JPH0260577B2 - - Google Patents

Info

Publication number
JPH0260577B2
JPH0260577B2 JP1088482A JP1088482A JPH0260577B2 JP H0260577 B2 JPH0260577 B2 JP H0260577B2 JP 1088482 A JP1088482 A JP 1088482A JP 1088482 A JP1088482 A JP 1088482A JP H0260577 B2 JPH0260577 B2 JP H0260577B2
Authority
JP
Japan
Prior art keywords
container
treatment
gasoline
permeation
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1088482A
Other languages
Japanese (ja)
Other versions
JPS58134856A (en
Inventor
Masami Matsuoka
Teruo Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1088482A priority Critical patent/JPS58134856A/en
Publication of JPS58134856A publication Critical patent/JPS58134856A/en
Publication of JPH0260577B2 publication Critical patent/JPH0260577B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はプラスチツク製容器の製法に関する。
更に詳しくは特にアルコール混合炭化水素類の透
過防止能に秀れたプラスチツク製容器の製法に関
する。 [従来の技術] 炭化水素類を保存する為の容器素材として種々
のプラスチツクが多くの分野で利用されている
が、容器の一例に自動車のガソリンタンク(以下
GTと略する)があり、プラスチツクとして、ポ
リエチレン、特に超高分子量の高密度ポリエチレ
ンが経済性、成形加工性、強度面で最も期待され
ているが、保存されたガソリンの気体又は液体が
ポリエチレン壁を通して大気中に飛散しやすい即
ち透過防止能に於いて劣るという欠点を有するこ
が知られている。 そこでかかる欠点を解消する為、ポリエチレ
ン、ポリプロピレンからなる容器を三酸化イオウ
(SO3)を約0.1〜20容量%含む乾燥不活性ガス、
例えばN2,CO2,SO2又は空気等で処理するか、
或いはSO3の塩化メチレン、四塩化炭素のような
液状多塩素化脂肪族炭化水素溶液等で処理した
後、ガス状アンモニア又はメチルアミンの様な気
相中和剤或いは、アルカリ金属又はアルカリ土類
金属の水酸化物または対応する弱酸の塩溶液等に
より中和し洗滌乾燥する方法や、該容器を吹き込
み成形法にて成形する際、容積で約0.1〜20%の
弗素と共にSO2、CO、CO2、O2、Cl2及びBr2
ら成る群より選ばれた1種以上の反応性ガスを吹
き込み容器内面を弗素化する方法等が提案されて
いる。 一方、現在及び将来に於いて石油供給不足が懸
念されており特にガソリン事情の先行きは深刻な
問題が大きくクローズアツプされ社会問題となつ
てきている。これに対して、ガソリンの消費節約
を担うべくアルコールをガソリンに混入したいわ
ゆるガスオール(Gasol)が新しい燃料として登
場し、既に石油不足に悩むブラジル等では、政府
指導の下で実用化されており、又つい最近我が国
に於いても通産省、資源エネルギー庁が、ガスオ
ールの実用化の検討を開始している。 [発明が解決しようとする課題] 既述の透過防止手段の中では、ポリエチレンの
(以下PEと称する)の内面をSO3処理後NH3ガス
で中和してなるGTが最も実用的でかつ既に米国
等で一部実車搭載されている。ところが本発明者
らが前記処理の容器についてガソリン及びガスオ
ールで種々の透過試験を行なつたところ、ガソリ
ン単体では確かに、未処理品に比べて透過量は
1/10〜1/40と非常に秀れた透過防止能を有す
る事が確認されたもの、ガスオール例えばガソリ
ン/メタノール=90/10(容量比)では、透過量
は1/3〜1/10となり透過防止能は低下してし
まう事が判明した。 この低下の理由については、鋭意究明中である
が、親水性化されたPEの表面(PE−SO3NH4
がアルコールとは非常に親和性が良い為、透過し
やすくなつたものと推定される。従つてガスオー
ルの透過性を改良する為には、PE表面は疎水性
及び親水性、即ちガソリン及びアルコールの両方
に対して透過防止能を有する必要を認め、発明者
らは、この点の改良に鋭意検討を重ねてきた。 [課題を解決するための手段] その結果、プラスチツク容器をSO3処理後、
NH3ガス等で中和処理したものについてさらに
BaCl2,Ba(OH)2・8H2Oの如きアルカリ土類金
属化合物を含む溶液にて該表面を処理すると、ガ
ソリン単体で言うに及ばずガスオールでも透過防
止能は一段と秀れ、透過量は、未処理品(スルホ
ン化処理無し)に比べて1/40〜1/60又SO3
理/NH3中和処理品の1/5〜1/10にも改良
できるという驚異的な効果がある事を見出し発明
の完成に至つた。 即ち本発明の要旨は、内部表面及び/又は外部
表面をスルホン酸化処理し次いで中和処理を施し
た後、さらに該表面をアルカリ土類金属で含む溶
液で処理するプラスチツク製容器の製法にある。 以下、本発明の内容を詳説する。 本発明に使用されるプラスチツク容器の基材と
しては特に限定はないが、エチレン、プロピレ
ン、イソブチレン、ブテン−1、4−メチルペン
テン−1等の如きα−オレフインのホモポリマー
或いは、これらα−オレフイン同士のコポリマ
ー、塩素化ポリエチレン、アイオノマー、上記α
−オレフインと少量の例えばアクリル酸、メタク
リル酸或いはこれらのアルキルエステルの如きモ
ノマーとの共重合体またはこれらの混合物等、い
わゆるオレフイン系ポリマーが挙げられる。 上記の様なオレフイン系ポリマーを素材とし
て、ブロー成形などにより成形して得られた容器
は、内部表面及び/又は外部表面がスルホン酸化
処理される。このスルホン酸化処理の方法は、
SO3を含む(好ましくは15〜18容量%含む)乾燥
不活性ガス例えば、N2、CO2、SO2或いは空気で
処理するか、或いはSO2を含む塩化メチレン、四
塩化炭素のような液体多塩素化脂肪族炭化水素溶
液で処理すれば良い。こうしたスルホン酸化処理
では例えばポリエチレンの場合単位表面積当り
SO3が通常0.001〜20mg/cm2導入される。 こうしてスルホン酸化処理された面は次いで中
和処理が施される。この中和処理は、アルカリ金
属の水酸化物または対応する弱酸の塩、アルカリ
土類金属の水酸化物または対応する弱酸の塩、重
金属塩化物または硫酸塩、第1,第2または第3
アミン、水酸化アンモニウム、これらの混合物等
の稀釈水性溶液で処理するか、或いはガス状アン
モニア、メチルアミン等のような気相中和剤で処
理すれば良い。通常経済的観点等からガス状アン
モニアを用い1〜数分間の処理が好んで用いられ
る。この中和処理により、表面のスルホン酸基は
スルホン酸の塩例えばアンモニアガス中和では
〔PE−SO3NH4〕に変換される。 本発明に於いてはこのようにしてスルホン酸化
後中和処理した処理面は、さらにアルカリ土類金
属化合物を含む溶液、通常は水溶液にて処理され
る。アルカリ土類金属としては周期律表第a族
金属でBe、Mg、Ca、Sv、Ba、Rcなどが挙げら
れるが、そのうちで入手しやすい金属として
Mg、Ca、Baが好ましい。 該金属化合物としては、塩化物、臭化物、沃化
物、弗化物、水酸化物、次亜塩素酸塩、重クロム
酸塩、炭酸塩、硝酸塩、硫酸塩、酢酸塩、蟻酸
塩、吉草酸塩、グリコン酸塩、ケイ皮酸塩、サリ
チル酸、酪酸塩等が挙げられるが、本発明では取
り扱い性、経済性の点等からこれらの化合物或い
は塩の中で水に対して溶解性のある塩化物、水酸
化物、酢酸塩等が好ましい。具体的に挙げれば、
塩化マグネシウム、塩化カルシウム、塩化バリウ
ム、水酸化バリウム、酢酸マグネシウム、酢酸カ
ルシウム、酢酸バリウム等が好ましい。水溶液中
の濃度に特に制限はないが、凡そ0.1%〜飽和濃
度の間で選ばれ凡そ0.5〜5%濃度で充分である。 処理温度についても特に制限はないが凡そ室温
〜水の沸点(100℃)であり、又処理時間につい
てはスルホン酸化処理同様所望のバリヤ性との関
連で決まつてくるが凡そ、数10秒〜数10分通常は
1〜10分処理で充分である。処理の方法は、例え
ば該金属化合物の水溶液を容器に導入し一定温度
で一定時間保持する方法や、多孔のノズルを設け
たパイプを用いシヤワー状に該容液を容器面に一
定時間噴出させる方法が挙げられる。このように
して処理された面は必要に応じ充分な水洗が施さ
れ最後に乾燥される。このアルカリ土類金属化合
物の水溶液処理によつて、処理面単位面積当り凡
そ0.0001〜0.05mg/cm2のアルカリ土類金属が導入
される。 このようにして得られた容器はガソリン単体の
みならずガソリン/メタノール、ガソリン/エタ
ノール等のアルコール混合炭化水素類の透過防止
能に秀れ、かつ含水ガソリンについてもアルコー
