JPH0346280A - Light emitting diode - Google Patents

Light emitting diode

Info

Publication number
JPH0346280A
JPH0346280A JP1181532A JP18153289A JPH0346280A JP H0346280 A JPH0346280 A JP H0346280A JP 1181532 A JP1181532 A JP 1181532A JP 18153289 A JP18153289 A JP 18153289A JP H0346280 A JPH0346280 A JP H0346280A
Authority
JP
Japan
Prior art keywords
type semiconductor
light emitting
emitting diode
light
heterojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1181532A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Asada
浩義 浅田
Hiroshi Kawaguchi
浩志 川口
Akinori Kawamura
明徳 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1181532A priority Critical patent/JPH0346280A/en
Publication of JPH0346280A publication Critical patent/JPH0346280A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a light emitting diode to emit light rays of different wavelengths at the same time from the same light projection position and to prevent problems such as a coupling loss and an image-forming position by a method wherein the light emitting diode is provided with a laminar structure composed of two or more p-type semiconductor layers, two p-type semiconductor layers adjacent to each other form a heterojunction, and the p-type semiconductor layers are specified in forbidden bandwidth. CONSTITUTION:A light emitting diode is provided with a p-type semiconductor 1, an n-type semiconductor 2, and a single p-n heterojunction 3, where the p-type semiconductor 1 is composed of p-type semiconductor layers P1 and P2 which form a heterojunction 4. Provided that the forbidden bandwidths of the p-type semiconductor P1 and P2 and the n-type semiconductor 2 are represented by Ep1, Ep2, and En respectively, they are so set as to satisfy a formula, En>Ep1>Ep2. The thickness of the p-type semiconductor layer P1 is smaller than the diffusion length of minor carriers which are injected from the n-type semiconductor 2 into the p-type semiconductor 1. By this setup, light rays of different wavelengths can be obtained from the same projection position at the same time, and for instance, problems such that light rays of different wavelengths are not equal in coupling loss and have not the same image-forming position can be eliminated.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、波長が異なる複数の光を同時に発すること
ができ、たとえば、障害物検知センサやリモートコント
ローラの光源として使用して動作用の光と動作表示用の
光とを同時に得たり、ファクシミリや光プリンタの光源
として使用して感光体交換時の感度特性の違いを自動的
に補正したりすることができる発光ダイオードに関する
Detailed Description of the Invention (Industrial Application Field) This invention can emit multiple lights of different wavelengths at the same time, and can be used as a light source for an obstacle detection sensor or a remote controller, for example, to provide operating light. The present invention relates to a light emitting diode that can simultaneously obtain light for displaying operation and operation, and can be used as a light source for facsimile machines and optical printers to automatically correct differences in sensitivity characteristics when replacing photoreceptors.

(従来の技術) pnヘテロ接合(p型半導体とn型半導体とのヘテロ接
合)に順方向の電流を流したときの発光現象を利用した
発光ダイオードは、よく知られており、いろいろな用途
に数多く供されている。
(Prior art) Light emitting diodes, which utilize the phenomenon of light emission when a forward current is passed through a pn heterojunction (heterojunction between a p-type semiconductor and an n-type semiconductor), are well known and have been used for various purposes. Many are offered.

