JPH0345537B2 - - Google Patents

Info

Publication number
JPH0345537B2
JPH0345537B2 JP57059578A JP5957882A JPH0345537B2 JP H0345537 B2 JPH0345537 B2 JP H0345537B2 JP 57059578 A JP57059578 A JP 57059578A JP 5957882 A JP5957882 A JP 5957882A JP H0345537 B2 JPH0345537 B2 JP H0345537B2
Authority
JP
Japan
Prior art keywords
layer
tin layer
opening
gaas
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57059578A
Other languages
Japanese (ja)
Other versions
JPS58176973A (en
Inventor
Shigeo Hachiman
Shunichi Kai
Etsuo Yokota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5957882A priority Critical patent/JPS58176973A/en
Publication of JPS58176973A publication Critical patent/JPS58176973A/en
Publication of JPH0345537B2 publication Critical patent/JPH0345537B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 半導体装置の製造方法に係り、特に表面安定化
と活性領域の不純物濃度の制御の改良をはかるも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and particularly to improving surface stabilization and control of impurity concentration in an active region.

〔発明の技術的背景〕[Technical background of the invention]

半導体のうち、GaAsはSiに比して電子の移動
度が5〜6倍大きいため、ポストシリコンの超高
速ロジツクや通信用超高速周波IC(集積回路)と
しての研究開発が進められている。GaAsは常
圧、500℃の温度でAsが蒸発することからも表面
が非常に不安定である。GaAsICを作るには、表
面不安定性の制御、および、単結晶自体の無転位
化を含む高品質化、不純物濃度層の厳密な制御の
確立が要求されている。
Among semiconductors, GaAs has 5 to 6 times higher electron mobility than Si, so research and development is underway for use in post-silicon ultra-high-speed logic and ultra-high-speed frequency ICs (integrated circuits) for communications. The surface of GaAs is extremely unstable, as As evaporates at normal pressure and at a temperature of 500°C. To make GaAsICs, it is necessary to control surface instability, improve quality including dislocation-free single crystals, and establish strict control of impurity concentration layers.

特にGaAsの場合には安定な酸化膜をもたない
ので、GaAsFETにおいてGaAs基板とゲートが
直接接続されている。
In particular, GaAs does not have a stable oxide film, so the GaAs substrate and gate are directly connected in GaAs FETs.

〔背景技術の問題点〕[Problems with background technology]

叙上の例えばGaAsFETにおいてはゲート材料
としてAlを用いた場合、GaAsと反応してしま
う。また、AuあるいはAu化合物を用いても400
℃程度で反応を生じてゲートとしての役割を果さ
なくなる。次にゲート材としてTiW合金を用い
たものがあり、上記AlやAuなどに比して大幅に
改善されるが、ゲート電極層をイオンマイクロア
ナリシス(IMA)で分析した結果を示す第1図
に明らかなように、Asが4〜8%、Gaが1〜3
%検出されている。これはTiWとGaAs基板との
反応によるもので、界面に形成される表面準位の
ため再現性良く期待されたゲート特性を得ること
ができない欠点がある。
For example, in the GaAsFET mentioned above, if Al is used as the gate material, it will react with GaAs. In addition, even if Au or Au compounds are used, 400
A reaction occurs at temperatures around ℃ and it no longer functions as a gate. Next, there is a method using TiW alloy as the gate material, which is significantly improved compared to the above-mentioned Al and Au. As is clear, As is 4-8% and Ga is 1-3%.
% detected. This is due to the reaction between TiW and the GaAs substrate, and has the drawback that the expected gate characteristics cannot be obtained with good reproducibility due to surface states formed at the interface.

〔発明の目的〕[Purpose of the invention]

背景技術の問題点を満足するための半導体装置
の製造方法を提供する。
A method for manufacturing a semiconductor device that satisfies the problems of the background art is provided.

〔発明の概要〕[Summary of the invention]

この発明に係る半導体装置の製造方法は、
GaAs半導体基板にCVD法、スパツタリング法、
イオンプレーテイング法のいずれかによりGaお
よびAsを遮断するTiN層を被着する工程と、前
記TiN層に金属層を積層し被着する工程と、ソ
ース、ゲートおよびドレイン領域形成予定域の前
記金属層に開孔を設ける工程と、前記開孔から前
記TiN層を介して基板に不純物をイオン注入し
たのちこの開孔にTiN層と金属層を積層し被着
する工程と、ソース、およびゲート領域形成予定
域の前記金属層に開孔を設ける工程と、前記開孔
から前記TiN層を介して基板に不純物をイオン
注入する工程と、熱処理を施したのちソース、お
よびドレイン電極形成予定域のTiN層に開孔を
設けソース、およびドレイン電極を、またゲート
領域上にゲート電極を夫々形成する工程を備えた
ものである。
The method for manufacturing a semiconductor device according to the present invention includes:
CVD method, sputtering method,
A step of depositing a TiN layer that blocks Ga and As by any of the ion plating methods, a step of laminating and depositing a metal layer on the TiN layer, and a step of depositing the metal layer in the area where the source, gate and drain regions are planned to be formed. a step of forming an opening in the layer, a step of ion-implanting an impurity into the substrate from the opening through the TiN layer, and then laminating and depositing a TiN layer and a metal layer in the opening, and a source and gate region. A step of forming an opening in the metal layer in the region where the metal layer is planned to be formed, a step of ion-implanting an impurity into the substrate from the hole through the TiN layer, and a step of performing heat treatment on the TiN layer in the region where the source and drain electrodes are planned to be formed. This method includes the steps of forming an opening in the layer to form source and drain electrodes, and forming a gate electrode on the gate region.

