JPH034570B2 - - Google Patents

Info

Publication number
JPH034570B2
JPH034570B2 JP24760083A JP24760083A JPH034570B2 JP H034570 B2 JPH034570 B2 JP H034570B2 JP 24760083 A JP24760083 A JP 24760083A JP 24760083 A JP24760083 A JP 24760083A JP H034570 B2 JPH034570 B2 JP H034570B2
Authority
JP
Japan
Prior art keywords
base material
sliding
oil
weight
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24760083A
Other languages
Japanese (ja)
Other versions
JPS60137934A (en
Inventor
Hiroyuki Oogoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP24760083A priority Critical patent/JPS60137934A/en
Publication of JPS60137934A publication Critical patent/JPS60137934A/en
Publication of JPH034570B2 publication Critical patent/JPH034570B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Lubricants (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ポリプロピレン繊維を潤滑ならびに
補強基材とした複層摺動材に関する。 詳しくは、ポリプロピレン繊維からなる織布ま
たは不織布を基材とし、これに熱硬化性合成樹脂
ワニスを塗工して得たプリプレツグを複数層重ね
合わせるか、または該プリプレツグの1枚もしく
は2枚以上を他の部材表面に重ね合わせて加熱加
圧して得られる複層摺動材に関するものである。 従来、綿布等を基材とした熱硬化性合成樹脂摺
動材は広く知られており、これに潤滑油を含浸
(特公昭16−7051)させたり、固体潤滑剤として
黒鉛や四ふつ化エチレン樹脂(PTFE)粉末を添
加(特公昭39−14852)したりして、自己潤滑性
の向上や限界PV値の向上を計つたものがある。 また、PTFE繊維と他の繊維との組合わせから
なる布にフエノール樹脂などを樹脂加工したもの
を摺動面として有する乾燥摩擦において低摩擦係
数をもつた摺動部材(特公昭36−20218)や、潤
滑油の保持性の向上を狙いとして、綿チツプ等を
基材としこれにポリエチレレン粉末を分散含有さ
せたフエノール樹脂軸受(特公昭49−15954)な
ども公知である。 本発明は、とくに摺動面における潤滑油の保持
性の向上を狙いとした点、万一潤滑油が切れたと
きにも低摩擦をもつて自己潤滑性を発揮する点、
そして複層摺動材を狙いとした点において上記特
公昭49−15954や特公昭36−20218等の技術思想の
延長上にあるといえる。 特公昭49−15954に係わる技術は、潤滑油の保
持体としてポリエチレンを使用しているので、成
形温度が少し高いと添加したポリエチレンが溶融
(ポリエチレンの融点は135℃)して、表面から離
脱したり成形面が荒れたりする傾向があつた。 また、このものは複層材ではなく、綿チツプを
基材として使用した圧縮成形品であることに加え
て、ポリエチレン粉末を添加しているので得られ
た成形物の材料強度を低下させる傾向があつた。 特公昭36−20218においては、PTFE繊維を使
用した布を使用するものであるから、材料費が高
価であることに加えて摺動面への貼着施工性に難
点があること、そして摺動面における潤滑油の保
持性の点では十分にその機能を発揮し得ず、さら
にこのものを多層に積層することは事実上不可能
である。 本発明は、このような問題点を解決すべくなさ
れたもので、摺動面における潤滑油の保持性にす
ぐれ、万一潤滑油が切れたときにも低摩擦をもつ
て自己潤滑性を発揮し、しかも材料強度にもすぐ
れた摺動材を安価に得ることを技術的課題とする
ものである。 すなわち、ポリプロピレン繊維からなる織布ま
たは不織布を基材として、これに熱硬化性合成樹
脂ワニスを塗工して得たプリプレツグを複数層重
ね合わせるか、または該プリプレツグの1枚もし
くは2枚以上を他の部材表面に重ね合わせて加熱
加圧して得られるポリプロピレン繊維を基材とし
て複層摺動材を提供するものである。 ポリプロピレンは、比重が0.90〜0.91ときわめ
て小さく軽量であることに加えて、その一次転移
点(融点)が168〜170℃であつて、ポリエチレン
の融点(135℃)に比較して30℃以上も高い。 このことは、熱硬化性合成樹脂として一般的で
あるフエノール樹脂を使用した場合、上記ポリプ
ロピレンの融点がフエノール樹脂の成形温度
(130〜180℃)の上限側にあるから、ポリエチレ
ンを使用した場合のように溶融離脱などの現象を
懸念する必要がほとんどない。 このポリプロピレン繊維は、潤滑油を吸収する
性質がある。潤滑油の吸収量は温度と時間に影響
を受けるが、たとえば140℃の温度で30分浸油処
理を施すと、1重量%以上含油させることができ
る。潤滑油を含んだポリプロピレン繊維が摺動面
に存在すると、相手材と摺接したときそこに油膜
を形成し易く、また外部から供給した潤滑油に対
しても、これを摺動面に強固に保持して流出し難
くする。 本発明者は、ポリプロピレン繊維として、三井
石油化学スパンボンド社の24番手糸を縦36本、横
36本(インチ当り)使用した平織りの織布、そし
て同社のPK410B(製品名)という不織布と用い
て好結果を得た。 熱硬化性合成樹脂としては、主としてフエノー
ル樹脂が用いられるが、場合によつてはエポキシ
樹脂なども有好に使用することができる。 ポリプロピレン繊維基材と熱硬化性合成樹脂と
の配合比率は、前者の32〜60重量%に対して後者
の40〜68重量%の範囲が好ましく、とくに等重量
づつの配合のとき、その機械的強度が最大となる
ことを実験によつて確認した。 因みに綿布基材(比重1.5前後)の場合も、熱
硬化性合成樹脂との配合比率(重量比)がほぼ
1:1のときその機械的強度は最大となるが、ポ
リプロピレン繊維の場合はその比重差から綿布に
比較して容積比ではかなり基材量が多い配合範囲
にその最大値があることが分つた。 ポリプロピレン繊維基材が32重量%未満では、
フエノール樹脂が成形時に分離し易く、成形性を
著しく損なうばかりでなく機械的強度も低くな
る。また基材が60重量%を超えて多くなると、同
様に成形性が著しく損なわれて満足な成形物が得
られない。 本発明の摺動材には、上記主構成材に加えて、
たとえば着色剤、固体潤滑剤などを数重量%以下
配合することができる。 以下、本発明の実施例について述べる。 (実施例1) ポリプロピレン繊維基材として、三井石油化学
スパンボンド社の不織布PK410Bを使用し、熱硬
化性合成樹脂として群栄化学社のフエノール樹脂
ワニスABP115N(製品名)を使用した。 該ワニスを基材に塗工し、90℃で40分間乾燥し
て溶剤を飛ばし、基材32重量%そしてフエノール
樹脂68重量%のプリプレツグを得た。 これを圧縮成形金型の芯金に巻き付けて型に装
填し成形温度140℃、成形圧力150Kg/cm2(芯金の
軸線方向の圧力)で10分間保持したのち型から取
り出し、内径19mm、外径34mmそして高さ20mmの円
筒状積層成形物を得た。 (実施例2) 実施例1と同様にして、基材40重量%そしてフ
エノール樹脂60重量%のプリプレツグを得た。 以下同様にして、円筒状積層成形物を得た。 (実施例3) 実施例1と同様に、基材50重量%そしてフエノ
ール樹脂50重量%のプリプレツグから円筒状積層
成形物を得た。 (実施例4) 実施例1と同様に、基材60重量%そしてフエノ
ール樹脂40重量%のプリプレツグから円筒状積層
成形物を得た。 第1表は、上記各実施例で得た成形物の圧環強
度常数について示す。