ところで、近年、そのような発光ダイオードを使用して
、波長が異なる複数の光を同時に得ることが提案されて
いる。たとえば、実公昭62−34467号考案や実公
昭63−20129号考案、特開昭50−57592号
発明、特開昭56−69880号発明、特開昭64−5
0493号発明は、かかる目的のために、複数個の、発
光波長が異なる発光ダイオードを、互いに近接して、あ
るいは、重ね合わせて配置したり、同一の半導体基板上
に発光波長が異なる複数個のpnヘテロ接合を形成した
りしている。すなわち、これらは、いずれも、1個のp
nヘテロ接合を有するものによってはただ1種類の波長
の光しか得られないことから、複数個のpnヘテロ接合
を有するものとして、それぞれのpnヘテロ接合に対応
して波長が異なる複数の光を得るようにしたものである
。しかしながら、このような、いわゆる複合発光ダイオ
ードでは、各波長の光についてその出射位置が異なるこ
とになることから、たとえば、出射光を光ファイバに入
射せしめるとき、各波長の光について結合損失が同一で
はなくなったり、精密光学系において使用するとき、各
波長の光について結像位置が同一ではなくなったりする
といった不都合がでてくる。
Incidentally, in recent years, it has been proposed to use such light emitting diodes to simultaneously obtain a plurality of lights of different wavelengths. For example, the invention in JP-A-62-34467, the invention in JP-A-63-20129, the invention in JP-A-50-57592, the invention in JP-A-56-69880, the invention in JP-A-64-5
For this purpose, the invention No. 0493 arranges a plurality of light emitting diodes with different emission wavelengths close to each other or on top of each other, or arranges a plurality of light emitting diodes with different emission wavelengths on the same semiconductor substrate. It also forms a pn heterojunction. That is, each of these has one p
Since a device with an n-heterojunction can only obtain light of one type of wavelength, a device with multiple pn-heterojunctions can obtain multiple lights with different wavelengths corresponding to each pn-heterojunction. This is how it was done. However, in such a so-called composite light emitting diode, the emitting position for each wavelength of light is different, so for example, when the emitted light is input into an optical fiber, the coupling loss is not the same for each wavelength of light. When used in a precision optical system, the image formation position for each wavelength of light may not be the same.

(発明が解決しようとする課題) この発明の目的は、波長が異なる複数の光を、同時に、
しかも、同じ出射位置から得ることができ、上述した、
結合損失や結像位置についての問題を解決することがで
きる発光ダイオードを提供するにある。
(Problem to be solved by the invention) The purpose of the invention is to simultaneously transmit multiple lights of different wavelengths.
Moreover, it can be obtained from the same emission position, and the above-mentioned
An object of the present invention is to provide a light emitting diode that can solve problems regarding coupling loss and imaging position.

(課題を解決するための手段) 上記目的を達成するために、この発明は、ただ1個の、
p型半導体とn型半導体とのヘテロ接合を有し、p型半
導体で発した光がn型半導体を通過してそのn型半導体
の表面から出射するようにした発光ダイオードであって
、上記p型半導体は複数個のp型半導体層の層状構成を
有し、゛相隣り合う2個のp型半導体層はヘテロ接合を
形成しており、各p型半導体層の禁制帯幅は、上記n型
半導体側に位置するものほど大きく、かつ、上記n型半
導体から最も離れて位置するp型半導体層を除くp型半
導体層の合計厚みが、上記n型半導体から上記p型半導
体に注入される少数キャリアの拡散長よりも薄くなって
いることを特徴とする発光ダイオードを提供する。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides only one
A light emitting diode having a heterojunction of a p-type semiconductor and an n-type semiconductor, in which light emitted by the p-type semiconductor passes through the n-type semiconductor and is emitted from the surface of the n-type semiconductor, The type semiconductor has a layered structure of a plurality of p-type semiconductor layers, and two phase-adjacent p-type semiconductor layers form a heterojunction, and the forbidden band width of each p-type semiconductor layer is equal to the above n The total thickness of the p-type semiconductor layers excluding the p-type semiconductor layer located farthest from the n-type semiconductor is injected from the n-type semiconductor into the p-type semiconductor. To provide a light emitting diode characterized by being thinner than the diffusion length of minority carriers.

この発明の発光ダイオードは、波長が異なる複数の光を
同時に発するが、p型半導体とn型半導体とのpnヘテ
ロ接合はただ1個であり、上述した従来のもののように
、発光波長に応じて複数個あるということはない。
The light emitting diode of this invention simultaneously emits multiple lights of different wavelengths, but it has only one pn heterojunction between a p-type semiconductor and an n-type semiconductor, and unlike the above-mentioned conventional one, the light emitting diode There is no such thing as more than one.

