JPH0346297B2 - - Google Patents

Info

Publication number
JPH0346297B2
JPH0346297B2 JP60187325A JP18732585A JPH0346297B2 JP H0346297 B2 JPH0346297 B2 JP H0346297B2 JP 60187325 A JP60187325 A JP 60187325A JP 18732585 A JP18732585 A JP 18732585A JP H0346297 B2 JPH0346297 B2 JP H0346297B2
Authority
JP
Japan
Prior art keywords
wire
tension
film
thermoplastic resin
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60187325A
Other languages
Japanese (ja)
Other versions
JPS6248522A (en
Inventor
Yoshihiko Matsukuni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP60187325A priority Critical patent/JPS6248522A/en
Publication of JPS6248522A publication Critical patent/JPS6248522A/en
Publication of JPH0346297B2 publication Critical patent/JPH0346297B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9165Electrostatic pinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92523Force; Tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92933Conveying, transporting or storage of articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明はダイからフイルム状に溶融押出した熱
可塑性樹脂を冷却ドラムに静電ピンニングせし
め、効率よく冷却せしめて熱可塑性樹脂フイルム
を製造する方法に関する。 <従来技術とその問題点> 熱可塑性樹脂フイルムを製造するに際し、ダイ
から押出した溶融状態のフイルムに静電荷を印加
し、接地された冷却ドラムに静電的にフイルムを
密着させて冷却効率を高める、所謂静電ピンニン
グ製膜技術はよく知られている。 ところで、従来からの静電ピンニング法は、針
電極又は電線電極と対向電極である冷却ドラムと
の間に溶融状態のフイルムを走行させ、電極に高
電圧を印加することによつて、誘電体である溶融
状態のフイルムに静電荷を析出させるものである
が、電極線(又は針電極)とフイルムとの距離
(あるいは電極と対向電極との距離)が一定に保
たれないと、析出電荷の密度に斑が生じたり、不
必要な放電やフイルムに損傷を与える放電が生じ
たりすることがしばしば起きる。このような静電
ピンニングを不安定にさせる要因は、電線電極
(以下、ワイヤーという)の場合には、電線の振
動にある。例えば、ワイヤーが振動すると、製品
フイルムに振動周期に対応する周期的なフイルム
厚さ斑が発生する結果、製品の歩留まりの低下が
避けられない。 良好な製品を生産するためにはこのワイヤー振
動を発生させないことが必要である。 このワイヤー振動の原因は明確ではないが、一
般にワイヤーに生じる電気的な力、周辺の機械振
動及び風等の外乱によるものと考えられ、最近の
製膜技術における高速化、広巾化に伴ないますま
すワイヤー振動は多くなり、かつこの解決はむず
かしくなつている。 この解決の一手段として電極ワイヤーに極力高
い張力を加えることが知られているが、現実には
好調力にするとワイヤー破断の危険性があり、ワ
イヤー破断が起きると運転休止ロスのような多大
な損害をもたらすこととなる。 従つて、やむをえず、ワイヤー破断の危惧のな
い低張力範囲で製膜することとなるが、このワイ
ヤーの張力の低い条件はワイヤー振動には極めて
不利なものである。 従来の熱可塑性樹脂フイルムの製膜装置は、ワ
イヤーの片方の端部を固定し、他端にバネ、ネ
ジ、重錘又は圧搾空気を利用したシリンダ等で張
力を加えるものであつて、実際にワイヤーに加わ
つている張力を直接測定する手段を持つものでは
ない。そこで、ワイヤーの張力は、その代替特性
として上記のバネの伸び量、ネジの締めつけ量、
錘の重さ、圧空圧力等をもとに管理することとな
る。しかるに、現実には、上記の代替特性はワイ
ヤーの実際の張力を十分に代替しうるものとはい
えず、しかも代替特性にはバラツキがあるため、
高張力に維持しようとすると、不測の張力が加わ
り、ワイヤー破断を起こすことがある。またワイ
ヤー破断を避けるあまり低い張力に設定したり、
適正な張力に設定したつもりでも低い張力の場合
もあつて、ワイヤー振動が発生することとなる。 <発明の目的> 本発明の目的は、ワイヤー破断を避けながら、
極力高い張力下にワイヤーを緊張調整させて静電
ピンニング効率を高め、ダイからフイルム状に溶
融押出した熱可塑性樹脂を効率よく冷却せしめる
熱可塑性樹脂フイルムの製造方法を提供するもの
である。 <発明の構成> 本発明は、金属製のワイヤーからなる電極と冷
却ドラムからなる対向電極との間にダイより押出
した熱可塑性樹脂からなる溶融状態のフイルムを
走行させ、電極に高電圧を印加することによりフ
イルムに電荷を析出せしめ、フイルムを冷却ドラ
ムに静電密着せしめて冷却する熱可塑性樹脂フイ
ルムの製造方法において、前記ワイヤーの張力を
測定して該ワイヤーの破断強度の80〜98%の範囲
内に張力を調整することを特徴とする熱可塑性樹
脂フイルムの製造方法である。 以下、本発明を説明する。 本発明においてフイルムとなる熱可塑性樹脂
は、フイルムの成形可能なすべての樹脂を包含す
る。これら樹脂には、ポリ塩化ビニル、ポリ塩化
ビニリデン、ポリプロピレン、ポリエチレン、ポ
リエチレンテレフタレート等が例示できる。 次にワイヤーからなる電極(例えば、針電極、
ワイヤー電極等)に高電圧の静電気を印加し、一
方フイルムをキヤステイングする冷却ドラムを対
向電極(通常は接地されている)として、溶融状
態のフイルムを静電気に密着させるものである
が、本発明ではワイヤー張力の測定手段を付加す
れば静電ピンニング装置として公知のものがほぼ
適用できる。 本発明の特徴は、高電圧が印加された状態のワ
イヤーの張力を、稼動時において常時測定するも
のであつて、実際の張力をワイヤーの所定の範囲
(破断からみて許容範囲)において極力高い値に
精度よく調整、維持するものである。ワイヤーの
張力調整は、ワイヤーの破断強度の80〜98%、好
ましくは90〜95%である。ワイヤーの張力の付与
の方法はワイヤーの一端を固定し、他端に張力付
与調整手段を設け、この手段の作動によるもので
ある。張力測定手段(張力計)は他端側のワイヤ
ー支持具と張力付与調整手段との間に設ける。張
力測定手段としてはバネ(ばね秤)、ストレイン
ゲージ等の公知の手段が適用できる。ワイヤーと
張力測定手段や張力付与調整手段との間には絶縁
部材を介在させ、ワイヤーに印加した電気が漏れ
ないようにする必要がある。また張力付与調整手
段としては空気圧調整弁と連結したエアシリン
ダ、伸び量を調整できるバネ、錘の量を増減でき
る重錘など公知の手段が適用できる。 ワイヤー張力の調整は張力測定手段の表示を確
認しながらマニユアルで行なうことができる。ま
た張力を電気信号として取出し、シリンダの圧力
