JPH0346379B2 - - Google Patents

Info

Publication number
JPH0346379B2
JPH0346379B2 JP19253782A JP19253782A JPH0346379B2 JP H0346379 B2 JPH0346379 B2 JP H0346379B2 JP 19253782 A JP19253782 A JP 19253782A JP 19253782 A JP19253782 A JP 19253782A JP H0346379 B2 JPH0346379 B2 JP H0346379B2
Authority
JP
Japan
Prior art keywords
container
gasoline
treatment
permeation
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19253782A
Other languages
Japanese (ja)
Other versions
JPS5984746A (en
Inventor
Masami Matsuoka
Teruo Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP19253782A priority Critical patent/JPS5984746A/en
Publication of JPS5984746A publication Critical patent/JPS5984746A/en
Publication of JPH0346379B2 publication Critical patent/JPH0346379B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はプラツチツク製容器の製造方法に関す
る。更に詳しくは特にアルコール混合炭化水素類
の透過防止能に秀れたプラスチツク製容器の製造
方法に関する。 炭化水素類を保存する為の容器素材として種々
のプラスチツクが多くの分野で利用されている
が、容器の一例に自動車のガソリンタンク(以下
GTと略する)があり、プラスチツクとして、ポ
リエチレン、特に超高分子量の高密度ポリエチレ
ンが経済性、成形加工性、強度面で最も期待され
ているが、保存されたガソリンの気体又は液体が
ポリエチレン壁を通して大気中に飛散しやすい即
ち透過防止能に於いて劣るという欠点を有するこ
とが知られている。 そこでかゝる欠点を解消する為、ポリエチレ
ン、ポリプロピレンからなる容器を三酸化イオウ
(SO3)を約0.1〜20重量%含む乾燥不活性ガス、
例えばN2、CO2、SO2、空気等で処理するか、或
いは塩化メチレン、四塩化炭素のような液状多塩
素化脂肪族炭化水素中のSO3の溶液等で処理後、
ガス状アンモニア及びメチルアミンの様な気相中
和剤或いは、アルカリ金属又はアルカリ土類金属
の水酸化物又は対応する弱酸の塩等により中和し
洗滌乾燥する方法や、該容器を吹き込み成形法に
て成形する際、容積で約0.1〜20%の弗素と共に
SO2、CO、CO2、O2、Cl2及びBr2から成る群よ
り選ばれた1種以上の反応性ガスを吹き込み気体
として使用する事により容器内面を弗素化する方
法等が提案されている。 一方、現在及び将来に於いて石油供給不足が懸
念されており特にガソリン事情の先行きは深刻な
問題が大きくクローズアツプされ社会問題となつ
てきている。これに対して、ガソリンの消費節約
を担うべくアルコールをガソリンに混入したいわ
ゆるガスオール(Gasol)が新しい燃料として登
場し、既に石油不足に悩むブラジル等では、政府
指導の下で実用化されており、又つい最近我が国
に於いても通産省、資源エネルギー庁が、ガスオ
ールの実用化の検討を開始している。 既述の透過防止手段の中では、ポリエチレンの
(以下PEと称する)の内面をSO3処理後NH3ガス
で中和してなるGTが最も実用的でかつ既に米国
等で一部実車搭載されている。ところが本発明者
らが前記処理の容器についてガソリン及びガスオ
ールで種々の透過試験を行なつたところ、ガソリ
ン単体では確かに、未処理品に比べて透過量は1/
10〜1/40と非常に秀れた透過防止能を有する事が
確認されたもの、ガスオール例えばガソリン/メ
タノール=90/10(容量比)では、透過量は1/3〜
1/10となり透過防止能は低下してしまう事が判明
した。 この低下の理由については、鋭意究明中である
が、親水性化されたPEの表面(PE−SO3NH4
がアルコールとは非常に親和性が良い為、透過し
やすくなつたものと推定される。従つてガスオー
ルの透過性を改良する為には、PE表面は疎水性
及び親水性、即ちガソリン及びアルコールの両方
に対して透過防止能を有する必要を認め、発明者
らは、この点の改良に鋭意検討を重ねてきた。 その結果、プラスチツク容器をSO3処理後、
NH3ガス等で中和処理したものについて、さら
にAlCl3の如きアルミニウム化合物を含む溶液に
て該表面を処理すると、ガソリン単体では言うに
及ばずガスオールでも透過防止能は一段と秀れ、
透過量は、未処理品(スルホン化処理無し)に比
べて1/30〜1/50又SO3処理/NH3中和処理品の1/
10〜1/15にも改良できるという驚異的な効果があ
る事を見出し発明の完成に至つた。即ち本発明の
要旨は、内部表面及び/又は外部表面をスルホン
酸化処理し次いで中和処理を施した後、さらに該
表面をアルミニウム化合物を含む溶液で処理する
ことを特徴とするプラスチツク製容器の製造方法
である。 本発明に使用されてプラスチツク製容器の基材
としては特に限定はないが、エチレン、プロピレ
ン、イソブチレン、ブテン、4−メチルペンテン
−1等の如きα−オレフインのホモポリマー或い
は、これらα−オレフイン同志のコポリマー、塩
素化ポリエチレン、アイオノマー、上記α−オレ
フインと少量の例えばアクリル酸、メタクリル酸
或いはこれらのアルキルエステルの如きモノマー
の共重合体、これらの混合物等、いわめるオレフ
イン系ポリマーが挙げられる。 上記の様なオレフイン系ポリマーを素材とし
て、ブロー成形などにより成形して得られた容器
は、内部表面及び/又は外部表面がスルホン酸化
処理される。このスルホン酸化処理の方法は、
SO3を約15〜18容量%を含む乾燥不活性ガス例え
ばN2、CO2、SO2、空気等で処理するか、或いは
塩化メチレン、四塩化炭素のような液体多塩素化
脂肪族炭化水素中のSO3の溶液で処理すれば良
い。こうしたスルホン酸化処理では例えばポリエ
チレンの場合単位表面積当りSO3が0.001〜20
mg/cm2導入される。 こうしてスルホン酸化処理された面は次いでア
ルミニウム化合物を含む溶液で処理される。該化
合物としては、塩化物、臭化物、沃化物、弗化
物、酸化物、水酸化物、硫酸塩、硝酸塩、酢酸塩
等が挙げられるが、本発明では取り扱い性、経済
性の点等からこれらの化合物の中で水に対して溶
解性のある塩化物、臭化物、沃化物、弗化物、硫
酸塩、硝酸塩、酢酸塩とりわけ塩化物、酢酸塩が
好ましい。具体的には塩化アルミニウム、酢酸ア
ルミニウムで塩化アルミニウムがより好ましく、
水溶液中の濃度は、特に制限はないが、凡そ0.1
%〜飽和濃度の間で選ばれ凡そ0.5〜5%濃度で
充分である。 処理温度についても特に制限はないが凡そ室温
〜水の沸点(100℃)であり、又処理時間につい
てはスルホン酸化処理同様所望のバリヤ性との関
連で決まつてくるが凡そ、数10秒〜数10分通常は
1〜10分処理で充分である。処理の方法は、例え
ば該アルミニウム化合物の水溶液を容器に導入し
一定温度で一定時間保持する方法や、多孔のノズ
ルを設けたパイプを用いシヤワー状に該溶液を容
器面に一定時間噴出させる方法が挙げられる。こ
のようにして処理された面は必要に応じ充分な水
洗が施こされ最後に乾燥される。アルミニウム化
合物の水溶液処理によつて、処理面単位面積当り
凡そ0.0001〜0.05mg/cm2のアルミニウムが導入さ
れる。 このようにして得られた容器はガソリン単体の
みならずガソリン/メタノール、ガソリン/エタ
ノール等のアルコール混合炭化水素類の透過防止
能に秀れ、かつ含水ガソリンについてもアルコー
ル混合ガソリン(ガスオール)同様透過防止能に
秀れている。又、このバリヤー膜の耐久性につい
ては現在検討中であるが、少くともスルホン酸化
処理後アンモニア中和処理膜に比較して耐久性に
秀れ実用化レベルの高い処理方法である。 以下、本発明を具体的に実施例を挙げてさらに
詳細に説明する。 実施例1〜5、比較例1 ポリエチレンとして高密度ポリエチレン(ハイ
ロードメルトインデツクス=5.0g/10min、密
度=0.945g/cm3、JIS K−6760)を使用したカ