ル混合ガソリン(ガスオール)同様透過防止能に
秀れている。又、このバリヤ膜の耐久性について
は現在検討中であるが、少くともスルホン酸化処
理後アンモニア中和処理膜に比較して耐久性に秀
れ実用化レベルの高い処理方法である。 以下、本発明を具体的に実施例を挙げて詳細に
説明する。 実施例1〜8、比較例1 ポリエチレンとして高密度ポリエチレン(ハイ
ロードメルトインデツクス=5.0g/10min、密
度=0.945g/cm3)を使用しカーボンブラツク2
%を混合して、ブロー成形により平均肉厚2mm、
内容積約1000cm3、内部表面積約650cm2の円筒型容
器を得た。この容器の内部を乾燥窒素ガスで置換
した後、初温70℃で約13容量%のSO3を含む窒素
ガスを約2/minの流速で120秒間該容器内に
導入し同雰囲気下に8分間保持した。 次いで室温で5分間窒素ガスを5/minの流
速で導入し未反応SO3ガスをパージし、NH3ガス
を室温にて2分間2/minの流速で該容器に導
入し表面をNH3中和を行なつた後、充分な水洗
を施し乾燥した(比較例1)。こうして処理され
た容器の内部に、表1に示す各種金属の塩化物の
3wt%水溶液を充填し、表1に示す各温度、各時
間で保持した後充分な水洗を施し乾燥した。 これ等の容器にレギユラーガソリン或いはこれ
に容器でメタノール10%、20%、エタノール10%
を混入した混合ガソリンを500c.c.充填し、40℃で
7日間状態調節をした後内溶液を全て廃棄し、新
たに状態調節に用いたと同じ液を500c.c.充填し40
℃の防爆型恒温等品室に放置し、この容器の重量
を随時測定して重量損失を追跡し1日当りの透過
量を求めた。なお比較例1としてNH3中和処理
迄の容器及びブランク品としてブロー成形した後
に無処理の容器についても同様にして透過量を求
めた。表1の透過量から明らかなように本発明の
容器はブランクは勿論比較例1の容器より透過防
止能がはるかに秀れている。
[Industrial Field of Application] The present invention relates to a method for manufacturing plastic containers.
More specifically, the present invention relates to a method for producing a plastic container that is particularly excellent in preventing permeation of alcohol-mixed hydrocarbons. [Prior Art] Various plastics are used in many fields as containers for storing hydrocarbons, and one example of containers is automobile gasoline tanks (hereinafter referred to as
(abbreviated as GT), polyethylene, especially ultra-high molecular weight high-density polyethylene, is the most promising plastic in terms of economy, moldability, and strength. It is known that it has the disadvantage that it is easily dispersed into the atmosphere through water, that is, its permeation prevention ability is poor. In order to eliminate this drawback, containers made of polyethylene and polypropylene were treated with dry inert gas containing about 0.1 to 20% by volume of sulfur trioxide (SO 3 ).
For example, treatment with N 2 , CO 2 , SO 2 or air, etc.
Alternatively, after treatment with a liquid polychlorinated aliphatic hydrocarbon solution such as SO 3 methylene chloride or carbon tetrachloride, a gas phase neutralizing agent such as gaseous ammonia or methylamine, or an alkali metal or alkaline earth When using a method of neutralizing with a metal hydroxide or a salt solution of a corresponding weak acid, washing and drying, or molding the container using a blow molding method, SO 2 , CO, A method has been proposed in which the inner surface of the container is fluorinated by blowing one or more reactive gases selected from the group consisting of CO 2 , O 2 , Cl 2 and Br 2 . On the other hand, there are concerns about oil supply shortages now and in the future, and the future of the gasoline situation in particular is becoming a serious problem that has become a social issue. In response to this, so-called Gasol, which is a mixture of alcohol and gasoline, has emerged as a new fuel in order to save on gasoline consumption, and has already been put into practical use under government guidance in countries such as Brazil, which are suffering from oil shortages. Also, just recently in Japan, the Ministry of International Trade and Industry and the Agency for Natural Resources and Energy have begun considering the practical application of Gas All. [Problem to be solved by the invention] Among the permeation prevention means mentioned above, GT, which is made by neutralizing the inner surface of polyethylene (hereinafter referred to as PE) with NH 3 gas after SO 3 treatment, is the most practical and effective. It has already been installed in some vehicles in the United States and other countries. However, when the present inventors conducted various permeation tests using gasoline and gas all on the above-mentioned treated containers, it was found that the amount of permeation with gasoline alone was extremely high, at 1/10 to 1/40 of that of untreated containers. For example, when gasoline/methanol = 90/10 (volume ratio), the amount of permeation becomes 1/3 to 1/10, and the permeation prevention ability decreases. It turned out to be a problem. The reason for this decrease is currently under investigation, but the hydrophilic surface of PE (PE−SO 3 NH 4 )