(油圧、空気圧等)を自動調整して、ワイヤー張
力を調節することも可能である。人手又は自動に
よるワイヤー張力の調整は、前記の例示以外にも
適用可能であつて、前記の張力調整範囲内におい
て目標値張力の±3%以内に容易に調節でき、±
1%以内の高精調節囲内も可能である。 電極とする金属製ワイヤーの材質としては鋼鉄
線(ピアノ線)が有利に用い得る例が多いが、他
の導電性材料に替えることもできる。 本発明において、最も肝要な点は、高い張力に
維持された電極のワイヤーが製膜装置の回転や振
動に伴なう振動誘発を回避でき、かつこの高い張
力を容易に調整できる点である。 <発明の効果> a 製膜中のワイヤー実張力が精度よく管理可能
であるため、破断許容強度上限近くの高張力で
の運転が可能となり、ワイヤー振動が発生し難
くなり、周期的厚み斑による不良製品発生が防
止できる。 b 張力過多によるワイヤー切断、それに伴なう
運転休止ロスがなくなる。 <実施例> 以下に図面を参照しながら本発明の実施例を示
す。 第2図は熱可塑性樹脂フイルムの製造装置の概
略側面図である。ダイ10から溶融押出されたフ
イルム状の溶融体40は、冷却ドラム30の表面
上で冷却固化される。この製膜に際してワイヤー
20は高電圧発生装置(図示せず)に連結されて
高電圧が維持される。この結果フイルム40には
高電荷が誘電析出され、対向電極である冷却ドラ
ムと密着される。 本発明では、ワイヤー20は第1図に示したよ
うに固定端26においてその一端を固定され、他
端はワイヤー支持具28をへて張力付与調整装置
24に連結されている。そしてワイヤー他端と張
力付与調整装置の間に張力測定手段22が介在し
ている。ワイヤー他端と張力測定手段との接合部
分は電気的に絶縁されている。 第1図のワイヤーの展張状態において、従来通
りの張力代替特性による張力設定の場合の実張力
のバラツキを調べたところ、同一張力代替特性の
とき目標値の±15%に及ぶ変動が認められた。こ
れに対し、張力計の表示に注意してワイヤーを張
ると実張力のバラツキは±1%以内に精度よく収
まつた。
<Industrial Application Field> The present invention relates to a method for manufacturing a thermoplastic resin film by electrostatically pinning a thermoplastic resin melt-extruded into a film from a die onto a cooling drum to efficiently cool the thermoplastic resin. <Prior art and its problems> When manufacturing thermoplastic resin film, an electrostatic charge is applied to the molten film extruded from a die, and the film is electrostatically adhered to a grounded cooling drum to improve cooling efficiency. The so-called electrostatic pinning film forming technique is well known. By the way, in the conventional electrostatic pinning method, a molten film is run between a needle electrode or a wire electrode and a cooling drum serving as a counter electrode, and a high voltage is applied to the electrode. Electrostatic charges are deposited on a film in a certain molten state, but if the distance between the electrode wire (or needle electrode) and the film (or the distance between the electrode and the counter electrode) is not kept constant, the density of the deposited charges will decrease. This often results in mottling and unwanted or damaging discharges on the film. In the case of electric wire electrodes (hereinafter referred to as wires), the factor that makes such electrostatic pinning unstable is the vibration of the electric wire. For example, when the wire vibrates, periodic film thickness unevenness corresponding to the vibration period occurs in the product film, resulting in an unavoidable decrease in the yield of the product. In order to produce good products, it is necessary to prevent this wire vibration from occurring. The cause of this wire vibration is not clear, but it is generally thought to be caused by electrical force generated in the wire, surrounding mechanical vibrations, and external disturbances such as wind, and is associated with the speeding up and widening of recent film forming technology. Wire vibrations are becoming more common, and solving this problem is becoming more difficult. It is known that one way to solve this problem is to apply as high a tension as possible to the electrode wire, but in reality, if the tension is too high, there is a risk of the wire breaking, and if the wire breaks, it will cause a huge amount of damage such as a loss of operation stoppage. This will cause damage. Therefore, it is unavoidable to form a film in a low tension range without fear of wire breakage, but this low wire tension condition is extremely disadvantageous for wire vibration. Conventional thermoplastic resin film forming equipment fixes one end of a wire and applies tension to the other end with a spring, screw, weight, or cylinder using compressed air. There is no means to directly measure the tension applied to the wire. Therefore, the tension of the wire can be determined by the amount of extension of the spring mentioned above, the amount of tightening of the screw,