さて、p型半導体は、互いにヘテロ接合された、層をな
す複数個のp型半導体層からなる。p型半導体層の数は
、p型半導体が発する、波長が異なる光の数に等しい。
Now, a p-type semiconductor is made up of a plurality of p-type semiconductor layers that are connected to each other in a heterojunction. The number of p-type semiconductor layers is equal to the number of lights of different wavelengths emitted by the p-type semiconductor.

pnヘテロ接合を有する発光ダイオードにおいては、p
型半導体が発する光がn型半導体を通過し、そのn型半
導体の表面から出射する。そのために、p型半導体およ
びn型半導体の禁制帯幅は、p型半導体の禁制帯幅をE
、、n型半導体のそれをE、、としたとき、 E、、>E。
In a light emitting diode with a pn heterojunction, p
Light emitted by the n-type semiconductor passes through the n-type semiconductor and exits from the surface of the n-type semiconductor. Therefore, the forbidden band width of the p-type semiconductor and the n-type semiconductor is the same as that of the p-type semiconductor.
, , If that of an n-type semiconductor is E, then E, ,>E.

なる関係になっている。この点は、この発明においても
同様で、p型半導体の各p型半導体層の禁制帯幅を、n
型半導体に最も近く位置するものから、順に、El、E
2、・・・・・・E、(mはp型半導体層の数)とした
とき、 E、、〉El〉E2〉・・・・・・〉EI?l−1〉E
、、lなる関係が成立している。すなわち、p型半導体
層の禁制帯幅は、n型半導体側に位置するものほど大き
くなっている。なお、禁制帯幅は、エネルギー帯幅とも
禁止帯幅とも呼ばれる。
The relationship has become similar. This point is the same in this invention, and the forbidden band width of each p-type semiconductor layer of the p-type semiconductor is n
In order from the one closest to the type semiconductor, El, E
2,...E, (m is the number of p-type semiconductor layers), E,,〉El〉E2〉...〉EI? l-1〉E
, , l holds true. That is, the forbidden band width of the p-type semiconductor layer becomes larger as the layer is located closer to the n-type semiconductor. Note that the forbidden band width is also called an energy band width or a forbidden band width.

各p型半導体層における発光波長は、禁制帯幅の大小に
よって決まる。また、各p型半導体層が発する光の強度
の比は、そのp型半導体層の厚みや不純物の濃度に依存
する。
The emission wavelength in each p-type semiconductor layer is determined by the magnitude of the forbidden band width. Further, the ratio of the intensity of light emitted by each p-type semiconductor layer depends on the thickness of the p-type semiconductor layer and the concentration of impurities.

すべてのp型半導体層が光を発するためには、n型半導
体からp型半導体に注入される少数キャリア(電子)が
各p型半導体層に到達し、それらp型半導体層の多数キ
ャリア(正孔)と結合しなければならない。そのため、
n型半導体から最も離れて位置するp型半導体層を除く
p型半導体層の合計厚みは、n型半導体からp型半導体
に注入される少数キャリアの拡散長よりも薄くなってい
る。
In order for all p-type semiconductor layers to emit light, the minority carriers (electrons) injected from the n-type semiconductor to the p-type semiconductor must reach each p-type semiconductor layer, and the majority carriers (positive hole). Therefore,
The total thickness of the p-type semiconductor layers excluding the p-type semiconductor layer located farthest from the n-type semiconductor is thinner than the diffusion length of minority carriers injected from the n-type semiconductor to the p-type semiconductor.

(作 用) n型半導体からp型半導体の各p型半導体層に注入され
た少数キャリアは、各p型半導体層において多数キャリ
アと結合し、それぞれのp型半導体層は自身の禁制帯幅
に見合った波長の光を発する。発生した光は、いずれも
、n型半導体を通過し、そのn型半導体の表面の同じ位
置から出射する。
(Function) Minority carriers injected from the n-type semiconductor into each p-type semiconductor layer of the p-type semiconductor combine with majority carriers in each p-type semiconductor layer, and each p-type semiconductor layer has its own forbidden band width. It emits light of the appropriate wavelength. All of the generated light passes through the n-type semiconductor and exits from the same position on the surface of the n-type semiconductor.

