JPH0313875B2 - - Google Patents

Info

Publication number
JPH0313875B2
JPH0313875B2 JP18392585A JP18392585A JPH0313875B2 JP H0313875 B2 JPH0313875 B2 JP H0313875B2 JP 18392585 A JP18392585 A JP 18392585A JP 18392585 A JP18392585 A JP 18392585A JP H0313875 B2 JPH0313875 B2 JP H0313875B2
Authority
JP
Japan
Prior art keywords
threonine
isoleucine
strain
thiaisoleucine
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18392585A
Other languages
Japanese (ja)
Other versions
JPS6244193A (en
Inventor
Masanari Yamada
Hiroki Tsutsui
Kyosuke Yomoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP18392585A priority Critical patent/JPS6244193A/en
Priority to EP19860111424 priority patent/EP0213536B1/en
Priority to DE8686111424T priority patent/DE3684383D1/en
Publication of JPS6244193A publication Critical patent/JPS6244193A/en
Priority to US07/652,455 priority patent/US5264353A/en
Publication of JPH0313875B2 publication Critical patent/JPH0313875B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、発酵法によるL−スレオニンの製造
方法に関する。L−スレオニンは、必須アミノ酸
の1つであり、医薬品、飼料添加物として重要で
あり、その安価な製造方法が望まれている。 <従来の技術> プロビデンシア属に属する微生物を用いる発酵
法によるL−スレオニン製造法は知られていな
い。 ただし、バージエイズ マニユアル オブ シ
ステマテイツク バクテリオロジー第1巻
(1984)で一部プロビデンシア属に分類変更され
た旧プロテウス属に属する微生物を用いた発酵法
によるL−スレオニンの製造方法としては、L−
イソロイシン要求性株を用いる方法(特公昭43−
4440号公報)や、α−アミノ−β−ハイドロキシ
吉草酸に耐性を有し、かつイソロイシン要求性を
有する微生物を用いる方法(日本農芸化学会講演
要旨集p9(1970))が知られている。 <本発明が解決しようとする問題点> しかし、これらの方法によるL−スレオニンの
生成蓄積濃度、または、糖などの原料からのL−
スレオニン生成収率は、十分に満足できるもので
はなかつた。 <問題点を解決するための手段および作用> 本発明者らは、さらに生産性の高いL−スレオ
ニンの製造方法について、鋭意研究した結果、プ
ロビデンシア属に属し、L−スレオニン生産能を
有する微生物にL−イソロイシン代謝拮抗物質に
耐性を付与する事によつて、L−スレオニンの蓄
積濃度、生成収率が著しく向上することを見い出
し、本発明に到達した。本発明のごとく、イソロ
イシン代謝拮抗物質に対する耐性を付与した微生
物を用いることにより、L−スレオニンの生成量
および収率が著しく向上することは未だ知られて
いない。 すなわち、本発明は、プロビデンシア属に属
し、L−スレオニン生産能を有する微生物のう
ち、イソロイシン代謝拮抗物質に耐性を有する微
生物を培養して、培養液中にL−スレオニンを生
成蓄積せしめ、該培養液からL−スレオニンを採
取することを特徴とする発酵法によるL−スレオ
ニンの製法である。 次に本発明を詳細に説明する。 本発明で用いられる微生物は、プロビデンシア
に属し(バージーのマニユアル・オブ・システマ
テイツクバクテリオロジー、第1巻、第495〜496
頁(1984)に従う)、イソロイシン代謝拮抗物質
に耐性を有する微生物である。ここで、イソロイ
シン代謝拮抗物質とは、プロビデンシア属に属す
る微生物の(1)生育を阻害し、その生育阻害がL−
イソロイシンの添加により回復する物質、または
(2)L−イソロイシン生合成系の抑制作用および阻
害作用を示す物質の事である。ここで、イソロイ
シン代謝拮抗物質としては、例えば、イソロイシ
ンハイドロキサメート、チアイソロイシン、o−
メチルスレオニン、β−メチルノルロイシン等が
挙げられる。かかる性質を有していれば、他の要
求性、他の薬剤抵抗性等の性質を持つものでも本
発明の範囲に含まれる。 本発明で用いられる微生物は、上記耐性に加
え、好ましくはL−イソロイシンまたは、L−イ
ソロイシンに対する栄養要求性ないし、leaky型
要求性を有し、かつ、スレオニン生合成系がスレ
オニンのフイードバツクコントロールに抵抗性を
有するものである。 本発明で用いられる微生物の代表的なものとし
ては、例えばプロビデンシア・レトゲリTP6−28
(FERM P−8348)が挙げられる。 この変異株は、プロビデンシア・レトゲリ
ATCC21118(L−イソロイシン要求性)から得ら
れたα−アミノ−β−ハロイドロキシ吉草酸耐
性、L−エチオニン耐性、L−イソロイシン要求
性ないしはleaky型要求性、L−ロイシン要求性
のプロビデンシア・レトゲリTP3−105より誘導
されたもので、イソロイシン代謝拮抗物質のうち
チアイソロイシンに耐性な変異株である。 変異株の誘導は、通常の変異処理法によつて比
較的容易に行なうことができる。すなわち、イソ
ロイシン代謝拮抗物質に耐性を有する変異株を得
るには、親株を紫外線照射するか、あるいは、変
異誘発剤(例えばN−メチル−N′−ニトロ−N
−ニトロソグアニジン、エチルメタンスルホン酸
等)で処理したのち、親株が十分に生育できない
ような量のイソロイシン代謝拮抗物質を含む固体
培地で、親株に比べて有意に生育良好な菌株を取
得すればよい。 本発明におけるイソロイシン代謝拮抗物質耐性
株とは、その親株より強い耐性を有する菌株のこ
とであり、好ましくは親株の24時間後の相対生育
度が40%以下になるようなイソロイシン代謝拮抗
物質濃度を含む培地で培養した場合の相対生育度
が50%以上を示すようなものを言う。 例えば、チアイソロイシン耐性株の場合は、チ
アイソロイシン5mMとなるように添加した培地
で培養した時の24時間後の生育度が、無添加の場
合の50%以上のものをチアイソロイシン耐性株と
いう。ここで生育度は、培養液の660nmにおけ
る吸光度を測定し、各菌株のイソロイシン代謝拮
抗物質を添加していない培養液の吸光度を100%
として表わした場合の相対吸光度で示すものとす
る。 本発明におけるL−スレオニン生産用の培地
は、炭素源、窒素源、無機イオンおよび必要に応
じてその他の有機微量成分を含有する通常の培地
である。 炭素源としては、グルコース、フラクトース、
でん粉およびセルロースの加水分解物、糖密等の
糖類、フマール酸、クエン酸、コハク酸等の如き
有機酸、グリセロールの如きアルコール類等を2
〜15%、窒素源として、酢酸アンモニウムの如き
有機アンモニウム塩、硫酸アンモニウム、塩化ア
ンモニウム、リン酸アンモニウム、硝酸アンモニ
ウムの如き無機アンモニウム塩、アンモニアガ
ス、アンモニア水、尿素等を0.5〜4.0%、有機微
量栄養素としては、L−ロイシン等の被要求物質
が0.001〜0.4%、または必要に応じてコーンステ
イーブリカー、ペプトン、酵母エキス等0〜4%
をそれぞれ適当量含有する培地が用いられる。こ
れらの他にリン酸カリウム、硫酸マグネシウム、
硫酸第1鉄7水和物、硫酸マンガン4−6水和物
等の微量成分が少量添加される。 培養は、好気的条件で行なう。培養の間、培地
のPHは5から9に、温度は24〜37℃に調節し、48
〜120時間振とうまたは通気培養すれば好ましい
結果が得られる。 培養液よりL−スレオニンを採取するには、例
えば菌体を除去した培養液をPH2に塩酸で調製
したのち、強酸性カチオン交換樹脂に通液後、希
アンモニア水で吸着成分を溶出し、脱アンモニア
後、濃縮する。これにアルコールを添加し、冷却
保存下で生成した結晶を集め、L−スレオニンを
得ることができる。 <実施例> 以下、実施例により本発明を具体的に説明す
る。 実施例 1 A (チアイソロイシン耐性株の分離) プロビデンシア・レトゲリTP3−105(α−ア
ミノ−β−ハロイドロキシ吉草酸耐性、L−イ
ソロイシン要求性ないしはleaky型要求性、L
−エチオニン耐性、L−ロイシン要求性)の菌
体に、常法によりN−メチル−N′−ニトロ−
N−ニトロソグアニジン処理(300μg/ml、
30℃で20分)したのち、この細胞を、D,L−
チアイソロイシン1.5g/、L−ロイシン2
g/、L−バリン2g/添加した寒天培地
(グルコース0.5%、硫安0.1%、リン酸第1カ
リウム0.3%、リン酸第2カリウム0.7%、硫酸
マグネシウム7水和物0.01%を含む完全合成培
地)に塗布した。次に30℃にて、5〜7日培養
し、生じた大きなコロニーを釣菌分離して、チ
アイソロイシン耐性株(プロビデンシア・レト
ゲリTP6−28)を取得した。 B (チアイソロイシン耐性株の耐性度) 下記第1表に示す各菌株を液体ブイヨン培地
を用いて30℃で16時間振とう培養し、生育した
菌体を集菌し生理食塩水でよく洗浄した。この
菌体懸濁液を、チアイソロイシン0、2.5、
5.0、10mMの濃度で含む最少培地(培地組
成:グルコース0.5%、硫安0.1%、リン酸第1
カリウム0.3%、リン酸第2カリウム0.7%、硫
酸マグネシウム7水和物0.01%、L−イソロイ
シン0.001%、L−ロイシン0.05%、L−バリ
ン0.05%)5mlに植菌して、30℃にて24時間培
養し、各菌株の生育度を調べた。その結果は、
第1表に示すとおりである。ただし、チアイソ
ロイシンは、市販のもの(シグマ社製)を用い
た。 本発明方法で使用するチアイソロイシン耐性株