It will be controlled based on the weight of the weight, compressed air pressure, etc. However, in reality, the above-mentioned alternative properties cannot be said to be sufficient substitutes for the actual tension of the wire, and furthermore, there are variations in the alternative properties, so
If you try to maintain a high tension, unexpected tension may be applied and the wire may break. Also, avoid setting the tension too low to avoid wire breakage.
Even if you intend to set the tension to an appropriate level, the tension may be low, and wire vibration will occur. <Object of the invention> The object of the invention is to avoid wire breakage while
To provide a method for producing a thermoplastic resin film, in which the electrostatic pinning efficiency is increased by adjusting the tension of a wire under as high a tension as possible, and the thermoplastic resin melt-extruded from a die into a film is efficiently cooled. <Structure of the Invention> The present invention involves running a molten film made of a thermoplastic resin extruded from a die between an electrode made of a metal wire and a counter electrode made of a cooling drum, and applying a high voltage to the electrode. In the method for producing a thermoplastic resin film, the tension of the wire is measured and the tensile strength of the wire is determined to be 80 to 98% of the breaking strength of the wire. This is a method for producing a thermoplastic resin film characterized by adjusting the tension within a range. The present invention will be explained below. In the present invention, the thermoplastic resin forming the film includes all resins that can be formed into a film. Examples of these resins include polyvinyl chloride, polyvinylidene chloride, polypropylene, polyethylene, and polyethylene terephthalate. Next, an electrode consisting of a wire (for example, a needle electrode,
In this method, high-voltage static electricity is applied to a wire electrode, etc.), and a cooling drum that casts the film is used as a counter electrode (usually grounded) to bring the molten film into close contact with the static electricity. If a means for measuring wire tension is added, then almost any known electrostatic pinning device can be applied. A feature of the present invention is that the tension of the wire under high voltage is constantly measured during operation, and the actual tension is kept as high as possible within a predetermined range of the wire (tolerable range from the viewpoint of breakage). It must be adjusted and maintained with high precision. The tension adjustment of the wire is 80-98%, preferably 90-95% of the breaking strength of the wire. The method for applying tension to the wire is to fix one end of the wire, provide a tension adjustment means at the other end, and operate this means. A tension measuring means (tension meter) is provided between the wire support on the other end side and the tension applying adjustment means. As the tension measuring