(実施態様) 第1図において、発光ダイオードは、n型半導体1と、
n型半導体2との、ただ1個のpnヘテロ接合3を有す
る。また、n型半導体1は、ヘテロ接合4を形成する、
2個のp型半導体層P1、P2からなっている。p型半
導体層P2は、n型半導体基板を兼ねている。そうして
、禁制帯幅Eは、p型半導体層P1の禁制帯幅をEPI
、p型半導体層P2のそれをEP2、n型半導体2のそ
れをE。としたとき、図示するように、 Eゎ> E pl > E P2 なる関係になっている。また、p型半導体層P。
(Embodiment) In FIG. 1, a light emitting diode includes an n-type semiconductor 1,
It has only one pn heterojunction 3 with an n-type semiconductor 2. Further, the n-type semiconductor 1 forms a heterojunction 4,
It consists of two p-type semiconductor layers P1 and P2. The p-type semiconductor layer P2 also serves as an n-type semiconductor substrate. Then, the forbidden band width E is the forbidden band width of the p-type semiconductor layer P1.
, that of the p-type semiconductor layer P2 is EP2, and that of the n-type semiconductor layer 2 is E. As shown in the figure, the relationship is Eゎ>E pl >E P2. Moreover, a p-type semiconductor layer P.

の厚みは、n型半導体2からn型半導体1に注入される
少数キャリアの拡散長よりも薄くなっている。さらに、
p型半導体層P2にはp型の面電極5が、n型半導体2
にはn型の点電極6が、それぞれ形成されている。そう
して、かかる発光ダイオードによれば、p型半導体層P
□による光λ1と、それとは波長が異なる、p型半導体
層P2による光λ2とが、同時に、しかも、n型半導体
2の表面の同じ位置から得られる。
is thinner than the diffusion length of minority carriers injected from the n-type semiconductor 2 to the n-type semiconductor 1. moreover,
A p-type surface electrode 5 is provided on the p-type semiconductor layer P2, and a p-type surface electrode 5 is provided on the p-type semiconductor layer P2.
An n-type point electrode 6 is formed on each side. According to this light emitting diode, the p-type semiconductor layer P
Light λ1 due to □ and light λ2 due to the p-type semiconductor layer P2, which has a different wavelength, are obtained simultaneously and from the same position on the surface of the n-type semiconductor 2.

さらに詳しく説明するに、いま、n型半導体基板を兼ね
るp型半導体層P2としてGaAsを使用し、その上に
p型のAI、Gax−、As (x=0.4)を液相エ
ピタキシャル成長させてp型半導体層P1を形成し、さ
らにその上に、同様にn型のA IX Ga1−x A
s (x=0.7)を液相エピタキシャル成長させてn
型半導体2を形成する。
To explain in more detail, GaAs is used as the p-type semiconductor layer P2 which also serves as the n-type semiconductor substrate, and p-type AI, Gax-, and As (x=0.4) are grown on it by liquid phase epitaxial growth. A p-type semiconductor layer P1 is formed, and on top of that, similarly n-type A IX Ga1-x A
s (x=0.7) by liquid phase epitaxial growth and n
A type semiconductor 2 is formed.

このとき、p型半導体層P1の厚みは、n型半導体2か
ら注入される少数キャリアの拡散長よりも薄くする。ま
た、p型半導体層P2の、ヘテロ接合4の面とは反対側
の面には、Au−Zn合金による面電極5を形成し、n
型半導体2の、pnヘテロ接合3の面とは反対側の面に
は、Au−Ge合金による点電極6を形成する。
At this time, the thickness of the p-type semiconductor layer P1 is made thinner than the diffusion length of minority carriers injected from the n-type semiconductor 2. Further, a surface electrode 5 made of an Au-Zn alloy is formed on the surface of the p-type semiconductor layer P2 opposite to the surface of the heterojunction 4, and
A point electrode 6 made of an Au-Ge alloy is formed on the surface of the type semiconductor 2 opposite to the surface of the pn heterojunction 3.