(TP6−28)では、親株のプロビデンシア・レト
ゲリTP3−105と比較して、チアイソロイシンに
よつて生育が阻害されず、チアイソロイシンに対
する耐性を獲得していることが明らかである。
<Industrial Application Field> The present invention relates to a method for producing L-threonine by a fermentation method. L-threonine is one of the essential amino acids and is important as a pharmaceutical and feed additive, and an inexpensive method for producing it is desired. <Prior Art> There is no known method for producing L-threonine by fermentation using microorganisms belonging to the genus Providencia. However, L-threonine can be produced by fermentation using microorganisms belonging to the former Proteus genus, which was partially reclassified to the Providencia genus in Virgies Manual of Systematic Bacteriology Volume 1 (1984).
Method using isoleucine auxotrophic strain (Special Publication No. 43-
4440) and a method using microorganisms that are resistant to α-amino-β-hydroxyvaleric acid and require isoleucine (Japanese Society of Agricultural Chemistry Abstracts, p. 9 (1970)) are known. <Problems to be Solved by the Present Invention> However, the production and accumulation concentration of L-threonine by these methods, or the concentration of L-threonine from raw materials such as sugar,
The threonine production yield was not fully satisfactory. <Means and effects for solving the problems> As a result of intensive research into a method for producing L-threonine with even higher productivity, the present inventors found that a microorganism belonging to the genus Providencia and having the ability to produce L-threonine. The inventors have discovered that by imparting resistance to L-isoleucine antimetabolites, the accumulated concentration and production yield of L-threonine can be significantly improved, and the present invention has been achieved. It is not yet known that the production amount and yield of L-threonine can be significantly improved by using microorganisms imparted with resistance to isoleucine antimetabolites as in the present invention. That is, the present invention involves culturing a microorganism that is resistant to isoleucine antimetabolites among microorganisms belonging to the genus Providencia and having the ability to produce L-threonine, producing and accumulating L-threonine in the culture solution, and This is a method for producing L-threonine by a fermentation method, which is characterized by collecting L-threonine from a liquid. Next, the present invention will be explained in detail. The microorganisms used in the present invention belong to the genus Providencia (Versey's Manual of Systematic Bacteriology, Vol. 1, Nos. 495-496).
(1984)) and is a microorganism resistant to isoleucine antimetabolites. Here, isoleucine antimetabolite inhibits (1) the growth of microorganisms belonging to the genus Providencia, and the growth inhibition is L-
substances that are recovered by the addition of isoleucine, or
(2) A substance that exhibits suppressive and inhibitory effects on the L-isoleucine biosynthesis system. Here, examples of isoleucine antimetabolites include isoleucine hydroxamate, thiaisoleucine, o-
Examples include methylthreonine and β-methylnorleucine. As long as it has such properties, it also falls within the scope of the present invention, even if it has properties such as other requirements and drug resistance. In addition to the above-mentioned resistance, the microorganism used in the present invention preferably has L-isoleucine or auxotrophy or leaky auxotrophy for L-isoleucine, and the threonine biosynthesis system controls the feedback of threonine. It is resistant to Typical microorganisms used in the present invention include, for example, Providencia letgelii TP6-28
(FERM P-8348). This mutant strain is a Providencia retogeri
Providencia retogeri TP3- with α-amino-β-halodroxyvaleric acid resistance, L-ethionine resistance, L-isoleucine requirement or leaky type requirement, and L-leucine requirement obtained from ATCC21118 (L-isoleucine requirement) 105, and is a mutant strain that is resistant to thiaisoleucine, an isoleucine antimetabolite. Mutant strains can be induced relatively easily by conventional mutation treatment methods. That is, to obtain a mutant strain resistant to isoleucine antimetabolites, the parent strain must be irradiated with ultraviolet rays, or a mutagenic agent (for example, N-methyl-N'-nitro-N