The present invention relates to a multilayer sliding material using polypropylene fiber as a lubricating and reinforcing base material. Specifically, a woven fabric or a non-woven fabric made of polypropylene fibers is used as a base material, and multiple layers of prepregs obtained by coating this with a thermosetting synthetic resin varnish are laminated, or one or more sheets of the prepregs are stacked together. This invention relates to a multilayer sliding material obtained by heating and pressurizing the surface of another member. Hitherto, thermosetting synthetic resin sliding materials based on cotton cloth, etc., have been widely known, and they can be impregnated with lubricating oil (Japanese Patent Publication No. 16-7051), or used as solid lubricants such as graphite or ethylene tetrafluoride. Some products are designed to improve self-lubricating properties and limit PV values by adding resin (PTFE) powder (Japanese Patent Publication No. 39-14852). In addition, we have developed a sliding member that has a low coefficient of friction in dry friction and has a sliding surface made of a cloth made of a combination of PTFE fibers and other fibers treated with resin such as phenol resin (Japanese Patent Publication No. 36-20218). Also known is a phenol resin bearing (Japanese Patent Publication No. 15954/1983), which is made of cotton chips or the like and has polyethylene powder dispersed therein, with the aim of improving lubricant retention. The present invention is particularly aimed at improving the retention of lubricating oil on sliding surfaces, and exhibits self-lubricating properties with low friction even if the lubricating oil runs out.
In that it aims at multilayer sliding materials, it can be said that it is an extension of the technical ideas of the above-mentioned Japanese Patent Publication No. 49-15954 and Japanese Patent Publication No. 36-20218. The technology related to Japanese Patent Publication No. 49-15954 uses polyethylene as a holder for lubricating oil, so if the molding temperature is slightly high, the added polyethylene will melt (the melting point of polyethylene is 135°C) and separate from the surface. There was a tendency for the molding surface to become rough. In addition, this product is not a multilayer material, but a compression molded product using cotton chips as a base material, and it also contains polyethylene powder, which tends to reduce the material strength of the resulting molded product. It was hot. In the Japanese Patent Publication No. 36-20218, since cloth made from PTFE fibers is used, in addition to the high material cost, there are also difficulties in adhesion to sliding surfaces, and In terms of the ability to retain lubricating oil on the surface, it cannot fully demonstrate its function, and furthermore, it is virtually impossible to laminate this material into multiple layers. The present invention was made to solve these problems, and has excellent lubricant retention on sliding surfaces, and even if the lubricant runs out, it exhibits self-lubricating properties with low friction. However, the technical problem is to obtain a sliding material with excellent material strength at a low cost. That is, using a woven fabric or non-woven fabric made of polypropylene fiber as a base material, multiple layers of prepregs obtained by coating this with thermosetting synthetic resin varnish are laminated, or one or more of the prepregs are coated with another layer. A multilayer sliding material is provided using polypropylene fibers as a base material, which are obtained by heating and pressurizing the polypropylene fibers by superimposing them on the surface of a member. Polypropylene has an extremely low specific gravity of 0.90 to 0.91 and is lightweight, and its primary transition point (melting point) is 168 to 170°C, which is 30°C or more higher than the melting point of polyethylene (135°C). expensive. This means that when phenolic resin, which is a common thermosetting synthetic resin, is used, the melting point of polypropylene is on the upper limit of the molding temperature (130 to 180°C) of phenolic resin, so when polyethylene is used, As such, there is little need to worry about phenomena such as melting and separation. This polypropylene fiber has the property of absorbing