JPH0345797B2 - - Google Patents

Info

Publication number
JPH0345797B2
JPH0345797B2 JP59128423A JP12842384A JPH0345797B2 JP H0345797 B2 JPH0345797 B2 JP H0345797B2 JP 59128423 A JP59128423 A JP 59128423A JP 12842384 A JP12842384 A JP 12842384A JP H0345797 B2 JPH0345797 B2 JP H0345797B2
Authority
JP
Japan
Prior art keywords
signal
complex
frequency
doppler
kvt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59128423A
Other languages
Japanese (ja)
Other versions
JPS618688A (en
Inventor
Koroku Namekawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP12842384A priority Critical patent/JPS618688A/en
Priority to US06/746,998 priority patent/US4780837A/en
Priority to CA000484677A priority patent/CA1246732A/en
Priority to EP85107684A priority patent/EP0166392B1/en
Priority to DE8585107684T priority patent/DE3586016D1/en
Publication of JPS618688A publication Critical patent/JPS618688A/en
Publication of JPH0345797B2 publication Critical patent/JPH0345797B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S15/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S15/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse-modulated waves and based upon the Doppler effect resulting from movement of targets with measures taken for suppressing velocity ambiguities, i.e. anti-aliasing

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はドプラ信号の周波数変換装置、特に反
射体の運動速度を検出又は測定する装置に用いら
れるドプラ信号の周波数変換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a Doppler signal frequency conversion device, and particularly to a Doppler signal frequency conversion device used in a device for detecting or measuring the speed of movement of a reflector.

[背景技術] 一定の繰返し周波数でパルス波を放射して反射
体からの反射波を受信し、送信時間と受信時間と
を比較して反射体までの距離を測定するととも
に、受信周波数の変化を検出して運動なる反射体
の速度を検出又は測定するパルスドプラ装置が広
く用いられている。
[Background technology] A pulse wave is emitted at a constant repetition frequency, the reflected wave from a reflector is received, and the distance to the reflector is measured by comparing the transmission time and reception time, and changes in the reception frequency are measured. Pulsed Doppler devices are widely used to detect and measure the velocity of a moving reflector.

一般に、パルス波を放射する繰返し周波数は反
射体までの距離に応じて選定されている。しかし
ながら、遠距離の被測定体を測定する場合、反射
体までの距離に対応して定まる繰返し周波数に比
較して高い周波数を選定すると、周知のごとく、
実際の距離より近い距離に折返しのエコーが現出
し、距離の判別が困難となる。
Generally, the repetition frequency for emitting pulse waves is selected depending on the distance to the reflector. However, when measuring a long-distance object, if a higher frequency is selected than the repetition frequency determined by the distance to the reflector, as is well known,
Returned echoes appear at a distance closer than the actual distance, making it difficult to determine the distance.

また、運動する反射体の速度を測定する場合に
も上記と類似の現象が現われ、反射体の速度によ
るドプラ周波数に比較して低い繰返し周波数を選
定すると、折返し現象によつて低い周波数として
現われ、速度の判別が困難となる。
In addition, a phenomenon similar to the above occurs when measuring the speed of a moving reflector, and if a repetition frequency that is lower than the Doppler frequency due to the speed of the reflector is selected, it appears as a low frequency due to the folding phenomenon. It becomes difficult to determine the speed.

これら距離、速度ともに折返し現象を生じさせ
ないで測定するためには、最大ドプラ周波数d
繰返し周波数rとの間に、速度の絶対値だけでな
くその正負をも判別できる装置の場合には、d
r/2、速度の絶対値のみを検出測定する装置の
場合には、drなる関係を満たす必要があるこ
とが広く知られている。
In order to measure both distance and velocity without causing aliasing phenomena, in the case of a device that can determine not only the absolute value of velocity but also its sign, d must be set between the maximum Doppler frequency d and the repetition frequency r . =
It is widely known that in the case of a device that detects and measures only the absolute value of velocity, it is necessary to satisfy the relationship d = r .

ここで、速度の正負を判別できる装置におい
て、 dp・k・V=r/2 (p:放射する超音波周波数、k:定数、V:
最大速度) から、測定可能な最大速度Vは V=r/(2p・k) となる。この式から理解されるように、最大速度
Vを大きくするために繰返し周波数rを高くする
とすれば、折返し現象を生じないで測定できる反
射体の最大距離が小さくなるので、高速度の反射
体を測定する場合に遠距離での速度測定ができな
いという欠点が生じる。
Here, in a device that can determine whether the velocity is positive or negative, d = p・k・V= r /2 ( p : emitted ultrasonic frequency, k: constant, V:
maximum speed), the maximum measurable speed V is V= r /( 2p・k). As can be understood from this equation, if the repetition frequency r is increased in order to increase the maximum velocity V, the maximum distance of the reflector that can be measured without aliasing becomes smaller. When measuring, there is a drawback that speed cannot be measured over a long distance.