このように構成した発光ダイオードにおいては、p型半
導体層P2によって波長が890nmの光が、また、p
型半導体層P1によって波長が670nnの光が、それ
ぞれ発生する。
In the light emitting diode configured in this way, light with a wavelength of 890 nm is emitted by the p-type semiconductor layer P2, and p-type semiconductor layer P2
Light having a wavelength of 670 nn is generated by the type semiconductor layer P1.

第3図は、上述したような発光ダイオードの発光スペク
トルを示しており、p型半導体層P1の厚みを制御する
ことで、(a)、(b)、(C)に示すように、各波長
の光の強度の比を変えることができる。すなわち、p型
半導体層P1の厚みを厚くすれば、(a)に示すように
p型半導体層P1からの光が支配的になる。逆に、p型
半導体層P1の厚みを薄くすれば、(C)に示すように
p型半導体層P2からの光が支配的になる。なお、第3
図において、横軸のλは波長(nm)であり、縦軸のI
は相対光強度である。
FIG. 3 shows the emission spectrum of the light emitting diode as described above, and by controlling the thickness of the p-type semiconductor layer P1, each wavelength can be adjusted as shown in (a), (b), and (C). can change the ratio of light intensities. That is, if the thickness of the p-type semiconductor layer P1 is increased, the light from the p-type semiconductor layer P1 becomes dominant as shown in (a). Conversely, if the thickness of the p-type semiconductor layer P1 is reduced, the light from the p-type semiconductor layer P2 becomes dominant, as shown in (C). In addition, the third
In the figure, λ on the horizontal axis is wavelength (nm), and I on the vertical axis
is the relative light intensity.

第1図に示した態様の発光ダイオードにおいては、p型
半導体層P2にp型基板を兼ねさせているが、第2図に
示すように、n型半導体基板7上にp型半導体層P2を
液相エピタキシャル成長させることによって両者を分離
することもできる。
In the light emitting diode of the embodiment shown in FIG. 1, the p-type semiconductor layer P2 also serves as the p-type substrate, but as shown in FIG. The two can also be separated by liquid phase epitaxial growth.

このとき、n型半導体基板7とp型半導体層P2とは、
ホモ接合8を形成する。このようにすると、p型半導体
層P2の結晶品質が向上し、出力が向上するようになる
At this time, the n-type semiconductor substrate 7 and the p-type semiconductor layer P2 are
A homozygous 8 is formed. In this way, the crystal quality of the p-type semiconductor layer P2 is improved, and the output is improved.

以上においては、n型半導体が2個のn型半導体層から
なっている場合について説明したが、同様に3個以上の
n型半導体層を設けて、波長が異なる3種類以上の光を
得ることができることはいうまでもない。
In the above, we have explained the case where the n-type semiconductor consists of two n-type semiconductor layers, but it is also possible to similarly provide three or more n-type semiconductor layers to obtain three or more types of light with different wavelengths. Needless to say, it can be done.

また、以上においては、Gaと、A1と、Asとからな
るpnヘテロ接合を有する発光ダイオードについて述べ
たが、格子定数を著しく変えないで禁制帯幅を変更でき
るその他の半導体、たとえば、Inと、Gaと、Asと
、Pとからなる半導体を使用することもできる。
In addition, although the above description has been made of a light emitting diode having a pn heterojunction made of Ga, Al, and As, other semiconductors that can change the forbidden band width without significantly changing the lattice constant, such as In and A semiconductor made of Ga, As, and P can also be used.

