JPH0346112B2 - - Google Patents

Info

Publication number
JPH0346112B2
JPH0346112B2 JP15995287A JP15995287A JPH0346112B2 JP H0346112 B2 JPH0346112 B2 JP H0346112B2 JP 15995287 A JP15995287 A JP 15995287A JP 15995287 A JP15995287 A JP 15995287A JP H0346112 B2 JPH0346112 B2 JP H0346112B2
Authority
JP
Japan
Prior art keywords
threonine
aspartate
resistant
strain
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15995287A
Other languages
Japanese (ja)
Other versions
JPS645496A (en
Inventor
Makoto Shirai
Masanari Yamada
Kyosuke Yomoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP15995287A priority Critical patent/JPS645496A/en
Publication of JPS645496A publication Critical patent/JPS645496A/en
Publication of JPH0346112B2 publication Critical patent/JPH0346112B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、発酵法によるL−スレオニンの製造
方法に関する。 L−スレオニンは必須アミノ酸の1つであり、
医薬用、飼料添加物として重量であり、その安価
な製造方法が望まれている。 <従来の技術> ブレビバクテリウム属に属する微生物を用いる
発酵法によるL−スレオニンの製造方法として
は、α−アミノ−β−ヒドロシキ吉草酸(以下、
AHVと記す)に耐性を有する変異株(特公昭45
−26708号公報)AHVに耐性を有し、L−リジ
ンまたはL−イソロイシン要求性を有する変異株
(特公昭48−44876号公報)、AHVとS−(2−ア
ミノエチル)−L−システイン(以下、AECと記
す)に耐性を有し、L−リジンを併産する人工変
異株(米国特許3732144号公報)、AHVおよび
AECに耐性を有し、L−ロイシン要求性を有し、
L−リジンを併産する変異株(特開昭50−31093
号公報)、AHVにS−メチルシステインスルホ
キサイド(以下、S−MCSと記す)に耐性を有
する変異株(特公昭56−3038号公報)などを用い
る方法が知られている。 <発明が解決しようとする問題点> しかし、これらの方法によるL−スレオニンの
蓄積濃度、または、糖などの原料からのL−スレ
オニン生成収率は、十分に満足できるものではな
かつた。 <問題点を解決するための手段および作用> 本発明者らは、さらに生産性の高いL−スレオ
ニンの製造方法について鋭意研究した結果、ブレ
ビバクテリウム属に属し、スレオニン生産能を有
する微生物にL−アスパラギン酸代謝拮抗物質に
対する耐性を付与することによつて、L−スレオ
ニンの蓄積濃度、生成収率が著しく向上すること
を見出し、本発明に到達した。 すなわち、本発明はブレビバクテリウム
(Brevibacterium)属に属し、アスパラギン酸代
謝拮抗物質に耐性を有し、かつL−スレオニン生
産能を有する微生物を培養して、培養液中にL−
スレオニンを生成蓄積せしめ、前記培養液よりL
−スレオニンを採取することを特徴とする発酵法
によるL−スレオニンの製造方法である。 ブレビバクテリウム属に属する微生物のアスパ
ラギン酸代謝拮抗物質に耐性を有する変異株は、
これまで分離されたことがない。また、ブレビバ
クテリウム属に属する微生物のアスパラギン酸代
謝拮抗物質に耐性を有する変異株が、L−スレオ
ニンを著量生成蓄積せしめ得ることは、まつたく
知られていない。 ここでアスパラギン酸代謝拮抗物質とは、ブレ
ビバクテリウム属に属する微生物の(A)生育を阻害
し、その生育阻害がL−アスパラギン酸の添加に
より回復する物質または、(B)L−アスパラギン酸
の生合成系に関与する酵素の抑制作用または阻害
作用を示す物質のことである。 アスパラギン酸代謝拮抗物質としては、例え
ば、アスパラギン酸ヒドロキサメート、α−メチ
ルアスパラギン酸、β−メチルアスパラギン酸、
システインスルフイン酸、ジフルオロコハク酸、
ハダシジン、メソ−2,3−ジアミノコハク酸な
どが挙げられる。 本発明で用いられる微生物はブレビバクテリウ
ム属に属し(日本農芸化学会誌第36巻、第2号、
P141〜159(1962)に従う)アスパラギン酸代謝
拮抗物質に耐性を有する微生物である。 かかる性質を有していれば、他の要求性、他の
薬剤抵抗性を持つものでも本発明の範囲に含まれ
る。また、L−イソロイシンに対する栄養要求性
およびL−ロイシンに対する栄養要求性、AHV
などスレオニンアナローグに対する耐性およびS
−MCSに対する耐性はL−スレオニン生産能に
有効に作用するので、これらのうちいくつかの特
性ないしはすべての特性を合わせ持つ微生物が親
株としてより好ましく用いられる。ここでいう栄
養要求性とは広義の意味であり、不完全欠失型
(いわゆるleaky型)も含むものである。さらに
その要求物質の生合成前駆物質で要求性が満足さ
れる場合も含むものである。 本発明で用いられる変異株の代表的なものとし
ては、例えば以下のものがある。ブレビバクテリ
ウム・ラクトフアーメンタムAHXR−11(FERM
P−8774)。 この変異株はブレビバクテリウム・ラクトフア
ーメンタムFERM P−4190(AHV耐性、L−イ
ソロイシン要求性、L−ロイシン要求性、S−
MCS耐性)を親株として、通常の変異処理方法
によつて得られたもので、アスパラギン酸ヒドロ
キサメートに耐性な変異株である。 変異株の誘導は親株を紫外線照射するか、ある
いは変異誘発剤(例えば、N−メチル−N′−ニ
トロ−N−ニトロソグアニジン、エチルメタンス
ルホン酸など)で処理したのち、親株が生育でき
ないような濃度のアスパラギン酸代謝拮抗物質を
含む固体培地で生育可能な菌株を採取すればよ
い。 アスパラギン酸代謝拮抗阻害剤耐性変異株と
は、親株よりアスパラギン酸代謝拮抗物質に強い
耐性を有する株のことであり、好ましくは親株の
相対生育度が30%以下を示すアスパラギン酸代謝
拮抗物質の濃度範囲において60%以上の相対生育
度を示す変異株のことである。ここで相対生育度
は培養液の660nmにおける吸光度を測定し、各
菌株のアスパラギン酸代謝拮抗物質を添加してい
ない培養液の吸光度を100%として表わした場合
の相対吸光度で示す。耐性を検定する場合のアス
パラギン酸代謝拮抗物質は市販のものを用いた。 本発明において用いる菌株とその親株のDL−
アスパラギン酸ヒドロキサメートに対する耐性を
検定した結果を実施例2に示す。 本発明におけるL−スレオニン生産用の培地は
炭素源、窒素源、無機イオンおよびさらに必要に
応じてその他の有機微量栄養素を含有する通常の
培地である。 炭素源としては、グルコース、シユークロース
およびこれらを含有する糖蜜、澱粉加水分解物な
どの炭水化物、クエン酸、コハク酸などの有機
酸、グリセロールなどのアルコール、その他が使
用できる。窒素源としては、アンモニアガス、ア
ンモニア水、アンモニウム塩、尿素などが好適で
ある。無機イオンとしては、カリウムイオン、リ
ン酸イオン、マグネシウムイオンなどが必要に応
じて適宜添加される。有機微量栄養素としては、
L−イソロイシン、L−ロイシンなどの被要求物
質が培地に添加されるが、さらに必要に応じてビ
タミンなどが適宜使用される。 培養は好気的条件が好ましい。培養の間、培地
のPHは5〜9に、温度は24〜37℃に調節すれば最
も好ましい結果が得られる。 発酵液からのL−スレオニンの採取は常法で行
なうことができ、たとえばイオン交換樹脂法によ
り行われる。 <実施例> 以下、実施例により本発明を具体的に説明す
る。 実施例 1 (DL−アスパラギン酸ヒドロキサメート耐性
株の分離) ブレビバクテリウム・ラクトフアーメンタム
FERM−P4190(AHV耐性、L−イソロイシン要
求性、L−ロイシン要求性、S−MCS耐性)の
菌体に常法によりN−メチル−N′−ニトロ−N
−ニトロソグアニジン処理(300μg/ml、37℃
で10分)したのち、この細胞をDL−アスパラギ
ン酸ヒドロキサメート0.3g/添加した寒天培
地(グルコース0.5%、硫安0.15%、リン酸第1
カリウム0.1%、リン酸第2カリウム0.3%、硫酸
マグネシウム7水和物0.01%、塩化カルシウム2
水和物0.0001%、尿素0.15%、ビオチン0.000005
%、チアミン・塩酸塩0.00001%、L−イソロイ
シン0.01%、L−ロイシン0.01%を含む最少培
地)に塗布した。次に37℃で5日培養し、生じた
大きなコロニーを釣菌分離して、DL−アスパラ
ギン酸ヒドロキサメート耐性株(ブレビバクテリ
ウム・ラクトフアーメンタムAHXR−11(FERM
P−8774)を取得した。 実施例 2 (DL−アスパラギン酸ヒドロキサメート耐性
変異株の耐性度) 下記第1表に示す各菌株を液体ブイヨン培地を
用いて30℃で16時間振盪培養し、生育した菌体を
集菌し生理食塩水で洗浄した。この菌体懸濁液を
DL−アスパラギン酸ヒドロキサメート0、0.1、
0.2、0.3、0.4、0.5g/の濃度で含む最少培地
(グルコース0.5%、硫安0.15%、リン酸第1カリ
ウム0.1%、リン酸第2カリウム0.3%、硫酸マグ
ネシウム・7水和物0.01%、塩化カルシウム・2
水和物0.0001%、尿素0.15%、ビオチン0.000005
%、チアミン・塩酸塩0.00001%、L−イソロイ
シン0.01%、L−ロイシン0.01%を含む最少培
地)5mlに植菌して、30℃で48時間培養し、各菌
株の生育度を調べた。その結果は第1表に示すと