また、放射する超音波周波数を低く選定すると
すれば、パルス幅の狭い送信波を形成することが
困難なばかりでなく、鋭い放射ビームを形成する
ことができず、距離分解能、方位分解能が低下す
るという欠点が生じ、遠距離にあつてかつ高速度
で運動する反射体の距離と速度を同時に確定でき
ないという問題があつた。
Furthermore, if the ultrasonic frequency to be emitted is selected to be low, it is not only difficult to form a transmitted wave with a narrow pulse width, but also a sharp radiation beam cannot be formed, resulting in a decrease in distance resolution and azimuth resolution. This resulted in the problem that the distance and speed of a reflector that was far away and moved at high speed could not be determined at the same time.

[発明の目的] 本発明は前記従来の課題に鑑みなされたもので
あり、その目的は、遠距離にあつてかつ高速度の
運動する反射体の距離、速度を確定可能なドプラ
信号の周波数変換装置を提供することにある。
[Object of the Invention] The present invention has been made in view of the above-mentioned conventional problems, and its object is to provide frequency conversion of Doppler signals that can determine the distance and velocity of a reflector that is located at a long distance and moves at high speed. The goal is to provide equipment.

[発明の構成] 本発明は、周期的パルス変調波の放射に基づく
運動する反射体からの反射波を受信、増幅して得
られるドプラ信号と、このドプラ信号の中心周波
数に応じた周波数を有する参照波信号とを混合す
る第1ミキサ及び前記ドプラ信号と前記参照波信
号を90度移相した参照波信号とを混合する第2ミ
キサを含み第1及び第2ミキサで混合された信号
を実数部x及び虚数部yとする複素信号に変換す
る第1及び第2複素信号変換器と、第1及び第2
複素信号変換器からの互いに異なる中心周波数
12を有する2個の複素信号の実数部x1,x2
び虚数部y1,y2を入力し、 X=x1・x2+y1・y2 Y=x2・y1−x1・y2 で示される複素共役積の実数部X、虚数部Y又は X=x1・x2−y1・y2 Y=x2・y1+x1・y2 で示される複素積の実数部X、虚数部Yを演算す
ることにより中心周波数12の差又は和に相当
する中心周波数を有する複素信号を得る複素乗算
器とを含み、運動反射体からのドプラ信号を所望
の周波数に変換することを特徴とする。
[Configuration of the Invention] The present invention has a Doppler signal obtained by receiving and amplifying a reflected wave from a moving reflector based on the radiation of a periodic pulse modulated wave, and a frequency corresponding to the center frequency of this Doppler signal. A first mixer mixes the Doppler signal with a reference wave signal, and a second mixer mixes the Doppler signal with a reference wave signal obtained by shifting the reference wave signal by 90 degrees. first and second complex signal converters converting into a complex signal having a part x and an imaginary part y;
Different center frequencies from complex signal converter
Input the real part x 1 , x 2 and the imaginary part y 1 , y 2 of two complex signals having 1 and 2 , X=x 1・x 2 +y 1・y 2 Y=x 2・y 1 − Real part X, imaginary part Y of the complex conjugate product shown by x 1 y 2 or complex product shown by X=x 1・x 2 −y 1・y 2 Y=x 2・y 1 +x 1・y 2 and a complex multiplier that obtains a complex signal having a center frequency corresponding to the difference or sum of center frequencies 1 and 2 by calculating the real part X and imaginary part Y of It is characterized by converting into frequency.

[実施例] 以下図面に基づいて本発明の好適な実施例を説
明する。
[Embodiments] Preferred embodiments of the present invention will be described below based on the drawings.

第1図には、超音波を用いて生体の血流を検出
又は測定する装置に本発明を適用した実施例が示
され、安定な高周波信号を発生する発振器1の出
力は分周同基回路2に供給されており、該分周同
期回路2の出力には必要な各種の同期信号、例え
ば繰返し周波数、クロツクパルス、参照波、制御
パルス等の信号が得られる。この一定の繰返し周
波数(例えば4kHz)の制御パルス100は、送
受切換器3を介して探触子4に入力され、超音波
に変換されて超音波パルス波として生体内に放射
される。
FIG. 1 shows an embodiment in which the present invention is applied to a device that detects or measures blood flow in a living body using ultrasonic waves. Various necessary synchronizing signals such as repetition frequency, clock pulse, reference wave, control pulse, etc. can be obtained from the output of the frequency dividing synchronizing circuit 2. This control pulse 100 with a constant repetition frequency (for example, 4 kHz) is input to the probe 4 via the transmitter/receiver switch 3, converted into an ultrasonic wave, and emitted into the living body as an ultrasonic pulse wave.

生体からの反射波は探触子4と反射体との距離
に応じた遅延時間にて探触子4に受信され、探触
子4によつて超音波反射波は電気信号に変換され
る。該電気信号は送受切器3を介して高周波増幅
器5に入力されて増幅され、該高周波増幅器5の
出力信号101は2個の帯域フイルタ6,7に入
力される。
The reflected wave from the living body is received by the probe 4 with a delay time depending on the distance between the probe 4 and the reflector, and the ultrasonic reflected wave is converted into an electrical signal by the probe 4. The electrical signal is input to the high frequency amplifier 5 via the transmitter/receiver 3 and amplified, and the output signal 101 of the high frequency amplifier 5 is input to two band filters 6 and 7.