- After treatment with nitrosoguanidine, ethyl methanesulfonic acid, etc.), a strain that grows significantly better than the parent strain can be obtained on a solid medium containing an isoleucine antimetabolite in an amount that does not allow the parent strain to grow sufficiently. . In the present invention, the isoleucine antimetabolite-resistant strain refers to a strain that has stronger resistance than its parent strain, and preferably the isoleucine antimetabolite concentration is such that the relative growth after 24 hours of the parent strain is 40% or less. The relative growth rate is 50% or more when cultured in a medium containing For example, in the case of a thiaisoleucine-resistant strain, a strain whose growth rate after 24 hours when cultured in a medium supplemented with 5mM thiaisoleucine is 50% or more of that without the addition of thiaisoleucine is called a thiaisoleucine-resistant strain. Here, the degree of growth is measured by measuring the absorbance of the culture solution at 660 nm, and the absorbance of the culture solution without the addition of isoleucine antimetabolite of each strain is 100%.
It shall be expressed as relative absorbance when expressed as . The medium for producing L-threonine in the present invention is a conventional medium containing a carbon source, a nitrogen source, inorganic ions, and other organic trace components as necessary. Carbon sources include glucose, fructose,
Hydrolyzed products of starch and cellulose, sugars such as molasses, organic acids such as fumaric acid, citric acid, succinic acid, etc., alcohols such as glycerol, etc.
~15%, organic ammonium salts such as ammonium acetate, inorganic ammonium salts such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium nitrate, ammonia gas, aqueous ammonia, urea, etc. as nitrogen sources, 0.5 to 4.0% as organic micronutrients. contains 0.001 to 0.4% of required substances such as L-leucine, or 0 to 4% of corn staple liquor, peptone, yeast extract, etc. as required.
A medium containing appropriate amounts of each is used. In addition to these, potassium phosphate, magnesium sulfate,
Trace components such as ferrous sulfate heptahydrate and manganese sulfate 4-6 hydrate are added in small amounts. Cultivation is performed under aerobic conditions. During cultivation, the pH of the medium was adjusted to 5 to 9, the temperature was adjusted to 24 to 37°C, and the temperature was adjusted to 48°C.
Favorable results are obtained with shaking or aeration for ~120 hours. To collect L-threonine from a culture solution, for example, the culture solution from which bacterial cells have been removed is adjusted to pH 2 with hydrochloric acid, and then the solution is passed through a strongly acidic cation exchange resin, and the adsorbed components are eluted with dilute ammonia water. After ammonia, concentrate. L-threonine can be obtained by adding alcohol to this and collecting the generated crystals under refrigerated storage. <Example> Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 A (Isolation of thiaisoleucine-resistant strain) Providencia retogeri TP3-105 (α-amino-β-haloidroxyvaleric acid resistant, L-isoleucine auxotrophy or leaky auxotrophy, L
N-methyl-N'-nitro-
N-nitrosoguanidine treatment (300μg/ml,
After 20 minutes at 30°C, the cells were transformed into D,L-
Thiaisoleucine 1.5g/, L-leucine 2
g/, L-valine 2g/agar medium (completely synthetic medium containing glucose 0.5%, ammonium sulfate 0.1%, monopotassium phosphate 0.3%, dipotassium phosphate 0.7%, magnesium sulfate heptahydrate 0.01%) ) was applied. Next, the culture was carried out at 30° C. for 5 to 7 days, and the resulting large colonies were isolated to obtain a thiaisoleucine-resistant strain (Providencia retogeri TP6-28). B (Resistance level of thiaisoleucine-resistant strains) Each strain shown in Table 1 below was cultured with shaking at 30°C for 16 hours using a liquid broth medium, and the grown cells were collected and thoroughly washed with physiological saline. . This bacterial cell suspension was mixed with thiaisoleucine 0, 2.5,
Minimal medium (medium composition: glucose 0.5%, ammonium sulfate 0.1%, phosphoric acid
Potassium 0.3%, dibasic potassium phosphate 0.7%, magnesium sulfate heptahydrate 0.01%, L-isoleucine 0.001%, L-leucine 0.05%, L-valine 0.05%)) was inoculated into 5 ml and kept at 30℃. After culturing for 24 hours, the growth rate of each strain was examined. The result is
As shown in Table 1. However, a commercially available thiaisoleucine (manufactured by Sigma) was used. In the thiaisoleucine-resistant strain (TP6-28) used in the method of the present invention, growth is not inhibited by thiaisoleucine and it has acquired resistance to thiaisoleucine, compared to the parent strain Providencia retogeri TP3-105. That is clear.