〔発明の実施例〕[Embodiments of the invention]

まず、GaAs単結晶基板にCVD法、スパツタリ
ング法、イオンプレーテイング法のいずれかで
TiNを3000Åの層厚に被着したのちに、H2雰囲
気中、または不活性ガス雰囲気中にて840℃、30
分間熱処理したときのTiN層中のAsおよびGaの
分布を第3図に示す。これによつても、GaAs基
板からのAs、Gaの拡散はIMAの検出限界内で完
全に遮断されていることが明らかである。この遮
断効果はTiWに比して103〜104倍大きいものであ
り、GaAs基板との反応性が小さいためにGaAs
を被覆した場合、GaAs基板の表面の安定化が達
成される。
First, a GaAs single crystal substrate is coated with either the CVD method, sputtering method, or ion plating method.
After depositing TiN to a layer thickness of 3000 Å, it was heated at 840℃ for 30 minutes in an H 2 atmosphere or an inert gas atmosphere.
Figure 3 shows the distribution of As and Ga in the TiN layer after heat treatment for 1 minute. It is clear from this as well that the diffusion of As and Ga from the GaAs substrate is completely blocked within the detection limit of IMA. This blocking effect is 10 3 to 10 4 times greater than that of TiW, and GaAs has a lower reactivity with the GaAs substrate.
When coated with , stabilization of the surface of the GaAs substrate is achieved.

次に第2図a〜eによつてGaAsFETの製造を
説明する。まず、CrがドープされたGaAs単結晶
基板1にGaAs(エピタキシヤル)層2を形成し、
さらに、CVD法、スパツタリング法、イオンプ
レーテイング法のいずれかでTiN層3を被着し、
Ptまたはその化合物のうち少なくとも1層の金
属層(4第2図では単相で示す)を積層して被着
する。このTiN層上に被着する金属層は前記
TiN層の層厚やFETの特性の設計によつて選定
してよい。一般にワイヤボンデイングにAuワイ
ヤを用いるときにAuまたはAu化合物を多層電極
の最外殻層に選択して用いる場合が多い。次に、
TiN層を含めた前記金属積層層に蝕刻を施して
ソース、ゲート、ドレインの各領域に開孔部を形
成し、この開孔部を通してイオン注入を施し、第
1のシリコン導入層5を形成する(第2図a)。
なお、TiN層に対する蝕刻は、このTiN層が例
えば特に厚い場合、被着直後に施し開孔を設けて
おいてもよい。
Next, the manufacturing of GaAsFET will be explained with reference to FIGS. 2a to 2e. First, a GaAs (epitaxial) layer 2 is formed on a GaAs single crystal substrate 1 doped with Cr.
Furthermore, a TiN layer 3 is deposited by either CVD method, sputtering method, or ion plating method,
At least one metal layer (4 shown as a single phase in FIG. 2) of Pt or its compound is laminated and deposited. The metal layer deposited on this TiN layer is
It may be selected depending on the thickness of the TiN layer and the design of FET characteristics. Generally, when using Au wire for wire bonding, Au or an Au compound is often selected and used as the outermost shell layer of a multilayer electrode. next,
The metal laminated layer including the TiN layer is etched to form openings in the source, gate, and drain regions, and ions are implanted through the openings to form the first silicon-implanted layer 5. (Figure 2a).
Note that, if the TiN layer is particularly thick, for example, the TiN layer may be etched immediately after it is deposited to form holes.

ついで、前記開孔部をTiN層13とこれに積
層して金層14を被着し、ソースおよびドレイン
の各領域に開孔を設け、この開孔よりイオン注入
法で第2のシリコン導入層15を形成する(第2
図b)。
Next, a TiN layer 13 is laminated to the opening, and a gold layer 14 is deposited thereon, and an opening is formed in each source and drain region, and a second silicon-introduced layer is formed through the opening by ion implantation. 15 (second
Figure b).