ーボンブラツク2%を混合して、ブロー成形によ
り平均肉厚2mm、内容積約1000cm3、内部表面積約
650cm2の円筒型容器を得た。この容器の内部を乾
燥窒素ガスで置換した後、初温70℃で約13容量%
のSO3を含む窒素ガスを約2/minの流速で
120秒間該容器内に導入同雰囲気下に8分間保持
した。 次いで室温で5分間窒素ガスを5/minの流
速で導入し、未反応SO3ガスをパージした後、表
1に示すアルミニウム化合物の3wt%水溶液を該
容器に充填し、表1に示す各温度、各時間で保持
した後充分な水洗を施こし乾燥した。 これ等の容器にレギユラーガソリン或いはこれ
に容量でメタノール10%、20%、エタノール10%
を混入した混合ガソリンを500ml充填し、40℃で
7日間状態調節をした後、内容液を全て廃棄し新
らたに状態調節に用いたと同じ液を500ml充填し、
40℃の防爆型恒温恒湿室に放置しこの容器の重量
を随時測定して重量損失を追跡し1日当りの透過
量を求めた。 なお、比較例1としてSO3処理后NH3中和
(NH3ガスを室温にて2分間2/minの流速で
該容器に導入し表面を中和した後充分な水洗を施
こし乾燥した)したもの、及びブランク品として
ブロー成形したままの無処理の容器についても同
様にして透過量を求めた。表1から明らかなよう
に本発明の容器は、ブランクは勿論の事、比較例
1の容器より透過防止能がはるかに秀れている。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing plastic containers. More specifically, the present invention relates to a method for manufacturing a plastic container that is particularly excellent in preventing permeation of alcohol-mixed hydrocarbons. Various plastics are used in many fields as container materials for storing hydrocarbons, and one example of containers is automobile gasoline tanks (hereinafter referred to as
(abbreviated as GT), polyethylene, especially ultra-high molecular weight high-density polyethylene, is the most promising plastic in terms of economy, moldability, and strength. It is known that it has the disadvantage that it is easily dispersed into the atmosphere through water, that is, its permeation prevention ability is poor. Therefore, in order to eliminate such drawbacks, containers made of polyethylene and polypropylene were heated with dry inert gas containing approximately 0.1 to 20% by weight of sulfur trioxide (SO 3 ).
For example, after treatment with N 2 , CO 2 , SO 2 , air, etc., or with a solution of SO 3 in a liquid polychlorinated aliphatic hydrocarbon such as methylene chloride, carbon tetrachloride, etc.
A method of neutralizing with a gas phase neutralizing agent such as gaseous ammonia and methylamine, a hydroxide of an alkali metal or an alkaline earth metal, or a corresponding salt of a weak acid, washing and drying, or a method of blow molding the container. When molding with fluorine of about 0.1 to 20% by volume
A method has been proposed for fluorinating the inner surface of a container by using one or more reactive gases selected from the group consisting of SO 2 , CO, CO 2 , O 2 , Cl 2 and Br 2 as a blowing gas. There is. On the other hand, there are concerns about oil supply shortages now and in the future, and the future of the gasoline situation in particular is becoming a serious problem that has become a social issue. In response to this, so-called Gasol, which is a mixture of alcohol and gasoline, has emerged as a new fuel in order to save on gasoline consumption, and has already been put into practical use under government guidance in countries such as Brazil, which are suffering from oil shortages. Also, just recently in Japan, the Ministry of International Trade and Industry and the Agency for Natural Resources and Energy have begun considering the practical application of Gas All. Among the permeation prevention means mentioned above, GT, which is made by neutralizing the inner surface of polyethylene (hereinafter referred to as PE) with NH 3 gas after SO 3 treatment, is the most practical and has already been installed in some actual vehicles in the United States and other countries. ing. However, when the present inventors conducted various permeation tests using gasoline and gas all on the treated containers, it was found that the permeation amount of gasoline alone was 1/1 that of untreated containers.
For example, when gasoline/methanol = 90/10 (volume ratio), the permeation amount is 1/3 to 1/40, which has been confirmed to have an excellent permeation prevention ability.