前記信号101のスペクトルは、繰返し周波数
(4kHz)ごとに現われる線スペクトルであるが、
該スペクトルの包絡線は駆動パルス幅や探触子の
特性で定まり、第2図Aに示されるように、例え
ば中心周波数が、3MHzである広帯域のスペクト
ルとなつており、また信号101は、第2図Bの
6,7で示される濾過帯域の異なる特性を有する
2個のフイルタ6,7によつて濾過されるので、
該フイルタ6,7の出力信号102,103のス
ペクトルは、第2図Cに示されるように、中心周
波数約2.9MHz(6s)、3.1MHz(7s)の2つの異な
る包絡線を持つスペクトルとなる。
The spectrum of the signal 101 is a line spectrum that appears at every repetition frequency (4kHz),
The envelope of the spectrum is determined by the drive pulse width and the characteristics of the probe, and as shown in FIG. Figure 2B
Since it is filtered by two filters 6 and 7 having different characteristics of filtration bands shown by 6 and 7,
The spectra of the output signals 102 and 103 of the filters 6 and 7 have two different envelopes with center frequencies of approximately 2.9MHz (6s) and 3.1MHz (7s), as shown in FIG. 2C. .

運動する反射体を測定する場合には、周知のご
とく、受信波の周波数は反射体速度と送信周波数
に比例したドプラ効果を受けるので、運動する反
射体が探触子に近づくときのスペクトルは第2図
の破線で示されるように包絡線で変化する。従つ
て、フイルタ6,7の出力スペクトルにおいても
包絡線が変化し、特にスペクトル7sの周波数成
分はスペクトル6sの周波数成分より高いのでよ
り大きな偏移を持つて包絡線が変化することとな
る。
When measuring a moving reflector, as is well known, the frequency of the received wave is subject to the Doppler effect, which is proportional to the reflector velocity and the transmitted frequency, so the spectrum when the moving reflector approaches the probe is As shown by the broken line in Figure 2, it changes along the envelope. Therefore, the envelopes of the output spectra of the filters 6 and 7 also change, and in particular, since the frequency component of the spectrum 7s is higher than the frequency component of the spectrum 6s, the envelope changes with a larger deviation.

このようにして得られた前記フイルタ6,7の
出力信号102,103は、それぞれ複素信号変
換器201,202に入力されて複素信号に変換
される。該複素信号変換器201は2個のミキサ
8,9と90度移相器12と2個の低域フイルタ1
4,15から構成され、また複素信号変換器20
2も複素信号変換器201と同様に、ミキサ1
0,11と90度移相器13と低域フイルタ16,
17から構成されており、以下に複素信号変換器
201,202での信号変換を説明する。
The output signals 102 and 103 of the filters 6 and 7 thus obtained are input to complex signal converters 201 and 202, respectively, and converted into complex signals. The complex signal converter 201 includes two mixers 8 and 9, a 90 degree phase shifter 12, and two low-pass filters 1.
4 and 15, and a complex signal converter 20
Similarly to the complex signal converter 201, mixer 1
0,11 and 90 degree phase shifter 13 and low pass filter 16,
The signal conversion in the complex signal converters 201 and 202 will be explained below.

信号102,103の出力スペクトル6s,7
sは繰返し周波数の整数倍の多数の線スペクトル
から成立しているが、説明を簡単にするため単一
の中心スペクトルに着目し、この周波数を1,
2、振幅を同一としこれをA、時間をtとする
と、信号102,103は Acos2π(1+k1v)t …(1) Acos2π(2+k2v)t …(2) で表わされる。
Output spectra 6s, 7 of signals 102, 103
s consists of many line spectra that are integral multiples of the repetition frequency, but to simplify the explanation, we will focus on a single central spectrum and set this frequency to 1,
2. Assuming that the amplitude is the same and that this is A, and the time is t, the signals 102 and 103 are expressed as Acos2π( 1 +k 1 v)t...(1) Acos2π( 2 + k2v )t...(2).

ここでkは比例定数、vは速度、k1vとk2v
はドプラ効果による周波数の変化分を示す。
where k is the proportionality constant, v is the velocity, k 1 v and k 2 v
indicates the change in frequency due to the Doppler effect.

そして、前記信号102は開閉器31の端子3
1を介してミキサ8,9に入力され、該ミキサ
8,9の他方の入力には参照波信号104が分周
同期回路2から開閉器33の端子33を介して
入力される。該参照波信号104の周波数は繰返
し周波数の整数倍の連続波周波数1(2.9MHz)に
てミキサ8に入力されており、また参照波信号1
04の他方は90度移相器12により90度移相され
てミキサ9に入力されている。従つて、ミキサ8
とミキサ9に入力される参照波信号は位相がが90
度異なつた信号となり、これは振幅を1とする
と、次の式で表わされる。
The signal 102 is transmitted to the terminal 3 of the switch 31.
1 to the mixers 8 and 9, and the reference wave signal 104 is input from the frequency-divided synchronization circuit 2 to the other input of the mixers 8 and 9 via the terminal 33 of the switch 33. The frequency of the reference wave signal 104 is input to the mixer 8 at a continuous wave frequency 1 (2.9MHz) which is an integral multiple of the repetition frequency, and the reference wave signal 104 is
04 is phase-shifted by 90 degrees by a 90-degree phase shifter 12 and input to the mixer 9. Therefore, mixer 8
The reference wave signal input to mixer 9 has a phase of 90
When the amplitude is set to 1, this is expressed by the following equation.