lubricating oil. The amount of lubricating oil absorbed is affected by temperature and time, but for example, if oil immersion treatment is carried out at a temperature of 140° C. for 30 minutes, oil impregnation of 1% by weight or more can be achieved. When polypropylene fibers containing lubricating oil are present on the sliding surface, an oil film is likely to form there when it comes into sliding contact with the mating material, and it also protects the sliding surface from lubricating oil supplied from the outside. Retains and prevents leakage. The present inventor used Mitsui Petrochemical Spunbond Co., Ltd.'s No. 24 yarn as a polypropylene fiber, with 36 yarns in the warp and 36 yarns in the weft.
Good results were obtained using a plain-woven fabric using 36 fibers (per inch) and the company's non-woven fabric called PK410B (product name). As the thermosetting synthetic resin, phenolic resin is mainly used, but epoxy resin can also be preferably used in some cases. The blending ratio of the polypropylene fiber base material and thermosetting synthetic resin is preferably in the range of 32 to 60% by weight for the former and 40 to 68% by weight for the latter. It was confirmed through experiments that the strength was maximized. Incidentally, even in the case of cotton fabric base material (specific gravity around 1.5), its mechanical strength is maximum when the blending ratio (weight ratio) with thermosetting synthetic resin is approximately 1:1, but in the case of polypropylene fiber, its specific gravity From the difference, it was found that the maximum value was found in a blending range where the amount of base material was considerably larger in volume ratio compared to cotton cloth. If the polypropylene fiber base material is less than 32% by weight,
The phenolic resin easily separates during molding, which not only significantly impairs moldability but also lowers mechanical strength. Furthermore, if the amount of the base material exceeds 60% by weight, the moldability will similarly be significantly impaired, making it impossible to obtain a satisfactory molded product. In addition to the above main constituent materials, the sliding material of the present invention includes:
For example, colorants, solid lubricants, etc. may be added in an amount of several percent by weight or less. Examples of the present invention will be described below. (Example 1) Nonwoven fabric PK410B manufactured by Mitsui Petrochemical Spunbond Co., Ltd. was used as the polypropylene fiber base material, and phenolic resin varnish ABP115N (product name) manufactured by Gunei Chemical Co., Ltd. was used as the thermosetting synthetic resin. The varnish was applied to a substrate and dried at 90° C. for 40 minutes to remove the solvent, yielding a prepreg containing 32% by weight of the substrate and 68% by weight of phenolic resin. This was wrapped around the core of a compression molding mold, loaded into the mold, held at a molding temperature of 140°C and a molding pressure of 150 kg/cm 2 (pressure in the axial direction of the core) for 10 minutes, and then removed from the mold. A cylindrical laminated molded product with a diameter of 34 mm and a height of 20 mm was obtained. (Example 2) In the same manner as in Example 1, a prepreg containing 40% by weight of the base material and 60% by weight of the phenolic resin was obtained. A cylindrical laminate molded product was obtained in the same manner. (Example 3) In the same manner as in Example 1, a cylindrical laminate molded product was obtained from a prepreg containing 50% by weight of the base material and 50% by weight of the phenolic resin. (Example 4) In the same manner as in Example 1, a cylindrical laminate molded product was obtained from a prepreg containing 60% by weight of the base material and 40% by weight of the phenolic resin. Table 1 shows the radial crushing strength constants of the molded products obtained in each of the above examples.