It was found that the transmission prevention ability was reduced to 1/10. The reason for this decrease is currently under investigation, but the hydrophilic surface of PE (PE−SO 3 NH 4 )
It is presumed that this is because it has a very good affinity with alcohol, making it easier to permeate. Therefore, in order to improve the permeability of gas all, the PE surface needs to be hydrophobic and hydrophilic, that is, have the ability to prevent the permeation of both gasoline and alcohol, and the inventors have made improvements in this respect. We have carefully considered this issue. As a result, after treating plastic containers with SO3 ,
When the surface is neutralized with NH 3 gas, etc., and the surface is further treated with a solution containing an aluminum compound such as AlCl 3 , the permeation prevention ability is even better not only with gasoline alone but also with all gases.
The amount of permeation is 1/30 to 1/50 of that of the untreated product (no sulfonation treatment), and 1/30 of that of the SO 3 treated/NH 3 neutralized product.
They discovered that it had an amazing effect of being able to improve the size by 10 to 1/15, and completed the invention. That is, the gist of the present invention is to produce a plastic container characterized in that the inner surface and/or the outer surface is subjected to sulfonation treatment, followed by neutralization treatment, and then the surface is further treated with a solution containing an aluminum compound. It's a method. The base material for the plastic container used in the present invention is not particularly limited, but may be homopolymers of α-olefins such as ethylene, propylene, isobutylene, butene, 4-methylpentene-1, etc., or homopolymers of α-olefins such as these α-olefins. Examples include copolymers of chlorinated polyethylene, ionomers, copolymers of the above α-olefins with small amounts of monomers such as acrylic acid, methacrylic acid, or alkyl esters thereof, and mixtures thereof. A container obtained by molding the olefinic polymer as described above by blow molding or the like is subjected to a sulfonation treatment on its internal and/or external surfaces. This sulfonation treatment method is
SO 3 is treated with a dry inert gas containing about 15-18% by volume, such as N 2 , CO 2 , SO 2 , air, etc., or with a liquid polychlorinated aliphatic hydrocarbon such as methylene chloride, carbon tetrachloride. It can be treated with a solution of SO 3 inside. In this sulfonation treatment, for example, in the case of polyethylene, SO 3 per unit surface area is 0.001 to 20
mg/ cm2 is introduced. The thus sulfonated surface is then treated with a solution containing an aluminum compound. Examples of such compounds include chlorides, bromides, iodides, fluorides, oxides, hydroxides, sulfates, nitrates, acetates, etc. In the present invention, these compounds are used from the viewpoint of ease of handling and economy. Among the compounds, water-soluble chlorides, bromides, iodides, fluorides, sulfates, nitrates, and acetates are preferred, particularly chlorides and acetates. Specifically, among aluminum chloride and aluminum acetate, aluminum chloride is more preferable;
There is no particular limit to the concentration in the aqueous solution, but it is approximately 0.1
% to saturation concentration, and a concentration of about 0.5 to 5% is sufficient. There is no particular restriction on the treatment temperature, but it is approximately room temperature to the boiling point of water (100°C), and the treatment time is determined in relation to the desired barrier properties, similar to the sulfonation treatment, but is generally from several tens of seconds to Several tens of minutes.Usually, 1 to 10 minutes is sufficient. Treatment methods include, for example, introducing an aqueous solution of the aluminum compound into a container and