cos2π 1t …(3) sin2π 1t …(4) 上記(3)式を複素数の実数部、(4)式をその虚数部
とすれば、両式をまとめて複素参照波となるの
で、ミキサ8,9によつて演算されたミキサ出力
信号は互いに複素関係にある信号となる。
cos2π 1 t …(3) sin2π 1 t …(4) If equation (3) above is the real part of a complex number and equation (4) is its imaginary part, then both equations together become a complex reference wave, so the mixer The mixer output signals calculated by 8 and 9 are signals that have a complex relationship with each other.

この結果、これらのミキサ8,9の出力信号に
は、(3)式と(1)式の積に比例した信号106が発生
する。該信号106は、次式 Acos2π 1kvt +cos2π(211 kv)t …(5) で表わされ、500kHz以上の周波数成分を遮断す
る低域フイルタ14に入力されることによつて(5)
式の21(5.8MHz)の高周波成分は除去され、出
力信号110は次式で表わされる信号となる。
As a result, a signal 106 proportional to the product of equation (3) and equation (1) is generated in the output signals of these mixers 8 and 9. The signal 106 is expressed by the following formula Acos2π 1 kvt + cos2π (2 1 + 1 kv)t (5), and is input to the low-pass filter 14 that cuts off frequency components of 500 kHz or higher. )
The high frequency component of 2 1 (5.8MHz) in the equation is removed, and the output signal 110 becomes a signal expressed by the following equation.

Acos2π 1kvt …(6) 同様にして、ミキサ9では(1)式と(4)式の積に比
例した出力が現われるので、低域フイルタ15の
出力信号111は Asin2π 1kvt …(7) で表わされる、(6),(7)式の信号をまとめると、次
式で表わされる複素信号となる。
Acos2π 1 kvt …(6) Similarly, in the mixer 9, an output proportional to the product of equations (1) and (4) appears, so the output signal 111 of the low-pass filter 15 is Asin2π 1 kvt …(7) When the signals expressed by equations (6) and (7) are put together, they become a complex signal expressed by the following equation.

Z1=A{cos2π 1kvt+isin2π 1kvt} =x1+iy1 …(8) ここで、iは複素信号であり、x1・y1は次式で
表わされる。
Z 1 =A{cos2π 1 kvt+isin2π 1 kvt} =x 1 +iy 1 (8) Here, i is a complex signal, and x 1 ·y 1 is expressed by the following equation.

x1=Acos2π 1kvt、 y1=Asin2π 1kvt …(9) 一方、複素信号変換器202では、複素参照波
の周波数は繰返し周波数の整数倍の連続波周波数
2(3.1MHz)となつており、2個の出力信号11
2,113は複素信号変換器201と同様に複素
式で表わせば次式となる。
x 1 = Acos2π 1 kvt, y 1 = Asin2π 1 kvt (9) On the other hand, in the complex signal converter 202, the frequency of the complex reference wave is a continuous wave frequency that is an integral multiple of the repetition frequency.
2 (3.1MHz), and two output signals 11
2,113 can be expressed as a complex equation as in the complex signal converter 201 as follows.

Z2=A{cos2π 2kvt+i sin2π 2kvt} =x2+i y2 …(10) ここで、x2,y2は次式で表わされる。 Z 2 =A {cos2π 2 kvt+i sin2π 2 kvt} =x 2 +i y 2 (10) Here, x 2 and y 2 are expressed by the following formula.

x2=Acos2π 2kvt、 y2=Asin2π 2kvt …(11) 以上のようにしてて求められたアナログ信号号
z1,z2は演算精度を上げるためアナログデジタル
変換器18,19,20,21によつてデジタル
信号に変換され、これら4個のデジタル信号x1
y1,x2,y2は乗算器22,23,24,25及び
加減算器26,27で構成された複素乗算器20
3に入力される。
x 2 = Acos2π 2 kvt, y 2 = Asin2π 2 kvt …(11) Analog signal signal obtained as above
z 1 and z 2 are converted into digital signals by analog-to-digital converters 18, 19, 20, and 21 to improve calculation accuracy, and these four digital signals x 1 ,
y 1 , x 2 , y 2 are complex multipliers 20 composed of multipliers 22, 23, 24, 25 and adders/subtractors 26, 27
3 is input.

そして、該乗算器22,23,24,25で
は、x1・x2,y1・y2,x2,y1,x1・y2がそれぞれ
演算され、乗算器22と23の出力は加減算器2
6に入力されており、また乗算器24,25の出
力は加減算器27に入力される。ここで、加減算
器26を加算器、加減算器27を減算器として動
作させると、複素乗算器203の出力Z0(X,Y)
のX,Yは次式となる。
The multipliers 22, 23, 24, and 25 calculate x 1 · x 2 , y 1 · y 2 , x 2 , y 1 , and x 1 · y 2 , respectively, and the outputs of the multipliers 22 and 23 are Adder/subtractor 2
The outputs of the multipliers 24 and 25 are input to the adder/subtracter 27. Here, when the adder/subtracter 26 is operated as an adder and the adder/subtracter 27 is operated as a subtracter, the output Z 0 (X, Y) of the complex multiplier 203
The X and Y of are given by the following formula.