おりである。 本発明で使用するDL−アスパラギン酸ヒドロ
キサメートに耐性な変異株(ブレビバクテリウ
ム・ラクトフアーメンタムAHXR−11(FERM
P−8774))では、親株のブレビバクテリウム・
ラクトフアーメンタムFERM−P4190と比較して
高濃度のDL−アスパラギン酸ヒドロキサメート
によつて生育が阻害されず、強いDL−アスパラ
キン酸ヒドロキサメート耐性を獲得していること
を示している。
<Industrial Application Field> The present invention relates to a method for producing L-threonine by a fermentation method. L-threonine is one of the essential amino acids,
It is used for pharmaceutical purposes and as a feed additive, and an inexpensive manufacturing method is desired. <Prior art> As a method for producing L-threonine by a fermentation method using microorganisms belonging to the genus Brevibacterium, α-amino-β-hydroxyvaleric acid (hereinafter referred to as
Mutant strain resistant to AHV
-26708 Publication) Mutant strains that are resistant to AHV and have L-lysine or L-isoleucine auxotrophy (Japanese Patent Publication No. 48-44876), AHV and S-(2-aminoethyl)-L-cysteine ( Artificial mutant strains that are resistant to AEC (hereinafter referred to as AEC) and co-produce L-lysine (US Pat. No. 3,732,144), AHV and
Resistant to AEC, requires L-leucine,
Mutant strain that co-produces L-lysine (Japanese Patent Application Laid-Open No. 50-31093
Methods using AHV mutants resistant to S-methylcysteine sulfoxide (hereinafter referred to as S-MCS) (Japanese Patent Publication No. 56-3038) are known. <Problems to be Solved by the Invention> However, the accumulated concentration of L-threonine or the production yield of L-threonine from raw materials such as sugars by these methods were not fully satisfactory. <Means and effects for solving the problem> As a result of intensive research into a method for producing L-threonine with higher productivity, the present inventors discovered that L-threonine belongs to the genus Brevibacterium and has the ability to produce L-threonine. -We have discovered that the accumulation concentration and production yield of L-threonine can be significantly improved by imparting resistance to aspartate antimetabolites, and have thus arrived at the present invention. That is, the present invention involves culturing a microorganism that belongs to the genus Brevibacterium, is resistant to aspartate antimetabolites, and has the ability to produce L-threonine, and contains L-threonine in the culture solution.
Threonine is produced and accumulated, and L
- A method for producing L-threonine by a fermentation method characterized by collecting threonine. Mutant strains of microorganisms belonging to the genus Brevibacterium that are resistant to aspartate antimetabolites are
It has never been separated. Furthermore, it is not known that mutant strains of microorganisms belonging to the genus Brevibacterium that are resistant to aspartate antimetabolites can produce and accumulate significant amounts of L-threonine. Here, aspartate antimetabolite is a substance that (A) inhibits the growth of microorganisms belonging to the genus Brevibacterium and whose growth inhibition is recovered by the addition of L-aspartic acid, or (B) a substance that inhibits the growth of microorganisms belonging to the genus Brevibacterium. A substance that suppresses or inhibits enzymes involved in biosynthetic systems. Examples of aspartate antimetabolites include aspartate hydroxamate, α-methylaspartate, β-methylaspartate,
cysteine sulfinic acid, difluorosuccinic acid,
Hadashidin, meso-2,3-diaminosuccinic acid, and the like. The microorganism used in the present invention belongs to the genus Brevibacterium (Japanese Society of Agricultural Chemistry, Vol. 36, No. 2,
P141-159 (1962)) is a microorganism resistant to aspartate antimetabolites. As long as they have such properties, those with other requirements and other drug resistance are also included within the scope of the present invention. In addition, auxotrophy for L-isoleucine and auxotrophy for L-leucine, AHV
Resistance to threonine analogs such as S
- Since resistance to MCS effectively affects L-threonine production ability, microorganisms having some or all of these characteristics are more preferably used as parent strains. Auxotrophy here has a broad meaning and includes incomplete deletion types (so-called leaky types). Furthermore, it also includes cases where the requirement is satisfied by the biosynthetic precursor of the required substance. Typical mutant strains used in the present invention include, for example, the following. Brevibacterium lactofamentum AHXR−11 (FERM