【表】 各菌株のチアイソロイシンを添加していな
い培養液の吸光度を100%として表わした。
実施例 2 第2表に示す各菌株をそれぞれ液体ブイヨン培
地で30℃、16時間振とうして前培養したのち、あ
らかじめ115℃、10分間蒸気滅菌した下記組成の
主発酵用培地50mlを含む500ml容振とうフラスコ
に植菌し、30℃、110rpm、振幅5cmの条件下で
90時間培養した。 発酵用培地 グルコース(別滅菌) 8% (NH42SO4 2.5% KH2PO4 0.1% MgSO4・7H2O 0.04% Fe 2ppm Mn 2ppm L−イソロイシン 0.005% L−ロイシン 0.08% CaCO3(別滅菌) 4% PH 7.0(KOHで中和) 培養終了後、菌体、炭酸カルシウムを除去した
液中のL−スレオニン濃度を、自動アミノ酸分
析計(日本電子JLC200A)で定量したところ第
2表に示すような結果を得た。
[Table] The absorbance of the culture solution of each strain without the addition of thiaisoleucine is expressed as 100%.
Example 2 Each strain shown in Table 2 was pre-cultured in a liquid bouillon medium at 30°C by shaking for 16 hours, and then 500ml containing 50ml of the main fermentation medium with the following composition, which had been steam sterilized at 115°C for 10 minutes, was prepared. Inoculate into a shake flask and incubate under the conditions of 30℃, 110rpm, and 5cm amplitude.
Cultured for 90 hours. Fermentation medium Glucose (separately sterilized) 8% (NH 4 ) 2 SO 4 2.5% KH 2 PO 4 0.1% MgSO 4・7H 2 O 0.04% Fe 2ppm Mn 2ppm L-isoleucine 0.005% L-leucine 0.08% CaCO 3 ( Separately sterilized) 4% PH 7.0 (neutralized with KOH) After culturing, the L-threonine concentration in the solution from which bacterial cells and calcium carbonate were removed was determined using an automatic amino acid analyzer (JEOL JLC200A). Table 2 shows the results. The results shown are obtained.