ついで上記シリコン導入層5,15のシリコン
イオンを活性化させるために、800℃にて20分間
の熱処理を施すことによつて第2図cに示すよう
にGaAsFETのソース・ドレインプレーナ構造が
形成される。
Next, in order to activate the silicon ions in the silicon-introduced layers 5 and 15, a heat treatment is performed at 800° C. for 20 minutes to form a GaAsFET source/drain planar structure as shown in FIG. 2c. Ru.

次に、電極形成を施して第2図dに示す形状に
する。なお、この図中に示される24s,24
d,24gは電極導出のためのソース、ドレイ
ン、ゲートの各電極を導出するためのいずれも電
極金属層である。また、6sはソース電極部、6
dはドレイン電極部のいずれも一例のAu−Ge合
金層である。
Next, electrode formation is performed to form the shape shown in FIG. 2d. In addition, 24s, 24 shown in this figure
d and 24g are electrode metal layers for leading out the source, drain, and gate electrodes. Moreover, 6s is a source electrode part, 6s
d is an example of an Au-Ge alloy layer in the drain electrode portion.

次に、上記電極金属層に一例としてAuの電極
34s,34d,34gを夫々取着け、各電極間
を電気絶縁膜7で被覆しシヨツトキー型の
GaAsFETが得られる(第2図e)。
Next, as an example, Au electrodes 34s, 34d, and 34g are attached to the electrode metal layer, and the space between each electrode is covered with an electrical insulating film 7 to form a Schottky type.
A GaAsFET is obtained (Fig. 2e).

〔発明の効果〕〔Effect of the invention〕

従来法ではイオン注入法で導入したシリコンを
活性化する際、Asを加えた不活性気体雰囲気に
て熱処理を施していたが、この発明によればAs
圧を加える必要がないので、安全衛生の面で極め
て有利な方法である。
In the conventional method, when activating silicon introduced by ion implantation, heat treatment was performed in an inert gas atmosphere containing As, but with this invention, As
Since there is no need to apply pressure, this method is extremely advantageous in terms of safety and health.

次に、GaAsFETを製造する場合、Alゲートで
は約500μA、TiW合金では約800μA程度しか電流
を流すことができなかつた。この発明の方法によ
れば約1.2mA流すことができ、従来比1.5〜2.5倍
に改良された。またスイツチング速度もゲート
1.4μmの場合に50psecで、従来比1.4〜2.5倍に改
良された。
Next, when manufacturing GaAsFETs, the current could only flow around 500 μA with an Al gate and around 800 μA with a TiW alloy. According to the method of this invention, it is possible to flow approximately 1.2 mA, which is an improvement of 1.5 to 2.5 times compared to the conventional method. The switching speed is also gated.
In the case of 1.4 μm, it was 50 psec, an improvement of 1.4 to 2.5 times compared to the conventional method.

叙上はTiN電極内のAsまたはGaの分布をIMA
によつて測定した結果を示す第3図に見られるよ
うに、従来に比し顕著に少ないことからも理解で
きる。
The above describes the IMA distribution of As or Ga in the TiN electrode.
As can be seen in FIG. 3, which shows the results measured by the method, this can be understood from the fact that the number of cases is significantly lower than that of the conventional method.