【表】 (実施例5) 実施例3の配合比のプリプレツグを複数枚重ね
合わせてプレスの熱板間に挟み、以下同様の成形
条件で成形して、厚さ7.5mmの板状積層成形物を
得た。 (実施例6) 実施例3の配合比のプリプレツグの1枚を、綿
布基材にフエノール樹脂ワニスを塗工して得たプ
リプレツグ複数枚と重ねて熱板間に挟み、以下同
様の成形条件で成形して、厚さ7.5mmの板状積層
成形物を得た。 (実施例7) 実施例3の配合比のプリプレツグの1枚を、冷
間圧延鋼板にプライマー処理した該処理面に重ね
て熱板間に挟み、成形圧力40Kg/cm2、成形温度
140℃で1分間保持したのち熱板から取り出し、
鋼裏金付複層摺動材を得た。 (実施例8) 実施例3で得たプリプレツグを約120℃に余熱
しながらロールド成形機を使用して肉厚が7.5mm
となるように捲回積層したのち、これを芯金とと
もに加熱炉に入れて135±5℃の温度で6時間保
持して硬化を進め、ついで芯金を抜去しロールド
管を得た。これを径方向に切断して円筒状の積層
摺動材を得た。 第1図は、第2表の材料構成の積層摺動材を以
下に述べる試験条件で試験したときの性能を示す
グラフである。 (試験条件) 1 試験片寸法−1辺25mmで厚さ7.5mmの積層板。 2 相手材− 内径14mm、外径20mm、高さ20mmの
円筒体、機械構造用炭素鋼(S45C) 3 摺接方法− 相手材円筒端面を試験片の積層
板面に摺接、相手材を円筒軸線まわ
りに回転。 4 荷 重− 10分間隔で10Kg/cm2づつ累積負
荷、推力荷重。 5 すべり速度− 10m/min 6 潤 滑− SAE30番相当の鉱油(エンジン
油)に60℃で1時間浸漬後油分を乾
燥布で拭きとり、以後潤滑油の供給
なし
[Table] (Example 5) A plurality of sheets of prepreg having the compounding ratio of Example 3 were stacked and sandwiched between the hot plates of a press, and then molded under the same molding conditions to produce a plate-like laminate molded product with a thickness of 7.5 mm. I got it. (Example 6) One sheet of prepreg having the compounding ratio of Example 3 was layered with multiple sheets of prepreg obtained by coating a cotton cloth base material with phenol resin varnish, and sandwiched between hot plates, and then molded under the same molding conditions. A plate-like laminate molded product with a thickness of 7.5 mm was obtained by molding. (Example 7) One sheet of prepreg having the compounding ratio of Example 3 was stacked on the primer-treated surface of a cold-rolled steel plate and sandwiched between hot plates at a molding pressure of 40 kg/cm 2 and a molding temperature.
After holding it at 140℃ for 1 minute, remove it from the hot plate.
A multilayer sliding material with a steel backing was obtained. (Example 8) The prepreg obtained in Example 3 was preheated to about 120°C using a roll forming machine to have a wall thickness of 7.5 mm.
After winding and laminating the material, it was placed in a heating furnace together with the core metal and maintained at a temperature of 135±5° C. for 6 hours to proceed with curing, and then the core metal was removed to obtain a rolled tube. This was cut in the radial direction to obtain a cylindrical laminated sliding material. FIG. 1 is a graph showing the performance when the laminated sliding material having the material composition shown in Table 2 was tested under the test conditions described below. (Test conditions) 1. Test piece dimensions - laminate plate with 25 mm sides and 7.5 mm thickness. 2. Mating material - A cylindrical body with an inner diameter of 14 mm, an outer diameter of 20 mm, and a height of 20 mm, carbon steel for machine structures (S45C). 3. Sliding contact method - The cylindrical end surface of the mating material is slid into contact with the laminate surface of the test piece, and the mating material is cylindrical. Rotate around the axis. 4 Load - Cumulative load of 10Kg/ cm2 at 10 minute intervals, thrust load. 5 Sliding speed - 10 m/min 6 Lubrication - Immersed in mineral oil (engine oil) equivalent to SAE No. 30 at 60℃ for 1 hour, then wipe off the oil with a dry cloth, and no longer supply lubricating oil.