【表】 スレオニン生成収率は、消費グルコースに対す
る生成スレオニンの重量収率で表わした。 本発明例のプロビデンシア・レトゲリTP6−28
では、L−スレオニンの蓄積濃度、生成収率とも
顕著に向上した。 実施例 3 第3表に示す各菌株を、液体ブイヨン培地で、
30℃16時間振とう培養し、これを実施例2の発酵
用培地のうち(NH42SO4を0.5%、グルコース
を4.0%とした培地800mlを分注したガラス製小型
ジヤーフアーメンターへ10%となるように接種し
た。30℃にて、800rpm、通気量1vvmにて通気撹
拌培養を開始した。PH調節および窒素源の供給
は、25%アンモニア水にて行ない、PHは、6.5〜
8.0に維持した。グルコース、KH2PO4
MgSO4・7H2O、L−ロイシンおよびL−イソロ
イシンを適宜添加しながら、70時間培養したとこ
ろ第3表に示すような結果を得た。
[Table] The threonine production yield was expressed as the weight yield of the produced threonine relative to the consumed glucose. Providencia retogeri TP6-28 according to the present invention
In this case, both the accumulated concentration and production yield of L-threonine were significantly improved. Example 3 Each strain shown in Table 3 was grown in a liquid broth medium.
After culturing with shaking at 30°C for 16 hours, 800 ml of the fermentation medium of Example 2 containing 0.5% (NH 4 ) 2 SO 4 and 4.0% glucose was dispensed into a small glass jar fermenter. were inoculated at a concentration of 10%. Aerated agitation culture was started at 30°C, 800 rpm, and aeration rate of 1 vvm. PH adjustment and nitrogen source supply are performed with 25% ammonia water, and the PH is 6.5 ~
I kept it at 8.0. Glucose, KH 2 PO 4 ,
When cultured for 70 hours while appropriately adding MgSO 4 .7H 2 O, L-leucine and L-isoleucine, the results shown in Table 3 were obtained.