なお、この発明においては、n型半導体を発光に供して
いる。これは、一般に化合物半導体の発光ダイオードに
おいては、n型半導体での非発光中心になる欠陥の発生
がn型半導体よりも少なく、n型半導体での発光効率が
n型半導体のそれよりも高いからである。また、n型半
導体における少数キャリアの拡散長が、n型半導体にお
けるそれよりも長いために各発光波長の強度比を制御し
やすいからである。すなわち、p型半導体とn型半導体
とをこの発明とは逆に構成したものにおいても、同時に
複数の波長の光を発することができるが、発光効率、強
度比の制御性等の面でこの発明の構成によるもののほう
が実用的である。
In addition, in this invention, the n-type semiconductor is used for light emission. This is because, in general, in compound semiconductor light emitting diodes, defects that become non-light emitting centers occur in the n-type semiconductor less than in the n-type semiconductor, and the luminous efficiency of the n-type semiconductor is higher than that of the n-type semiconductor. It is. Further, since the diffusion length of minority carriers in an n-type semiconductor is longer than that in an n-type semiconductor, it is easier to control the intensity ratio of each emission wavelength. That is, even if a p-type semiconductor and an n-type semiconductor are configured in the opposite manner to that of the present invention, it is possible to emit light of multiple wavelengths simultaneously, but this invention is not effective in terms of luminous efficiency, controllability of intensity ratio, etc. It is more practical to use this configuration.

(発明の効果) この発明の発光ダイオードは、n型半導体とpnヘテロ
接合を形成するp型半導体を複数個のp型半導体層の層
状構成として、各p型半導体層の禁制帯幅を、n型半導
体側に位置するものほど大きく、かつ、n型半導体から
最も離れて位置するp型半導体層を除くp型半導体層の
合計厚みを、n型半導体からp型半導体に注入される少
数キャリアの拡散長よりも薄くしているから、pnヘテ
ロ接合がただ1個であるにもかかわらず、波長が異なる
複数の光を、同時に、しかも、同じ出射位置から得るこ
とができ、たとえば、出射光を光ファイバに入射せしめ
るとき、各波長の光について結合損失が同一ではなくな
ったり、精密光学系において使用するとき、各波長の光
について結像位置が同一ではなくなったりするといった
不都合を防止することができるようになる。
(Effects of the Invention) The light emitting diode of the present invention has a layered structure of a plurality of p-type semiconductor layers including a p-type semiconductor forming a pn heterojunction with an n-type semiconductor, and the forbidden band width of each p-type semiconductor layer is n. The total thickness of the p-type semiconductor layer excluding the p-type semiconductor layer located farthest from the n-type semiconductor is calculated as the total thickness of the minority carriers injected from the n-type semiconductor to the p-type semiconductor. Because it is thinner than the diffusion length, multiple lights with different wavelengths can be obtained at the same time and from the same emission position, even though there is only one pn heterojunction. This can prevent inconveniences such as the coupling loss not being the same for each wavelength of light when entering an optical fiber, and the imaging position not being the same for each wavelength when used in a precision optical system. It becomes like this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、この発明のそれぞれ異なる態様
の発光ダイオードについて、その層構成とと禁制帯幅と
を示す概略図、第3図は、第1図および第2図に示した
発光ダイオードによる発光スペクトルを示すグラフであ
る。 1:p型半導体 p、:p型半導体層 P2:p型半導体層 2:n型半導体 3:p型半導体とn型半導体とのヘテロ接合4:p型半
導体のヘテロ接合 5:面電極 6:点電極 7:p型半導体基板 8:p型半導体のホモ接合 E;禁制帯幅 E、:n型半導体の禁制帯幅 E9□:p型半導体層P1の禁制帯幅 Ep2:p型半導体層P2およびp型半導体基板7の禁
制帯幅 λ : ■ : 波長 λ1 :波長 λ2 :波長 相対光強度
1 and 2 are schematic diagrams showing the layer structure and forbidden band width of light emitting diodes of different embodiments of the present invention, and FIG. 3 is a schematic diagram showing the light emitting diode shown in FIGS. 1 and 2. It is a graph showing an emission spectrum by a diode. 1: p-type semiconductor p, : p-type semiconductor layer P2: p-type semiconductor layer 2: n-type semiconductor 3: heterojunction of p-type semiconductor and n-type semiconductor 4: heterojunction of p-type semiconductor 5: surface electrode 6: Point electrode 7: p-type semiconductor substrate 8: p-type semiconductor homojunction E; forbidden band width E;: forbidden band width E9 of n-type semiconductor: forbidden band width Ep2 of p-type semiconductor layer P1: p-type semiconductor layer P2 and the forbidden band width λ of the p-type semiconductor substrate 7 : ■ : Wavelength λ1 : Wavelength λ2 : Wavelength relative light intensity