なお、この発明はGaAsに限らずシリコン基板
を用いた場合、シリコン原子に対するブロツク効
果がTiW合金、MoSi2等の金属化合物よりもす
ぐれている。従つてMOSFETについても
GaAsFETと同様の効果があることはいうまでも
ない。
The present invention is not limited to GaAs, and when a silicon substrate is used, the blocking effect on silicon atoms is superior to that of TiW alloys, MoSi2 , and other metal compounds. Therefore, regarding MOSFET as well
Needless to say, it has the same effect as GaAsFET.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のGaAs素子におけるTiW電極内
のAs、Gaの分布を示す線図、第2図a〜eはこ
の発明の1実施例のシヨツトキー型GaAsFETの
製造方法を工程順に説明するためのいずれも断面
図、第3図は1実施例のTiN電極内のAs、Gaの
分布を示す線図である。 1……GaAs単結晶基板、2……GaAs(エピタ
キシヤル)層、3……TiN層、4,14s,1
4d,14g……電極金属層、5……第1のシリ
コン導入層、15……第2のシリコン導入層、1
6s,16d……Au−Ge合金層、34s,34
d,34g……電極。
Fig. 1 is a diagram showing the distribution of As and Ga in the TiW electrode in a conventional GaAs device, and Figs. Both are cross-sectional views, and FIG. 3 is a diagram showing the distribution of As and Ga in the TiN electrode of one embodiment. 1...GaAs single crystal substrate, 2...GaAs (epitaxial) layer, 3...TiN layer, 4, 14s, 1
4d, 14g... Electrode metal layer, 5... First silicon introduced layer, 15... Second silicon introduced layer, 1
6s, 16d...Au-Ge alloy layer, 34s, 34
d, 34g...electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 GaAs半導体基板にCVD法、スパツタリング
法、イオンプレーテイング法のいずれかにより
GaおよびAsを遮断するTiN層を被着する工程
と、前記TiN層に金属層を積層し被着する工程
と、ソース、ゲートおよびドレイン領域形成予定
域の前記金属層に開孔を設ける工程と、前記開孔
から前記TiN層を介して基板に不純物をイオン
注入したのちこの開孔にTiN層と金属層を積層
し被着する工程と、ソース、およびドレイン領域
形成予定域の前記金属層に開孔を設ける工程と、
前記開孔から前記TiN層を介して基板に不純物
をイオン注入する工程と、熱処理を施したのちソ
ース、およびドレイン電極形成予定域のTiN層
に開孔を設けソース、およびドレイン電極を、ま
たゲート領域上にゲート電極を夫々形成する工程
を備えた半導体装置の製造方法。
1 GaAs semiconductor substrate by CVD method, sputtering method, or ion plating method
A step of depositing a TiN layer that blocks Ga and As, a step of laminating and depositing a metal layer on the TiN layer, and a step of providing an opening in the metal layer in the area where the source, gate and drain regions are planned to be formed. , a step of ion-implanting impurities into the substrate through the TiN layer through the opening, and then laminating and depositing a TiN layer and a metal layer in the opening; a step of providing an opening;
After performing ion implantation of impurities into the substrate through the TiN layer through the opening and heat treatment, openings are formed in the TiN layer in the areas where the source and drain electrodes are to be formed, and the source and drain electrodes are formed. A method for manufacturing a semiconductor device, comprising the step of forming gate electrodes on respective regions.
JP5957882A 1982-04-12 1982-04-12 Preparation of semiconductor device Granted JPS58176973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5957882A JPS58176973A (en) 1982-04-12 1982-04-12 Preparation of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5957882A JPS58176973A (en) 1982-04-12 1982-04-12 Preparation of semiconductor device

Publications (2)

Publication Number Publication Date
JPS58176973A JPS58176973A (en) 1983-10-17
JPH0345537B2 true JPH0345537B2 (en) 1991-07-11

Family

ID=13117247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5957882A Granted JPS58176973A (en) 1982-04-12 1982-04-12 Preparation of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58176973A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039566A (en) * 1989-06-07 1991-01-17 Toshiba Corp Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5154367A (en) * 1974-11-07 1976-05-13 Nippon Electric Co CHITANSANBISUMASUNIMOKERUDENKYOKU
JPS5267277A (en) * 1975-12-01 1977-06-03 Fujitsu Ltd Mis field effect transistor
JPS5310283A (en) * 1976-07-15 1978-01-30 Matsushita Electric Ind Co Ltd 54)mos type semiconductor integrated circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5154367A (en) * 1974-11-07 1976-05-13 Nippon Electric Co CHITANSANBISUMASUNIMOKERUDENKYOKU
JPS5267277A (en) * 1975-12-01 1977-06-03 Fujitsu Ltd Mis field effect transistor
JPS5310283A (en) * 1976-07-15 1978-01-30 Matsushita Electric Ind Co Ltd 54)mos type semiconductor integrated circuit

Also Published As

Publication number Publication date
JPS58176973A (en) 1983-10-17

Similar Documents

Publication Publication Date Title
JPH0523055B2 (en)
JPH0456325A (en) Manufacture of semiconductor device
JPS634683A (en) Field-effect transistor
JPS58116764A (en) Manufacture of semiconductor device
JPS61234041A (en) Semiconductor device and manufacture thereof
JPH0345537B2 (en)
JPS6381948A (en) Multilayer interconnection semiconductor device
JPS62154784A (en) Semiconductor device
JPS61267365A (en) Semiconductor device
JPH02106971A (en) Semiconductor integrated circuit device and manufacture thereof
JPH0283920A (en) Manufacture of semiconductor device
KR101943927B1 (en) SiC semiconductor device and making method
JPS62122173A (en) Semiconductor device
JPS62298168A (en) Semiconductor device
JPS62154755A (en) Electrode of semiconductor device
JPH0219622B2 (en)
JPS5892265A (en) Manufacture of semiconductor device
JPS5840347B2 (en) Manufacturing method of Schottky barrier gate field effect transistor
JPS6050967A (en) Manufacture of field effect transistor
JPS58178569A (en) Manufacture of semiconductor device
JPS60192363A (en) Manufacture of schottky barrier junction
JPS6246561A (en) Manufacture of schottky barrier type semiconductor device
JPH01255220A (en) Manufacture of semiconductor device
JPS59201444A (en) Manufacture of semiconductor device
JPH0159731B2 (en)