X=x1・x2+y1・y2 …(12) Y=x2・y1−x1・y2 …(13) 上記X,Yは次式に示されるように(8),(10)式の
Z1,Z2の共役積の実数部と虚数部になつている。
X=x 1・x 2 +y 1・y 2 …(12) Y=x 2・y 1 −x 1・y 2 …(13) The above X and Y are expressed as (8), ( 10) Eq.
They are the real and imaginary parts of the conjugate product of Z 1 and Z 2 .

Z0=Z1 *・Z2 =(x1−iy1)(x2+iy2) =x1・x2+y1・y2+i(x1・y2−x2・y1) =X+iY …(14) そして、(12),(13)式は、(9),(11)式を代入して計
算すると次式のようになる。
Z 0 = Z 1 *・Z 2 = (x 1 − iy 1 ) (x 2 + iy 2 ) = x 1・x 2 +y 1・y 2 +i (x 1・y 2 −x 2・y 1 ) =X+iY ...(14) Then, when formulas (12) and (13) are calculated by substituting formulas (9) and (11), they become as follows.

X=A2{cos2π 1kvt・cos2π 2kvt +sin2π 1kvt・sin2π 2kvt} =A2cos2π(21)kvt …(15) Y=A2{cos2π 1kvt・sin2π 2kvt −sin2π 1kvt・cos2π 2kvt} =A2sin2π(21)kvt …(16) このようにして求められた複素乗算器203の
出力X,Yは演算器28に入力され、次式で示さ
れる算出式によつて振幅Aが演算される。
X=A 2 {cos2π 1 kvt・cos2π 2 kvt + sin2π 1 kvt・sin2π 2 kvt} =A 2 cos2π ( 21 ) kvt …(15) Y=A 2 {cos2π 1 kvt・sin2π 2 kvt −sin2π 1 kvt・cos2π 2 kvt} = A 2 sin2π ( 21 ) kvt (16) The outputs X and Y of the complex multiplier 203 obtained in this way are input to the arithmetic unit 28, and the calculation formula shown by the following equation is The amplitude A is calculated by .

(X2+Y21/4=(A41/4=A …(17) そして、演算器28の出力は除算器29,30
に入力され、これら除算器の他方の入力端子に入
力されている信号X又はYは演算器28の出力信
号すなわちAで除算される。
(X 2 + Y 2 ) 1/4 = (A 4 ) 1/4 = A (17) Then, the output of the arithmetic unit 28 is divided into the dividers 29 and 30
The signal X or Y input to the other input terminal of these dividers is divided by the output signal of the arithmetic unit 28, that is, A.

従つて、各除算器29,30端子c及びdの出
力は(15),(16),(17)式から求められ次式となる。
Therefore, the outputs of terminals c and d of each divider 29 and 30 are obtained from equations (15), (16), and (17) and are expressed as follows.

Acos2π(21)kvt …(18) Asin2π(21)kvt …(19) また、加減算器26,27を前述の場合と逆に
26を減算器、27を加算器として動作させる
と、(12),(13)式となる。
Acos2π( 21 )kvt…(18) Asin2π( 21 )kvt…(19) Also, if the adders and subtracters 26 and 27 are operated as a subtracter and 27 as an adder, contrary to the above case, Equations (12) and (13) are obtained.

X′=x1・x2−y1・y2 …(20) Y′=x2・y1+x1・y2 …(21) 上記X′,Y′は次式に示されるようにZ1,Z2
複素積の実数部、虚数部になる。
X′=x 1・x 2 −y 1・y 2 …(20) Y′=x 2・y 1 +x 1・y 2 …(21) The above X′, Y′ is Z It becomes the real part and imaginary part of the complex product of 1 and Z 2 .

Z0′=Z1・Z2 =(x1+iy1)(x2+iy2) =x1・x2−y1・y2+i(x2・y1+x1・y2) =X′+iY′ …(22) この(22)式は、(15),(16)式と同様に計算する
と、次の(23),(24)式になる。
Z 0 ′=Z 1・Z 2 = (x 1 + iy 1 ) (x 2 + iy 2 ) = x 1・x 2 −y 1・y 2 +i (x 2・y 1 +x 1・y 2 ) =X′ +iY'...(22) When this equation (22) is calculated in the same way as equations (15) and (16), it becomes the following equations (23) and (24).

X′=A2cos2π(12)kvt …(23) Y′=A2sin2π(12)kvt …(24) そして、除算器29,30においてAで計算さ
れ、端子c,dの出力は次式となる。
X'=A 2 cos2π( 1 + 2 )kvt...(23) Y'= A2sin2π ( 1 + 2 )kvt...(24) Then, it is calculated by A in the dividers 29 and 30, and the terminals c and d are The output is as follows.