【表】 プロビデンシア・レトゲリTP6−28の培養液よ
り菌体を除き、その500mlを強カチオン交換樹脂
ダイヤイオンSK・1B(H型)のカラムに通した。
カラムを水洗後、2Nアンモニア水でカラムの吸
着成分を溶出し、脱色後減圧濃縮した。これにエ
タノールを加え、冷却し、生成した結晶を集めて
乾燥した結果、純度96%以上のL−スレオニンの
結晶32.3gが得られた。 <発明の効果> 本発明法により、高い収率および高い蓄積濃度
でL−スレオニン生成が可能となり、より安価な
L−スレオニンの生産が可能となる。
[Table] Bacterial cells were removed from the culture solution of Providencia retogeri TP6-28, and 500 ml of it was passed through a column of strong cation exchange resin Diaion SK.1B (H type).
After washing the column with water, the adsorbed components of the column were eluted with 2N aqueous ammonia, decolorized, and concentrated under reduced pressure. Ethanol was added thereto, the mixture was cooled, and the resulting crystals were collected and dried to obtain 32.3 g of L-threonine crystals with a purity of 96% or higher. <Effects of the Invention> The method of the present invention makes it possible to produce L-threonine with high yield and high accumulated concentration, and makes it possible to produce L-threonine at a lower cost.