It is presumed that this is because it has a very good affinity with alcohol, making it easier to permeate. Therefore, in order to improve the permeability of gas all, the PE surface needs to be hydrophobic and hydrophilic, that is, have the ability to prevent the permeation of both gasoline and alcohol, and the inventors have made improvements in this respect. We have carefully considered this issue. [Means to solve the problem] As a result, after the plastic containers were treated with SO 3 ,
More information about those neutralized with NH 3 gas, etc.
When the surface is treated with a solution containing an alkaline earth metal compound such as BaCl 2 , Ba(OH) 2.8H 2 O, the permeation prevention ability is even better not only for gasoline alone but also for all gases, and the amount of permeation is reduced. has an amazing effect of being improved by 1/40 to 1/60 compared to untreated products (no sulfonation treatment) and 1/5 to 1/10 of SO 3 treated/NH 3 neutralized products. He discovered something and completed his invention. That is, the gist of the present invention is a method for producing a plastic container, in which the inner and/or outer surface is sulfonated and then neutralized, and then the surface is further treated with a solution containing an alkaline earth metal. Hereinafter, the content of the present invention will be explained in detail. The base material for the plastic container used in the present invention is not particularly limited, but may be a homopolymer of α-olefins such as ethylene, propylene, isobutylene, butene-1, 4-methylpentene-1, etc., or a base material of these α-olefins. copolymers, chlorinated polyethylene, ionomers, α above
- Copolymers of olefins and small amounts of monomers such as acrylic acid, methacrylic acid, or alkyl esters thereof, or mixtures thereof, and the like, so-called olefin-based polymers. A container obtained by molding the olefinic polymer as described above by blow molding or the like is subjected to a sulfonation treatment on its internal and/or external surfaces. This sulfonation treatment method is
Treat with a dry inert gas containing SO 3 (preferably 15-18% by volume) such as N 2 , CO 2 , SO 2 or air, or with a liquid such as methylene chloride, carbon tetrachloride containing SO 2 It may be treated with a polychlorinated aliphatic hydrocarbon solution. In this sulfonation treatment, for example, in the case of polyethylene, per unit surface area
SO 3 is usually introduced from 0.001 to 20 mg/cm 2 . The surface thus sulfonated is then subjected to a neutralization treatment. This neutralization treatment may be performed using alkali metal hydroxides or corresponding weak acid salts, alkaline earth metal hydroxides or corresponding weak acid salts, heavy metal chlorides or sulfates, primary, secondary or tertiary
Treatment may be with dilute aqueous solutions such as amines, ammonium hydroxide, mixtures thereof, or with gas phase neutralizing agents such as gaseous ammonia, methylamine, etc. Usually, from an economic point of view etc., treatment using gaseous ammonia for 1 to several minutes is preferably used. By this neutralization treatment, the sulfonic acid groups on the surface are converted into sulfonic acid salts, such as [PE-SO 3 NH 4 ] in the case of ammonia gas neutralization. In the present invention, the treated surface that has been neutralized after sulfonation is further treated with a solution containing an alkaline earth metal compound, usually an aqueous solution. Alkaline earth metals include Be, Mg, Ca, Sv, Ba, and Rc, which are Group A metals of the periodic table, but among these, metals that are easily available include
Mg, Ca, and Ba are preferred. The metal compounds include chloride, bromide, iodide, fluoride, hydroxide, hypochlorite, dichromate, carbonate, nitrate, sulfate, acetate, formate, valerate, Examples include glyconates, cinnamates, salicylic acids, butyrates, etc., but in the present invention, water-soluble chlorides, Hydroxides, acetates and the like are preferred. Specifically,