Claims (1)

【特許請求の範囲】[Claims] ただ1個の、p型半導体とn型半導体とのヘテロ接合を
有し、p型半導体で発した光がn型半導体を通過してそ
のn型半導体の表面から出射するようにした発光ダイオ
ードであって、上記p型半導体は複数個のp型半導体層
の層状構成を有し、相隣り合う2個のp型半導体層はヘ
テロ接合を形成しており、各p型半導体層の禁制帯幅は
、上記n型半導体側に位置するものほど大きく、かつ、
上記n型半導体から最も離れて位置するp型半導体層を
除くp型半導体層の合計厚みが、上記n型半導体から上
記p型半導体に注入される少数キャリアの拡散長よりも
薄くなっていることを特徴とする発光ダイオード。
A light-emitting diode that has a single heterojunction of a p-type semiconductor and an n-type semiconductor, so that light emitted by the p-type semiconductor passes through the n-type semiconductor and is emitted from the surface of the n-type semiconductor. The p-type semiconductor has a layered structure of a plurality of p-type semiconductor layers, two adjacent p-type semiconductor layers form a heterojunction, and the forbidden band width of each p-type semiconductor layer is is larger as it is located closer to the n-type semiconductor side, and
The total thickness of the p-type semiconductor layers excluding the p-type semiconductor layer located farthest from the n-type semiconductor is thinner than the diffusion length of minority carriers injected from the n-type semiconductor to the p-type semiconductor. A light emitting diode featuring
JP1181532A 1989-07-13 1989-07-13 Light emitting diode Pending JPH0346280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1181532A JPH0346280A (en) 1989-07-13 1989-07-13 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1181532A JPH0346280A (en) 1989-07-13 1989-07-13 Light emitting diode

Publications (1)

Publication Number Publication Date
JPH0346280A true JPH0346280A (en) 1991-02-27

Family

ID=16102420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1181532A Pending JPH0346280A (en) 1989-07-13 1989-07-13 Light emitting diode

Country Status (1)

Country Link
JP (1) JPH0346280A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135838A (en) * 1997-10-20 1999-05-21 Ind Technol Res Inst White-color light-emitting diode and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135838A (en) * 1997-10-20 1999-05-21 Ind Technol Res Inst White-color light-emitting diode and manufacture thereof
US6163038A (en) * 1997-10-20 2000-12-19 Industrial Technology Research Institute White light-emitting diode and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6548834B2 (en) Semiconductor light emitting element
US6163038A (en) White light-emitting diode and method of manufacturing the same
US7683378B2 (en) Light emitting diode and method for fabricating same
JPH04321280A (en) Blue color light-emitting diode
JPH07183576A (en) Gallium nitride-based compound semiconductor light-emitting element
JPH10261818A (en) Light-emitting semiconductor device
US20020134989A1 (en) Semiconductor light-emitting element
US7851242B2 (en) Monolithic white and full-color light emitting diodes using optically pumped multiple quantum wells
JP2875124B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH1187773A (en) Light emitting element
JPH0346280A (en) Light emitting diode
US20220278251A1 (en) Light-emitting diode chip
KR100329054B1 (en) Semiconductor light emitting element and method for fabricating the same
JP4851648B2 (en) Semiconductor components that generate mixed color electromagnetic radiation
JPH05218498A (en) Light emitting diode provided with transverse junction
JP2006270073A (en) Light-emitting diode and method of manufacturing it
JP3496745B2 (en) Light emitting diode
JPH05347432A (en) Semiconductor light-emitting element
JPH0974218A (en) Semiconductor light emitting element
JPH01239969A (en) Semiconductor device
JP2001168381A (en) AlGaInP LIGHT EMITTING DIODE
US20230209676A1 (en) Nitride-based multi-wavelength light emitting diode system and control method thereof
JP3822624B2 (en) Semiconductor light emitting device
JP2670523B2 (en) Light emitting device manufacturing method
JP3817323B2 (en) Manufacturing method of semiconductor light emitting device