P-8774). This mutant strain is Brevibacterium lactofamentum FERM P-4190 (AHV resistant, L-isoleucine auxotrophic, L-leucine auxotrophic, S-
MCS-resistant) was obtained as a parent strain using the usual mutation treatment method, and is a mutant strain that is resistant to aspartate hydroxamate. Mutant strains are induced by irradiating the parent strain with ultraviolet rays or treating it with a mutagenic agent (e.g., N-methyl-N'-nitro-N-nitrosoguanidine, ethyl methanesulfonic acid, etc.), and then treating the parent strain with a substance that makes it incapable of growing. A strain that can grow on a solid medium containing a high concentration of aspartate antimetabolite may be collected. An aspartate antimetabolite inhibitor-resistant mutant strain refers to a strain that is more resistant to aspartate antimetabolites than the parent strain, and preferably at a concentration of the aspartate antimetabolite that exhibits a relative growth rate of 30% or less of the parent strain. A mutant strain that exhibits a relative growth rate of 60% or more within the range. Here, the relative growth rate is expressed by measuring the absorbance of the culture solution at 660 nm and expressing the absorbance of the culture solution to which the aspartate antimetabolite of each strain is not added as 100%. A commercially available aspartate antimetabolite was used for testing resistance. Bacterial strain used in the present invention and its parent strain DL-
The results of testing for resistance to aspartate hydroxamate are shown in Example 2. The medium for producing L-threonine in the present invention is a conventional medium containing a carbon source, a nitrogen source, inorganic ions, and, if necessary, other organic micronutrients. As the carbon source, carbohydrates such as glucose, sucrose and molasses containing these, starch hydrolysates, organic acids such as citric acid and succinic acid, alcohols such as glycerol, and others can be used. Suitable nitrogen sources include ammonia gas, aqueous ammonia, ammonium salts, and urea. As the inorganic ions, potassium ions, phosphate ions, magnesium ions, etc. are added as appropriate. As organic micronutrients,
Required substances such as L-isoleucine and L-leucine are added to the medium, and vitamins and the like are further used as appropriate. Cultivation is preferably carried out under aerobic conditions. The most favorable results can be obtained by adjusting the pH of the medium to 5 to 9 and the temperature to 24 to 37°C during cultivation. L-threonine can be collected from the fermentation liquor by a conventional method, for example, by an ion exchange resin method. <Examples> Hereinafter, the present invention will be specifically explained using examples. Example 1 (Isolation of DL-aspartate hydroxamate resistant strain) Brevibacterium lactofamentum
FERM-P4190 (AHV resistant, L-isoleucine auxotrophic, L-leucine auxotrophic, S-MCS resistant) cells were treated with N-methyl-N'-nitro-N by a conventional method.
-Nitrosoguanidine treatment (300 μg/ml, 37°C
After 10 minutes), the cells were grown on an agar medium (glucose 0.5%, ammonium sulfate 0.15%,
Potassium 0.1%, dibasic potassium phosphate 0.3%, magnesium sulfate heptahydrate 0.01%, calcium chloride 2
Hydrate 0.0001%, Urea 0.15%, Biotin 0.000005
%, thiamine hydrochloride 0.00001%, L-isoleucine 0.01%, L-leucine 0.01%). Next, it was cultured at 37°C for 5 days, and the resulting large colonies were isolated by fishing.
P-8774) was obtained. Example 2 (Resistance of DL-aspartate hydroxamate resistant mutant strains) Each strain shown in Table 1 below was cultured with shaking at 30°C for 16 hours using a liquid broth medium, and the grown bacteria were collected. Washed with physiological saline. This bacterial suspension
DL-aspartate hydroxamate 0, 0.1,
Minimal medium (glucose 0.5%, ammonium sulfate 0.15%, potassium monophosphate 0.1%, dipotassium phosphate 0.3%, magnesium sulfate heptahydrate 0.01%, Calcium chloride 2
Hydrate 0.0001%, Urea 0.15%, Biotin 0.000005
%, thiamine/hydrochloride 0.00001%, L-isoleucine 0.01%, L-leucine 0.01%) were inoculated into 5 ml of the microorganism, cultured at 30°C for 48 hours, and the growth rate of each strain was examined. The results are shown in Table 1. Brevibacterium lactofamentum AHXR-11 (FERM
P-8774)), the parent strain Brevibacterium
Compared to Lactofermentum FERM-P4190, growth was not inhibited by high concentrations of DL-aspartate hydroxamate, indicating that it had acquired strong DL-aspartate hydroxamate resistance.