means, known means such as a spring (spring scale) or a strain gauge can be used. It is necessary to interpose an insulating member between the wire and the tension measuring means or the tension applying adjusting means to prevent the electricity applied to the wire from leaking. Further, as the tension applying and adjusting means, known means such as an air cylinder connected to an air pressure regulating valve, a spring that can adjust the amount of extension, and a weight that can increase or decrease the amount of weight can be used. The wire tension can be adjusted manually while checking the display on the tension measuring means. It is also possible to extract the tension as an electrical signal and automatically adjust the cylinder pressure (hydraulic pressure, air pressure, etc.) to adjust the wire tension. The wire tension can be adjusted manually or automatically in ways other than the above examples, and can be easily adjusted to within ±3% of the target value tension within the tension adjustment range described above.
High precision adjustment within 1% is also possible. Steel wire (piano wire) is often advantageously used as the material for the metal wire used as the electrode, but other conductive materials can also be used. In the present invention, the most important point is that the electrode wire maintained at a high tension can avoid vibration induction due to rotation and vibration of the film forming apparatus, and that this high tension can be easily adjusted. <Effects of the invention> a. Since the actual wire tension during film formation can be controlled with precision, it is possible to operate at a high tension close to the upper limit of allowable breaking strength, making it difficult for wire vibration to occur and preventing periodic thickness irregularities. The occurrence of defective products can be prevented. b Eliminates wire breakage due to excessive tension and associated loss of operation. <Examples> Examples of the present invention will be described below with reference to the drawings. FIG. 2 is a schematic side view of a thermoplastic resin film manufacturing apparatus. The film-like melt 40 melt-extruded from the die 10 is cooled and solidified on the surface of the cooling drum 30. During this film formation, the wire 20 is connected to a high voltage generator (not shown) to maintain a high voltage. As a result, a high charge is dielectrically deposited on the film 40, which is brought into close contact with the cooling drum serving as the counter electrode. In the present invention, the wire 20 is fixed at one end at a fixed end 26 as shown in FIG. 1, and the other end is connected to the tensioning adjustment device 24 through a wire support 28. A tension measurement means 22 is interposed between the other end of the wire and the tension adjustment device. The joint between the other end of the wire and the tension measuring means is electrically insulated. In the stretched state of the wire shown in Figure 1, when we investigated the variation in the actual tension when the tension was set using the conventional tension substitution characteristics, we found that it varied by up to ±15% of the target value when the tension substitution characteristics were the same. . On the other hand, when the wire was stretched paying attention to the indication on the tension meter, the variation in actual tension was accurately kept within ±1%.