Acos2π(21)kvt …(25) Asin2π(21)kvt …(26) 次に、開閉器31,32,33,34の接点を
端子e側に切り換えると、101の信号はミクサ
8,9,10,11に加わると共に他方の入力端
子に入力される参照波の周波数は、繰返し周波数
の整数倍の連続波の周波数0に変更される。こと
きの動作は(25),(26)式で120としたものと
同じであるから、次式となる。
Acos2π( 2 + 1 )kvt...(25) Asin2π( 2 + 1 )kvt...(26) Next, when the contacts of switches 31, 32, 33, and 34 are switched to the terminal e side, the signal 101 is sent to mixer 8. , 9, 10, 11 and input to the other input terminal, the frequency of the reference wave is changed to a continuous wave frequency 0 which is an integral multiple of the repetition frequency. The behavior of Kotoki is the same as when 1 = 2 = 0 in equations (25) and (26), so the following equation is obtained.

Acos4π 0kvt …(25′) Asin4π 0kvt …(26′) このとき、変換器201のみの動作は前述の周
波数1のときの動作と同じであるから、110,
111の端子A,Bから得られる信号は次式とな
る。
Acos4π 0 kvt …(25′) Asin4π 0 kvt …(26′) At this time, since the operation of only the converter 201 is the same as the operation at frequency 1 described above, 110,
The signals obtained from terminals A and B of 111 are expressed by the following equation.

Acos2π 0kvt …(27) Asin2π 0kvt …(28) この信号は従来の直交検波器の出力の信号と同
じである。
Acos2π 0 kvt …(27) Asin2π 0 kvt …(28) This signal is the same as the output signal of a conventional quadrature detector.

従つて、(27),(28)式と、本発明を実施したと
きに得られる(18),(19)式とを比較すれば、送信
の中心周波数0の代わりに12(3.1MHz−2.9M
Hz)すなわち、200kHzで送信波を放射したとき
に得られるドプラ信号と同一であることが理解さ
れる。
Therefore, if we compare equations (27) and (28) with equations (18) and (19) obtained when implementing the present invention, we find that the transmission center frequency is 12 (3.1MHz) instead of 0. −2.9M
Hz), that is, it is understood that it is the same as the Doppler signal obtained when transmitting waves are radiated at 200kHz.

以上のように、本発明によれば、繰返し周波数
r、送信周波数0を変更することなく、この0
実質上12に変更した時のドプラ信号が得ら
れ、前述したように、0は3MHz、12は200k
Hzであるから3MHzのときに比較して15倍の最大
速度を測定することが可能となる。
As described above, according to the present invention, the repetition frequency
r , the Doppler signal obtained when this 0 is essentially changed to 12 without changing the transmission frequency 0 , and as mentioned above, 0 is 3MHz and 12 is 200k.
Hz, it is possible to measure a maximum speed 15 times faster than when using 3MHz.

また、(25),(26)式又は(25)′,(26)′式で示され
る端子c,dの出力信号は12(3.1MHz+2・
9MHz=6MHz)または20(2×3MHz=6MHz)を
放射したときに得られるドプラ信号となる。この
ことは、被検体に6MHzを放射した場合と実質上
同じドプラ信号が得られることであり、r0
変更しないで抵速度の反射体の速度を精度良く測
定することが可能となる。
Also, the output signals of terminals c and d shown by equations (25), (26) or (25)', (26)' are 1 + 2 (3.1MHz + 2.
This is the Doppler signal obtained when radiating 9MHz = 6MHz) or 20 (2 x 3MHz = 6MHz). This means that a Doppler signal that is substantially the same as when 6MHz is radiated to the subject is obtained, and it is possible to accurately measure the velocity of a resistive reflector without changing r and 0 .

また、本発明によれば、放射波の周波数や繰返
し周波数を変更することなくドプラ信号周波数を
変換できるので、検出又は測定する速度に応じて
所望の変換量にて行う高精度の速度測定をも可能
とする。
Furthermore, according to the present invention, it is possible to convert the Doppler signal frequency without changing the frequency or repetition frequency of the radiation wave, so it is possible to perform highly accurate speed measurements with a desired conversion amount depending on the speed to be detected or measured. possible.

更に、端子a,bの信号は、端子c,dの信号
と同様にドプラ情報を含んでおり、端子a,b,
c,dの出力は位相検波ビデオ信号又は直交検波
ビデオ信号として用いることができる。
Furthermore, the signals at terminals a, b include Doppler information similarly to the signals at terminals c, d, and the signals at terminals a, b,
The outputs of c and d can be used as phase detection video signals or quadrature detection video signals.