【表】 比較例1,2および3は、当初から摩擦係数が
高く、いずれも負荷30Kg/cm2もしくはそれ以下で
摩擦係数が急上昇した。 これに反して、本発明の実施例5によるものは
摩擦係数がおおむね0.1前後と低くかつ安定して
おり、しかも110Kg/cm2の負荷においても安定し
た性能を示した。 比較例1,2および3は油浸漬しても試験片へ
の油の含浸はほとんど認められない。したがつて
試験片表面を拭い去つたのちは、そこに極めて僅
かに付着している油の効果で30Kg/cm2程度の負荷
に耐えたことを示す。とくに炭素繊維織布基材の
ものは、表面にフエノール樹脂分が多く存在して
滑らかであり、乾燥布による拭きとりでほとんど
油が拭い去られていること、そして炭素繊維自体
の摩擦係数の大きいことによる。 本発明の実施例5によるものは、試験片表面に
付着した油を拭い去つたとしても、該表面層に油
が含浸されており摩擦摺動時にそこに油膜が形成
されて潤滑作用をするから、低い安定した摩擦係
数を呈し、明らかに親油基材を使用した効果が認
められた。 第2図は、実施例8のロールド管を得るロール
ド成形法の原理図であり、とくに大口径長尺のロ
ールド管を得るのに適している。摺動材として
は、これを硬化後適宜長さに切断して用いる。な
おロールド成形によれば、内径側に本発明による
プリプレツグを一層または多層に捲回し、その外
周に異種基材のプリプレツグを捲回して、補強効
果を高めるなどの適用も可能である。
[Table] Comparative Examples 1, 2, and 3 had high friction coefficients from the beginning, and in all cases, the friction coefficients suddenly increased at a load of 30 kg/cm 2 or less. On the other hand, the friction coefficient of Example 5 of the present invention was low and stable, around 0.1, and showed stable performance even under a load of 110 Kg/cm 2 . In Comparative Examples 1, 2, and 3, almost no oil impregnation was observed in the test pieces even when immersed in oil. Therefore, after wiping off the surface of the test piece, it was shown that the test piece withstood a load of about 30 kg/cm 2 due to the effect of the extremely small amount of oil adhering to it. In particular, carbon fiber woven fabrics have a smooth surface with a large amount of phenolic resin, and most of the oil can be wiped off with a dry cloth, and the carbon fiber itself has a high coefficient of friction. It depends. In the case of Example 5 of the present invention, even if the oil adhering to the surface of the test piece is wiped off, the surface layer is impregnated with oil and an oil film is formed there during frictional sliding to provide lubrication. , exhibited a low and stable coefficient of friction, clearly demonstrating the effect of using the lipophilic base material. FIG. 2 is a diagram showing the principle of the roll forming method for obtaining the rolled tube of Example 8, and is particularly suitable for obtaining a large diameter and long rolled tube. This is used as a sliding material by cutting it into an appropriate length after curing. In addition, according to roll forming, it is also possible to wind the prepreg according to the present invention in one layer or multiple layers on the inner diameter side, and to increase the reinforcing effect by winding the prepreg of a different type of base material around the outer periphery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の摺動材の性能を他の材料と
比較して示したグラフ、第2図はロールド管を得
るロールド成形法の原理図である。 1……プリプレツグ、2……芯金、3……加熱
ロール、4……受けロール、5……加圧ロール、
6……案内ロール。
FIG. 1 is a graph showing the performance of the sliding material of the present invention in comparison with other materials, and FIG. 2 is a diagram showing the principle of the roll forming method for obtaining rolled pipes. 1... prepreg, 2... core metal, 3... heating roll, 4... receiving roll, 5... pressure roll,
6...Guidance roll.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリプロピレン繊維からなる織布または不織
布を基材として、これに熱硬化性合成樹脂ワニス
を塗工して得たプリプレツグを複数層重ね合わせ
るか、または該プリプレツグの1枚もしくは2枚
以上を他の部材表面に重ね合わせて加熱加圧して
得られるポリプロピレン繊維を基材とした複層摺
動材。
1 Using a woven fabric or non-woven fabric made of polypropylene fibers as a base material, multiple layers of prepregs obtained by coating this with thermosetting synthetic resin varnish are layered, or one or more of the prepregs are coated with other layers. A multi-layer sliding material whose base material is polypropylene fibers obtained by heating and pressurizing the surfaces of parts.
JP24760083A 1983-12-26 1983-12-26 Plural layered sliding material using polypropylene fiber as base material Granted JPS60137934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24760083A JPS60137934A (en) 1983-12-26 1983-12-26 Plural layered sliding material using polypropylene fiber as base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24760083A JPS60137934A (en) 1983-12-26 1983-12-26 Plural layered sliding material using polypropylene fiber as base material