【表】 実施例 3 (L−スレオニン生産菌の培養およびL−スレ
オニン生産) 第2表に示す各菌株をそれぞれ液体ブイヨン培
地で30℃、16時間振盪して前培養したのち、予め
120℃、10分間蒸気滅菌した下記組成の発酵培地
50mlを含む1容エーレンマイヤーフラスコに前
記培養液を各々5mlづつ植継ぎ、30℃で150回
転/分、振幅3cmの条件下で5日間培養した。 発酵用培地組成 グルコース 10% 硫 安 4.5% リン酸第1カリウム 0.1% 硫酸マグネシウム・7水和物 0.1% 硫酸第2鉄・7水和物 0.001% 硫酸マンガン・4水和物 0.001% チアミン・塩酸塩 0.00003% ビオチン 0.00001% 大豆蛋白塩酸加水分解物 1.5% 炭酸カルシウム(別滅菌) 5% PH 7.2(KOHで中和) 培養終了後、菌体、炭酸カルシウムを除去し、
培養液中のL−スレオニン濃度を、アミノ酸自動
分析計(日本電子(株)社製JLC−200A)で定量し
たところ、第2表に示すような結果を得た。
[Table] Example 3 (Culture of L-threonine-producing bacteria and L-threonine production) Each strain shown in Table 2 was precultured in a liquid broth medium by shaking at 30°C for 16 hours.
Fermentation medium with the following composition steam sterilized at 120℃ for 10 minutes
5 ml of each culture solution was inoculated into 1-volume Erlenmeyer flasks containing 50 ml, and cultured for 5 days at 30°C, 150 revolutions/minute, and an amplitude of 3 cm. Fermentation medium composition Glucose 10% Ammonium sulfate 4.5% Potassium phosphate 0.1% Magnesium sulfate, heptahydrate 0.1% Ferric sulfate, heptahydrate 0.001% Manganese sulfate, tetrahydrate 0.001% Thiamine, hydrochloric acid Salt 0.00003% Biotin 0.00001% Soybean protein hydrolyzate 1.5% Calcium carbonate (separately sterilized) 5% PH 7.2 (neutralized with KOH) After culturing, remove bacterial cells and calcium carbonate,
When the L-threonine concentration in the culture solution was determined using an automatic amino acid analyzer (JLC-200A manufactured by JEOL Ltd.), the results shown in Table 2 were obtained.