Claims (1)

【特許請求の範囲】 1 プロビデンシア(Providencia)属に属し、
イソロイシン代謝拮抗物質に耐性を有し、かつL
−スレオニン生産能を有する微生物を培養して、
培養液中にL−スレオニンを生成蓄積せしめ、前
記培養液よりL−スレオニンを採取することを特
徴とする発酵法によるL−スレオニンの製造方
法。 2 イソロイシン代謝拮抗物質が、チアイソロイ
シンである特許請求の範囲第1項記載の発酵法に
よるL−スレオニンの製造方法。
[Claims] 1 Belongs to the genus Providencia,
Resistant to isoleucine antimetabolites and L
- Cultivating a microorganism capable of producing threonine,
A method for producing L-threonine by a fermentation method, which comprises producing and accumulating L-threonine in a culture solution, and collecting L-threonine from the culture solution. 2. The method for producing L-threonine by the fermentation method according to claim 1, wherein the isoleucine antimetabolite is thiaisoleucine.
JP18392585A 1985-08-23 1985-08-23 Production of l-threonine by fermentation Granted JPS6244193A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18392585A JPS6244193A (en) 1985-08-23 1985-08-23 Production of l-threonine by fermentation
EP19860111424 EP0213536B1 (en) 1985-08-23 1986-08-19 Process for producing l-threonine by fermentation
DE8686111424T DE3684383D1 (en) 1985-08-23 1986-08-19 METHOD FOR PRODUCING L-THREONIN BY FERMENTATION.
US07/652,455 US5264353A (en) 1985-08-23 1991-02-07 Process for producing L-threonine by fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18392585A JPS6244193A (en) 1985-08-23 1985-08-23 Production of l-threonine by fermentation

Publications (2)

Publication Number Publication Date
JPS6244193A JPS6244193A (en) 1987-02-26
JPH0313875B2 true JPH0313875B2 (en) 1991-02-25

Family

ID=16144209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18392585A Granted JPS6244193A (en) 1985-08-23 1985-08-23 Production of l-threonine by fermentation

Country Status (1)

Country Link
JP (1) JPS6244193A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3966583B2 (en) * 1997-06-23 2007-08-29 協和醗酵工業株式会社 Method for producing L-amino acid by fermentation

Also Published As

Publication number Publication date
JPS6244193A (en) 1987-02-26

Similar Documents

Publication Publication Date Title
JP3036930B2 (en) Production method of L-isoleucine by fermentation method
JP3006926B2 (en) Method for producing L-threonine by fermentation method
JP3151073B2 (en) Production of amino acids by fermentation
JP3301140B2 (en) Method for producing L-glutamic acid by fermentation method
JP3008565B2 (en) Method for producing L-glutamic acid by fermentation method
JPH02219582A (en) Preparation of l-threonine by fermentation method
US3282794A (en) Method of producing citrulline by bacterial fermentation
JPH0313875B2 (en)
JPS60180597A (en) Production of l-threonine by fermentation
JPH03259088A (en) Production of l-threonine by fermentation
JPH03236786A (en) Production of l-threonine by fermentation method
JPH0346111B2 (en)
JPS6318478B2 (en)
JP2833084B2 (en) Production method of L-proline by fermentation method
JPS61260891A (en) Production of l-threonine by fermentation method
JPH0346113B2 (en)
JPH0313874B2 (en)
JPS6374487A (en) Production of l-threonine by fermentation
JPH0673460B2 (en) Method for producing L-threonine by fermentation method
JPH0468916B2 (en)
JP3289349B2 (en) Method for producing D-alanine by fermentation method
JPH04248988A (en) Production of l-proline by fermentation method
JPH0346108B2 (en)
JPH0313873B2 (en)
JPS6324679B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term