holding it at a constant temperature for a certain period of time, or using a pipe equipped with a porous nozzle to spray the solution onto the surface of the container in a shower-like manner for a certain period of time. Can be mentioned. The surface treated in this way is washed thoroughly with water if necessary and finally dried. By aqueous solution treatment of an aluminum compound, approximately 0.0001 to 0.05 mg/cm 2 of aluminum is introduced per unit area of the treated surface. The container obtained in this way has excellent permeation prevention ability not only for gasoline alone but also for alcohol mixed hydrocarbons such as gasoline/methanol and gasoline/ethanol, and is permeable for water-containing gasoline as well as alcohol mixed gasoline (Gas All) Excellent prevention ability. Although the durability of this barrier film is currently under investigation, it is a treatment method that is superior in durability and has a high level of practical application, at least compared to a membrane treated with ammonia neutralization after sulfonation treatment. EXAMPLES Hereinafter, the present invention will be explained in more detail by giving concrete examples. Examples 1 to 5, Comparative Example 1 2% carbon black was mixed with high density polyethylene (high load melt index = 5.0 g/10 min, density = 0.945 g/cm 3 , JIS K-6760) as polyethylene. , average wall thickness 2mm, internal volume approx. 1000cm 3 , internal surface area approx.
A 650 cm 2 cylindrical container was obtained. After replacing the inside of this container with dry nitrogen gas, approximately 13% by volume at an initial temperature of 70°C.
of nitrogen gas containing SO 3 at a flow rate of approximately 2/min.
It was introduced into the container for 120 seconds and kept under the same atmosphere for 8 minutes. Next, nitrogen gas was introduced at a flow rate of 5/min for 5 minutes at room temperature to purge unreacted SO 3 gas, and then a 3wt% aqueous solution of the aluminum compound shown in Table 1 was filled into the container, and the temperature was increased at each temperature shown in Table 1. After holding the sample for each time, it was thoroughly washed with water and dried. Regular gasoline in these containers or methanol 10%, 20%, ethanol 10% by volume
After filling 500ml of mixed gasoline mixed with
The container was left in an explosion-proof constant temperature and humidity room at 40°C, and the weight of the container was measured at any time to track weight loss and determine the amount of permeation per day. In addition, as Comparative Example 1, after SO 3 treatment, NH 3 neutralization (NH 3 gas was introduced into the container at a flow rate of 2/min for 2 minutes at room temperature to neutralize the surface, followed by thorough washing with water and drying). The amount of permeation was determined in the same manner for the untreated container that had been blow-molded and the untreated blank container. As is clear from Table 1, the container of the present invention has much better permeation prevention ability than the container of Comparative Example 1, as well as the blank. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 内部表面及び/又は外部表面をスルホン酸化
処理し次いで中和処理した後、さらに該表面をア
ルミニウム化合物を含む溶液で処理することを特
徴とするプラスチツク製容器の製造方法。
1. A method for manufacturing a plastic container, which comprises sulfonating and neutralizing the inner and/or outer surfaces, and then treating the surfaces with a solution containing an aluminum compound.
JP19253782A 1982-11-04 1982-11-04 Vessel made of plastic Granted JPS5984746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19253782A JPS5984746A (en) 1982-11-04 1982-11-04 Vessel made of plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19253782A JPS5984746A (en) 1982-11-04 1982-11-04 Vessel made of plastic