Preferred are magnesium chloride, calcium chloride, barium chloride, barium hydroxide, magnesium acetate, calcium acetate, barium acetate, and the like. The concentration in the aqueous solution is not particularly limited, but it is selected between approximately 0.1% and saturation concentration, and a concentration of approximately 0.5% to 5% is sufficient. There is no particular restriction on the treatment temperature, but it is approximately room temperature to the boiling point of water (100°C), and the treatment time is determined in relation to the desired barrier properties, similar to the sulfonation treatment, but is generally from several tens of seconds to Several tens of minutes.Usually, 1 to 10 minutes is sufficient. Treatment methods include, for example, introducing an aqueous solution of the metal compound into a container and holding it at a constant temperature for a certain period of time, or using a pipe equipped with a porous nozzle to spray the liquid onto the surface of the container in a shower-like manner for a certain period of time. can be mentioned. The surface treated in this way is washed thoroughly with water if necessary and finally dried. By this aqueous solution treatment of the alkaline earth metal compound, approximately 0.0001 to 0.05 mg/cm 2 of the alkaline earth metal is introduced per unit area of the treated surface. The container obtained in this way has excellent permeation prevention ability not only for gasoline alone but also for alcohol mixed hydrocarbons such as gasoline/methanol and gasoline/ethanol, and is permeable for water-containing gasoline as well as alcohol mixed gasoline (Gas All) Excellent prevention ability. Although the durability of this barrier film is currently under investigation, it is a treatment method that is superior in durability and has a high level of practical application, at least compared to a membrane treated with ammonia neutralization after sulfonation treatment. Hereinafter, the present invention will be specifically explained in detail by giving examples. Examples 1 to 8, Comparative Example 1 High-density polyethylene (high load melt index = 5.0 g/10 min, density = 0.945 g/cm 3 ) was used as the polyethylene, and carbon black 2
% and then blow molded into an average wall thickness of 2 mm.
A cylindrical container with an internal volume of about 1000 cm 3 and an internal surface area of about 650 cm 2 was obtained. After replacing the inside of this container with dry nitrogen gas, nitrogen gas containing about 13% by volume of SO 3 at an initial temperature of 70°C was introduced into the container at a flow rate of about 2/min for 120 seconds, and the air was heated for 8 hours under the same atmosphere. Hold for minutes. Next, nitrogen gas was introduced at a flow rate of 5/min for 5 minutes at room temperature to purge unreacted SO 3 gas, and NH 3 gas was introduced into the container at a flow rate of 2/min for 2 minutes at room temperature to cover the surface in NH 3 . After the mixture was washed thoroughly with water and dried (Comparative Example 1). Inside the container thus treated, chlorides of various metals shown in Table 1 were added.
It was filled with a 3 wt % aqueous solution and held at each temperature and time shown in Table 1, followed by thorough washing with water and drying. Regular gasoline in these containers or methanol 10%, 20%, ethanol 10% in this container
Fill the tank with 500 c.c. of mixed gasoline mixed with
The container was left in an explosion-proof thermostatic chamber at 0.degree. C., and the weight of the container was measured at any time to track weight loss and determine the amount of permeation per day. As Comparative Example 1, the amount of permeation was determined in the same manner for a container that had not been subjected to NH 3 neutralization treatment and a container that had not been treated after blow molding as a blank product. As is clear from the amount of permeation in Table 1, the container of the present invention has much better permeation prevention ability than the blank as well as the container of Comparative Example 1.