Publications (2)

Publication Number Publication Date
JPS60137934A JPS60137934A (en) 1985-07-22
JPH034570B2 true JPH034570B2 (en) 1991-01-23

Family

ID=17165918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24760083A Granted JPS60137934A (en) 1983-12-26 1983-12-26 Plural layered sliding material using polypropylene fiber as base material

Country Status (1)

Country Link
JP (1) JPS60137934A (en)

Also Published As

Publication number Publication date
JPS60137934A (en) 1985-07-22

Similar Documents

Publication Publication Date Title
KR100454658B1 (en) Multi-layered material for sliding element and its manufacturing method and use of the multi-layered material
US10767697B2 (en) Sliding contact surface-forming material, slide bearing containing same, and method of using same in a moist environment
US4703076A (en) Composition for sliding member
US10767695B2 (en) Sliding contact surface-forming material, slide bearing containing same, and method of using same in a moist environment
US9970483B2 (en) Self-lubricating thermoplastic layers containing PTFE additive having a polymodal molecular weight
JP4848889B2 (en) Seismic isolation device
JP4065558B2 (en) Method for producing composite material for bearing having synthetic resin sliding layer and paste suitable for the same
JP5026216B2 (en) Fiber reinforced resin composition for sliding member and laminated sliding member
JP5249726B2 (en) Fiber reinforced resin composition for sliding member and laminated sliding member
TW201516223A (en) Laminated sliding member and slinding bearing using the laminated sliding member
JP4519355B2 (en) Underwater sliding member and manufacturing method thereof
JP2004190804A (en) Sliding member and manufacturing method thereof as well as sliding seismic isolation unit using this sliding member
JPH034570B2 (en)
JP4252864B2 (en) Underwater sliding member and manufacturing method thereof
GB1604918A (en) Friction material for clutches brakes and the like and a process for producing friction linings using the material
JPH0363980B2 (en)
JPS635610B2 (en)
US3553046A (en) Impact resistant laminated spin bobbin
JP3590412B2 (en) Multi-layer sliding member
JP2010196894A (en) Under-water sliding member and method of manufacturing the same
JP2004091606A (en) Underwater sliding member and method for producing the same
JPS6263220A (en) Sliding member
JPS635611B2 (en)
EP4094916A1 (en) Method for the manufacture of post-deformable high- pressure composite and product obtained therefrom
SU435388A1 (en) ANTIFRICTION MATERIAL