第3図には、本発明により周波数変換されたド
プラ信号を用いた装置(第1図の204の部分)
が示されており、これは一般に用いられる形式の
パルスドプラ装置である。前記端子c,d又は端
子a,bの周波数変換部からのドプラビデオ信号
は第3図C,D端子に接続され、この信号はデジ
タルアナログ変換器50,51でアナログ信号に
変換されて、サンプルホールド回路52,53に
入力される。前記分周同期回路2(第1図)から
送られるサンプリングパルスは送信時間から所定
の時間遅れでサンプルホールド回路52,53に
加わるので、所定の距離(深度)における反射体
のドプラ信号が取り出される。そして、該ドプラ
信号は低域フイルタで構成されたドプラフイルタ
54,55で不要な信号が除去され、演算回路5
6に入力されており、演算回路56の出力は測定
表示器57に入力され、演算された反射体の速度
が表示される。
FIG. 3 shows an apparatus using Doppler signals frequency-converted according to the present invention (part 204 in FIG. 1).
is shown, which is a commonly used type of pulsed Doppler device. The Doppler video signal from the frequency converter of the terminals c, d or terminals a, b is connected to the terminals C, D in FIG. It is input to hold circuits 52 and 53. The sampling pulse sent from the frequency division synchronization circuit 2 (FIG. 1) is applied to the sample and hold circuits 52 and 53 with a predetermined time delay from the transmission time, so the Doppler signal of the reflector at a predetermined distance (depth) is extracted. . Then, unnecessary signals are removed from the Doppler signal by Doppler filters 54 and 55 composed of low-pass filters, and an arithmetic circuit 5
6, and the output of the calculation circuit 56 is input to the measurement display 57, and the calculated speed of the reflector is displayed.

このほか、端子a,b,c,dの出力信号は、
位相検波されたビデオ信号を必要とする他の形式
のドプラ装置に供給することもでき、ドプラ装置
としては、このビデオ信号を繰返し周期に等しい
遅れ時間を設けた遅延線の入出力信号の位相差や
相関を求めて流速分布を測定表示する装置や入出
力信号の振幅差を検出する移動目標検出(MTI
ドプラ)装置等の二次元ドプラ装置に応用可能で
ある。
In addition, the output signals of terminals a, b, c, and d are
It is also possible to feed this video signal to other types of Doppler devices that require a phase-detected video signal. A device that measures and displays flow velocity distribution by determining the correlation between
It can be applied to two-dimensional Doppler devices such as Doppler) devices.

[発明の効果] 以上説明したように、本発明によれば、放射波
の周波数やパルス繰返し周波数を変更することな
くドプラ信号周波数を変更できるので、遠距離か
つ高速度の運動する反射体の距離、速度を正確に
測定することができ、また低速度の反射体におい
ても従来と比較して高精度の速度測定が可能とな
る。
[Effects of the Invention] As explained above, according to the present invention, the Doppler signal frequency can be changed without changing the frequency of the radiation wave or the pulse repetition frequency. , velocity can be measured accurately, and even with a low-velocity reflector, velocity can be measured with higher precision than in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るドプラ信号の周波数変換
装置の好適な実施例を示すブロツク図、第2図は
周波数変換されるドプラ信号を説明するスペクト
ル図、第3図は実施例装置により得られたドプラ
信号を用いるパルスドプラ装置のブロツク図であ
る。 1…発振器、2…分周同期回路、3…送受切換
回路、4…探触子、5…増幅器、6,7…帯域フ
イルタ、8,9,10,11…ミキサ、12,1
3…90度移相器、14,15,16,17…低域
フイルタ、18,19,20,21…アナログデ
ジタル変換器、22,23,24,25…乗算
器、26,27…加減算器、28…演算器、2
9,30…除算器、50,51…デジタルアナロ
グ変換器、52,53…サンプルホールド回路、
54,55…ドプラフイルタ、56…演算回路、
57…表示回路、201,202…複素信号変換
器、203…複素乗算器、204…パルスドプラ
装置。
FIG. 1 is a block diagram showing a preferred embodiment of the Doppler signal frequency conversion device according to the present invention, FIG. 2 is a spectrum diagram illustrating the frequency-converted Doppler signal, and FIG. FIG. 2 is a block diagram of a pulsed Doppler apparatus using a Doppler signal obtained by using a pulsed Doppler signal. DESCRIPTION OF SYMBOLS 1... Oscillator, 2... Frequency division synchronous circuit, 3... Transmission/reception switching circuit, 4... Probe, 5... Amplifier, 6, 7... Band filter, 8, 9, 10, 11... Mixer, 12, 1
3... 90 degree phase shifter, 14, 15, 16, 17... Low pass filter, 18, 19, 20, 21... Analog-to-digital converter, 22, 23, 24, 25... Multiplier, 26, 27... Addition/subtraction device , 28... Arithmetic unit, 2
9, 30...Divider, 50, 51...Digital-to-analog converter, 52, 53...Sample hold circuit,
54, 55... Doppler filter, 56... Arithmetic circuit,
57... Display circuit, 201, 202... Complex signal converter, 203... Complex multiplier, 204... Pulse Doppler device.

