-membered ring derivative halide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58017527A JPS59144795A (en) 1983-02-07 1983-02-07 Heterocyclic five-membered ring derivative halide

Publications (2)

Publication Number Publication Date
JPS59144795A JPS59144795A (en) 1984-08-18
JPH0346477B2 true JPH0346477B2 (en) 1991-07-16

Family

ID=11946392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58017527A Granted JPS59144795A (en) 1983-02-07 1983-02-07 Heterocyclic five-membered ring derivative halide

Country Status (1)

Country Link
JP (1) JPS59144795A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA868951B (en) * 1985-12-07 1987-08-26 Shionogi & Company Limited Organophosphorus compounds having pesticidal activity

Also Published As

Publication number Publication date
JPS59144795A (en) 1984-08-18

Similar Documents

Publication Publication Date Title
US6207822B1 (en) Process for the synthesis of azetidinones
JP2024023340A (en) Preparation method for glufosinate ammonium
HU199809B (en) Process for producing aminomethyl-4,5-dihydroisoxazole derivatives and pharmaceutical compositions comprising same
KR940003754B1 (en) Process for the preparation of herbicidal 2(4,4-disubstituted-5-oxo-2-imidazo-quinoline-3-carboxylic acids, esters and salts
EP2385050A1 (en) A process for preparing a substituted oxazole
FI91064C (en) Process for the preparation of therapeutically active 3- (N-acylethylaminoalkyl) chromanes and -1,4-dioxanes
US5008384A (en) Process for the production of O.sup. 2,2'-anhydro-1-(β-D-arabinofuranosyl)thymine
Shi et al. A convenient synthesis of (3-oxo-1, 3-diaryl) propylpropanedinitrile catalyzed by KF-alumina
JP2022505626A (en) N-nitrosaccharins
JPH0346477B2 (en)
JP4820965B2 (en) Methods and intermediate compounds useful in the preparation of statins, particularly atorvastatin
JPH0471917B2 (en)
JP3294280B2 (en) Manufacturing method of paclitaxel
KR101421774B1 (en) Process for the manufacture of bridged monobactam intermediates
JP4899385B2 (en) Method for producing 3-aminomethyloxetane compound
KR0136706B1 (en) Process for 3-amino pyrrolidine derivatives
EP0413832A1 (en) Oxazolidinedione derivatives and production thereof
EP0244810B1 (en) Process for producing 2-oxazolidinones
EP3562808B1 (en) Processes for the preparation of pesticidal compounds
JP2012062284A (en) O-acyl-n-aryl-n-(trifluoromethyl)hydroxylamine derivative and method for producing the same
KR950013852B1 (en) Process for preparing 4-ethoxycarbonyl-1-methyl-5-pyrazole mercaptan
US5329008A (en) Synthesis of a 3,4-dihydroxy-1-cyclopentanylpurinone
JP2922943B2 (en) Imidazolidinone derivatives
JP2558491B2 (en) Organothiomethylation of α, β-unsaturated carbonyl compounds
SU1351930A1 (en) Method of producing 2-ethylthio-n-phenyl-1,3-oxazolidine