【表】 実施例 9〜14 実施例1〜8で用いた塩化物の代りに、表2に
示す各種金属の水酸化物、酢酸塩を用いた他は実
施例1〜8と同様に行なつた。但し内容物はガソ
リン/メタノール=90/10(容量比)で検討した。
表2の透過量から明らかなように本発明の容器は
透過防止能が秀れている。
[Table] Examples 9 to 14 The same procedure as Examples 1 to 8 was carried out except that hydroxides and acetates of various metals shown in Table 2 were used instead of the chlorides used in Examples 1 to 8. Ta. However, the content was examined using gasoline/methanol = 90/10 (volume ratio).
As is clear from the amount of permeation in Table 2, the container of the present invention has excellent permeation prevention ability.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 内部表面及び/又は外部表面をスルホン酸化
処理し次いで中和処理を施した後、さらに該表面
をアルカリ土類金属を含む溶液で処理することを
特徴とするプラスチツク製容器の製法。
1. A method for producing a plastic container, which comprises subjecting the internal and/or external surfaces to sulfonation treatment, followed by neutralization treatment, and then further treating the surface with a solution containing an alkaline earth metal.
JP1088482A 1982-01-28 1982-01-28 Vessel made of plastic Granted JPS58134856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1088482A JPS58134856A (en) 1982-01-28 1982-01-28 Vessel made of plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1088482A JPS58134856A (en) 1982-01-28 1982-01-28 Vessel made of plastic