Claims (1)

【特許請求の範囲】 1 周期的パルス変調波の放射に基づく運動する
反射体からの反射波を受信、増幅して得られるド
プラ信号と、このドプラ信号の中心周波数に応じ
た周波数を有する参照波信号とを混合する第1ミ
キサ及び前記ドプラ信号と前記参照波信号を90度
移相した参照波信号とを混合する第2ミキサを含
み第1及び第2ミキサで混合された信号を実数部
x及び虚数部yとする複素信号に変換する第1及
び第2複素信号変換器と、 第1及び第2複素信号変換器からの互いに異な
る中心周波数f1,f2を有する2個の複素信号の実
数部x1,x2及び虚数部y1,y2を入力し、 X=x1・x2+y1・y2 Y=x2・y1−x1・y2 で示される複素共役積の実数部X,虚数部Y又は X=x1・x2−y1・y2 Y=x2・y1+x1・y2 で示される複素積の実数部X,虚数部Yを演算す
ることにより中心周波数f1,f2の差又は和に相当
する中心周波数を有する複素信号を得る複素乗算
器と を含み、運動反射体からのドプラ信号を所望の周
波数に変換することを特徴とするドプラ信号の周
波数変換装置。 2 特許請求の範囲1記載の装置において、複素
乗算器から出力された複素信号の実数部Xの2乗
とその虚数部Yの2乗との和の4乗根により出力
複素信号を除算する除算器を備えたことを特徴と
するドプラ信号の周波数変換装置。
[Claims] 1. A Doppler signal obtained by receiving and amplifying a reflected wave from a moving reflector based on the radiation of a periodic pulse modulated wave, and a reference wave having a frequency corresponding to the center frequency of this Doppler signal. a first mixer for mixing the Doppler signal and a reference wave signal obtained by shifting the reference wave signal by 90 degrees; and first and second complex signal converters for converting the two complex signals having mutually different center frequencies f 1 and f 2 from the first and second complex signal converters into complex signals having an imaginary part y and an imaginary part y. Input the real part x 1 , x 2 and the imaginary part y 1 , y 2 and create the complex conjugate product shown by Compute the real part X and imaginary part Y of the complex product represented by and a complex multiplier for obtaining a complex signal with a center frequency corresponding to the difference or sum of center frequencies f 1 and f 2 , and converts the Doppler signal from the motion reflector to a desired frequency. Doppler signal frequency conversion device. 2. In the device according to claim 1, a division operation in which the output complex signal is divided by the fourth root of the sum of the square of the real part X and the square of the imaginary part Y of the complex signal output from the complex multiplier. 1. A Doppler signal frequency conversion device comprising:
JP12842384A 1984-06-23 1984-06-23 Frequency converting device for doppler signal Granted JPS618688A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP12842384A JPS618688A (en) 1984-06-23 1984-06-23 Frequency converting device for doppler signal
US06/746,998 US4780837A (en) 1984-06-23 1985-06-19 Doppler signal frequency converter
CA000484677A CA1246732A (en) 1984-06-23 1985-06-20 Doppler signal frequency converter
EP85107684A EP0166392B1 (en) 1984-06-23 1985-06-21 Doppler signal frequency converter
DE8585107684T DE3586016D1 (en) 1984-06-23 1985-06-21 FREQUENCY CONVERTER OF A DOPPLER SIGNAL.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12842384A JPS618688A (en) 1984-06-23 1984-06-23 Frequency converting device for doppler signal

Publications (2)

Publication Number Publication Date
JPS618688A JPS618688A (en) 1986-01-16
JPH0345797B2 true JPH0345797B2 (en) 1991-07-12

Family

ID=14984389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12842384A Granted JPS618688A (en) 1984-06-23 1984-06-23 Frequency converting device for doppler signal

Country Status (1)

Country Link
JP (1) JPS618688A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179275A (en) * 1987-01-21 1988-07-23 Aloka Co Ltd Doppler signal converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188433A (en) * 1982-04-28 1983-11-02 アロカ株式会社 Ultrasonic diagnostic apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188433A (en) * 1982-04-28 1983-11-02 アロカ株式会社 Ultrasonic diagnostic apparatus

Also Published As

Publication number Publication date
JPS618688A (en) 1986-01-16

Similar Documents

Publication Publication Date Title
US4780837A (en) Doppler signal frequency converter
JP2584506B2 (en) FM-CW Doppler radar navigation system
EP0092841B1 (en) Ultrasonic diagnostic apparatus
EP0138940B1 (en) Method and apparatus for measuring the distance to an object
US4799490A (en) Doppler ultrasonic diagnostic apparatus
EP0228070A2 (en) Ultrasonic doppler diagnostic apparatus
CA1267968A (en) Ultrasonic device for measuring acceleration of moving reflective member
EP0166392B1 (en) Doppler signal frequency converter
JPH0345797B2 (en)
JPH05150035A (en) Millimeter wave radar distance-speed measuring device
CA2197935C (en) Ultrasonic continuous wave doppler blood flow-meter
JPH0319510B2 (en)
JPS61265591A (en) Apparatus for converting frequency of doppler signal
JPH04223273A (en) Method and apparatus for avoiding equivocalness in pulse doppler apparatus
JPS62204734A (en) Ultrasonic doppler diagnostic apparatus
JPH0224141B2 (en)
JPH0215038B2 (en)
EP0474867B1 (en) Method of processing doppler signal
JPH0479590B2 (en)
GB1490850A (en) Electronic network analyzer
JP2714042B2 (en) Pulse Doppler measurement device
JPH0131595B2 (en)
JPH0199537A (en) Ultrasonic diagnostic equipment
JPH0515534A (en) Ultrasonic doppler rheometer
JPS5462857A (en) Sonar

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term