Publications (2)

Publication Number Publication Date
JPS5984746A JPS5984746A (en) 1984-05-16
JPH0346379B2 true JPH0346379B2 (en) 1991-07-16

Family

ID=16292920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19253782A Granted JPS5984746A (en) 1982-11-04 1982-11-04 Vessel made of plastic

Country Status (1)

Country Link
JP (1) JPS5984746A (en)

Also Published As

Publication number Publication date
JPS5984746A (en) 1984-05-16

Similar Documents

Publication Publication Date Title
US3613957A (en) Resinous enclosure members rendered impermeable by sulfonation and neutralization
ES2210222T3 (en) POROUS INORGANIC OXIDES, DOUBLY AGED, CATALYSTS AND POLYMERIZATION PROCEDURES.
KR100197102B1 (en) Process for producing composite semipermeable membrane
JP2012067316A (en) Hollow plastic product prepared from high density polyolefin produced using fluorine-modified chromium catalyst
JPH07102310B2 (en) Carbon dioxide separation gel membrane and method for producing the same
CZ67093A3 (en) Process for producing protective layers for mixtures from polar or non-polar substances on inner surface of hollow bodies made from thermoplastics
US5779954A (en) Process for manufacturing a hollow body
US4348436A (en) Enclosure member substantially impermeable to the transmission of solvents and fuels
JPH0346379B2 (en)
JPH0260577B2 (en)
US2797139A (en) Method of inhibiting evaporation of volatile liquids and floating layer for use therein
US5156783A (en) Two stage process for sulfonating plastic containers
US5202161A (en) High sulfur level plastic container sulfonation process and article produced thereby
JPH01203437A (en) Container made of olefinic resin
US5605718A (en) Process for the surface treatment of an article by sulphonation and neutralization
Sabne et al. Barrier properties of surface sulfonated HDPE films
CA1093242A (en) Rapid vapor phase neutralization of sulfonated polymers
US3777934A (en) Suspension polymerized polyvinyl chloride beads as vapor pressure depressants
JP2867916B2 (en) Oxygen absorbing resin composition
CA1203130A (en) Enclosure member consisting essentially of solid non- aromatic polymers
JPH06340033A (en) Multi-layered structure
JPS5884804A (en) Water absorbing and retaining material
IE38601L (en) Tubular casing having an internal coating.
CA1152279A (en) Enclosure member substantially impermeable to the transmission of solvents and fuels
RU2021235C1 (en) Porous ammonium nitrate production process