【表】 スレオニン生成収率は、消費グルコースに対す
る生成スレオニンの重量収率で表わした。ブレビ
バクテリウム・ラクトフアーメンタムAHXR−
11の培養液より菌体を除き、その200mlを強カオ
チン交換樹脂ダイヤイオンSK−1B(H型)のカ
ラムに通した。カラムを水洗後、2Nアンモニア
水でカラムの吸着成分を溶出し、脱色後減圧濃縮
した。これにエタノールを加え、冷却し、生成し
た結晶を集めて乾燥した結果、純度96%以上のL
−スレオニンの結晶2.4gを得た。 <発明の効果> 本発明により、高収率でL−スレオニンの生成
が可能となり、より安価なL−スレオニンの生産
が可能となる。
[Table] The threonine production yield was expressed as the weight yield of the produced threonine relative to the consumed glucose. Brevibacterium lactofamentum AHXR−
Bacterial cells were removed from the culture solution No. 11, and 200 ml thereof was passed through a column of strong cation exchange resin Diaion SK-1B (H type). After washing the column with water, the adsorbed components of the column were eluted with 2N aqueous ammonia, decolorized, and concentrated under reduced pressure. Ethanol was added to this, cooled, and the resulting crystals were collected and dried, resulting in L with a purity of over 96%.
- 2.4 g of threonine crystals were obtained. <Effects of the Invention> According to the present invention, L-threonine can be produced in high yield, and L-threonine can be produced at a lower cost.