【表】 以上から静電ピンニングは、ワイヤーの張力を
精度高く調節することにより、安定な製膜作業が
可能となり、ワイヤーの振動による不良品の発生
を抑えることができるほか、ワイヤーの不測の破
断が回避でき、生産効率、作業効率の高められる
ことが判る。
[Table] From the above, electrostatic pinning enables stable film-forming work by precisely adjusting the tension of the wire, suppresses the occurrence of defective products due to wire vibration, and prevents unexpected breakage of the wire. It can be seen that this can be avoided and production efficiency and work efficiency can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のワイヤーの張られている状態
を示した斜視図であり、第2図は製膜装置を示す
概略側面図である。図面において、10はダイ、
20はワイヤー、22は張力測定手段、24は張
力付与調整装置、30は冷却ドラム、40はフイ
ルムである。
FIG. 1 is a perspective view showing a state in which the wire of the present invention is stretched, and FIG. 2 is a schematic side view showing a film forming apparatus. In the drawing, 10 is a die,
20 is a wire, 22 is a tension measuring means, 24 is a tension adjustment device, 30 is a cooling drum, and 40 is a film.

Claims (1)

【特許請求の範囲】[Claims] 1 金属製のワイヤーからなる電極と冷却ドラム
からなる対向電極との間にダイより押出した熱可
塑性樹脂からなる溶融状態のフイルムを走行さ
せ、電極に高電圧を印加することによりフイルム
に電荷を析出せしめ、フイルムを冷却ドラムに静
電密着せしめて冷却する熱可塑性樹脂フイルムの
製造方法において、前記ワイヤーの張力を測定し
て該ワイヤーの破断強度の80〜98%の範囲内に張
力を調整することを特徴とする熱可塑性樹脂フイ
ルムの製造方法。
1 A molten film made of thermoplastic resin extruded from a die is run between an electrode made of a metal wire and a counter electrode made of a cooling drum, and charges are deposited on the film by applying a high voltage to the electrode. A method for producing a thermoplastic resin film in which the film is electrostatically brought into close contact with a cooling drum and cooled, wherein the tension of the wire is measured and the tension is adjusted within a range of 80 to 98% of the breaking strength of the wire. A method for producing a thermoplastic resin film characterized by:
JP60187325A 1985-08-28 1985-08-28 Manufacture device for thermoplastic resin film Granted JPS6248522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60187325A JPS6248522A (en) 1985-08-28 1985-08-28 Manufacture device for thermoplastic resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60187325A JPS6248522A (en) 1985-08-28 1985-08-28 Manufacture device for thermoplastic resin film

Publications (2)

Publication Number Publication Date
JPS6248522A JPS6248522A (en) 1987-03-03
JPH0346297B2 true JPH0346297B2 (en) 1991-07-15

Family

ID=16204027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60187325A Granted JPS6248522A (en) 1985-08-28 1985-08-28 Manufacture device for thermoplastic resin film

Country Status (1)

Country Link
JP (1) JPS6248522A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053976A1 (en) * 1997-05-27 1998-12-03 Toray Industries, Inc. Method and apparatus for producing thermoplastic resin sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675905B2 (en) * 1986-03-06 1994-09-28 ダイアホイルヘキスト株式会社 Polymer sheet casting equipment
JP2009234194A (en) * 2008-03-28 2009-10-15 Teijin Dupont Films Japan Ltd Method and apparatus for producing thermoplastic resin sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053976A1 (en) * 1997-05-27 1998-12-03 Toray Industries, Inc. Method and apparatus for producing thermoplastic resin sheet

Also Published As

Publication number Publication date
JPS6248522A (en) 1987-03-03

Similar Documents

Publication Publication Date Title
US2935418A (en) Method for treating preformed polyethylene with an electrical glow discharge
KR930000774B1 (en) Method for controlling fiber diameter during optical fiber drawing process
US3686374A (en) Gas assisted electrostatic pinning
JPH0346297B2 (en)
JPH08224770A (en) Improved electrostatic pin guide method
US3758251A (en) Electrostatic pinning of polymeric film
US20080190216A1 (en) Force measuring apparatus
EP1916088A2 (en) Automatic ramping method and system for extrusion coating wire
CN106251985A (en) A kind of takeup tension for cable-former controls device
KR0181413B1 (en) Method of making thermoplastic sheet
JPS6035247B2 (en) Method for manufacturing polymer film
CN104607739B (en) A kind of low-speed WEDM copper wire is tensioned force control method
KR0181411B1 (en) Method of making thermoplastic sheet
KR20000029611A (en) Method and apparatus for producing thermoplastic resin sheet
Allen et al. Impulse breakdown of insulators and air gaps of similar electrode configurations: effects of temperature
CN213455385U (en) Vibrating wire type surface strain gauge with quick mounting mechanism
JPH0375027B2 (en)
CN106158148A (en) A kind of paying-off tension control device for cable-former
EP4231401A1 (en) Winding device capable of real-time precise tension measurement in winding process
JPH05814Y2 (en)
JPH0675905B2 (en) Polymer sheet casting equipment
JPH0375026B2 (en)
JPH02116426A (en) Wire electric discharge machine
JPH0592471A (en) Casting method for thermoplastic polymer sheet
JPS63272526A (en) Manufacture of thermoplastic resin sheet