Publications (2)

Publication Number Publication Date
JPS58134856A JPS58134856A (en) 1983-08-11
JPH0260577B2 true JPH0260577B2 (en) 1990-12-17

Family

ID=11762736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1088482A Granted JPS58134856A (en) 1982-01-28 1982-01-28 Vessel made of plastic

Country Status (1)

Country Link
JP (1) JPS58134856A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047773A1 (en) * 1997-04-22 1998-10-29 The Procter & Gamble Company Container providing enhanced viscous product drainage, composition and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615914A (en) * 1985-10-07 1986-10-07 The Dow Chemical Company Treatment of the interior surfaces of resinous enclosure members
BE1008568A3 (en) * 1994-07-20 1996-06-04 Solvay PROCESS FOR THE SURFACE TREATMENT OF ITEM AND SILENCE by sulfonation.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047773A1 (en) * 1997-04-22 1998-10-29 The Procter & Gamble Company Container providing enhanced viscous product drainage, composition and method

Also Published As

Publication number Publication date
JPS58134856A (en) 1983-08-11

Similar Documents

Publication Publication Date Title
US3613957A (en) Resinous enclosure members rendered impermeable by sulfonation and neutralization
CA1212809A (en) Method of fluorinating the surface layer of bodies molded from plastic
US3740258A (en) Resinous enclosure members rendered impermeable by sulfonation
US4220739A (en) Method for sulfonating organic materials
US4142032A (en) Process for improving barrier properties of polymers
JPH0576740A (en) Production for composite semipermeable membrane
EP0056705B1 (en) A heat exchanger having a plastics membrane
US5779954A (en) Process for manufacturing a hollow body
JPH0260577B2 (en)
US4348436A (en) Enclosure member substantially impermeable to the transmission of solvents and fuels
HU216139B (en) Method for making closing surfaces protecting against polaric and apolaric compounds onto internal surfaces of hollow bodies of thermoplastic synthetic material
US5156783A (en) Two stage process for sulfonating plastic containers
US7009019B2 (en) Plastic hollow body made of high density polyolefins produced by means of a fluoro modified chrome catalyst
US5202161A (en) High sulfur level plastic container sulfonation process and article produced thereby
JPH0346379B2 (en)
JPH01203437A (en) Container made of olefinic resin
US5605718A (en) Process for the surface treatment of an article by sulphonation and neutralization
US11359065B2 (en) Method for direct fluorination of plastics and articles made thereof
CA1093242A (en) Rapid vapor phase neutralization of sulfonated polymers
KR100270779B1 (en) Process for producing inpermeable hollow bodies and hollow bodies thus produced
Sabne et al. Barrier properties of surface sulfonated HDPE films
JPH0254781B2 (en)
CA1152279A (en) Enclosure member substantially impermeable to the transmission of solvents and fuels
JP2001514286A (en) Production of expanded polyolefin particles
JPS6014772B2 (en) Method for manufacturing a molded body with excellent fluid barrier properties