Claims (1)

【特許請求の範囲】 1 ブレビバクテリウム(Brevibacterium)属
に属し、アスパラギン酸代謝拮抗物質に耐性を有
し、かつL−スレオニン生産能を有する微生物を
培養して、培養液中にL−スレオニンを生成蓄積
せしめ、前記培養液よりL−スレオニンを採取す
ることを特徴とする発酵法によるL−スレオニン
の製造方法。 2 アスパラギン酸代謝拮抗物質が、アスパラギ
ン酸ヒドロキサメートである特許請求の範囲第1
項記載の発酵法によるL−スレオニンの製造方
法。
[Scope of Claims] 1. A microorganism belonging to the genus Brevibacterium, resistant to aspartate antimetabolites, and capable of producing L-threonine is cultured, and L-threonine is produced in the culture solution. A method for producing L-threonine by a fermentation method, which comprises producing and accumulating L-threonine and collecting L-threonine from the culture solution. 2. Claim 1, wherein the aspartate antimetabolite is aspartate hydroxamate.
A method for producing L-threonine by the fermentation method described in Section 1.
JP15995287A 1987-06-26 1987-06-26 Production of l-threonine through fermentation process Granted JPS645496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15995287A JPS645496A (en) 1987-06-26 1987-06-26 Production of l-threonine through fermentation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15995287A JPS645496A (en) 1987-06-26 1987-06-26 Production of l-threonine through fermentation process

Publications (2)

Publication Number Publication Date
JPS645496A JPS645496A (en) 1989-01-10
JPH0346112B2 true JPH0346112B2 (en) 1991-07-15

Family

ID=15704751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15995287A Granted JPS645496A (en) 1987-06-26 1987-06-26 Production of l-threonine through fermentation process

Country Status (1)

Country Link
JP (1) JPS645496A (en)

Also Published As

Publication number Publication date
JPS645496A (en) 1989-01-10

Similar Documents

Publication Publication Date Title
US5376538A (en) Process for producing L-threonine with strains of E coli resistant to phenylalanine and leucine
JP3151073B2 (en) Production of amino acids by fermentation
US4996147A (en) Process for producing L-threonine by fermentation
JP3131311B2 (en) Production method of L-isoleucine by fermentation method
JP3717970B2 (en) Method for producing L-isoleucine by fermentation
FR2511035A1 (en) PROCESS FOR THE PRODUCTION OF L-LYSINE BY FERMENTATION
US5087566A (en) Process for producing l-threonine
EP0445830A2 (en) Process for producing L-threonine
JP2877414B2 (en) Method for producing L-threonine by fermentation
JPS63248392A (en) Production of l-leucine by fermentation
JPH0346112B2 (en)
JPH089982A (en) Production of l-amino acid by fermentation
HU215184B (en) Process for the production of 1-lysine and l-lysine producing mutant brevibacteria and corynebacteria
HU215248B (en) Process for producing l-lysine
JPH0313874B2 (en)
JPH0346111B2 (en)
JPH0673461B2 (en) Fermentation method for producing L-threonine
JPS61260891A (en) Production of l-threonine by fermentation method
JPH0673460B2 (en) Method for producing L-threonine by fermentation method
JPS6318478B2 (en)
JPH0313875B2 (en)
JPH0313873B2 (en)
JPH0346113B2 (en)
JPH04248988A (en) Production of l-proline by fermentation method
JPH0369518B2 (en)