JPH0345452A - Turning behavior controller of vehicle - Google Patents

Turning behavior controller of vehicle

Info

Publication number
JPH0345452A
JPH0345452A JP17915589A JP17915589A JPH0345452A JP H0345452 A JPH0345452 A JP H0345452A JP 17915589 A JP17915589 A JP 17915589A JP 17915589 A JP17915589 A JP 17915589A JP H0345452 A JPH0345452 A JP H0345452A
Authority
JP
Japan
Prior art keywords
vehicle speed
wheel
vehicle
behavior
slip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17915589A
Other languages
Japanese (ja)
Other versions
JP2572849B2 (en
Inventor
Shinji Matsumoto
真次 松本
Hirotsugu Yamaguchi
博嗣 山口
Atsushi Namino
淳 波野
Hideaki Inoue
秀明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1179155A priority Critical patent/JP2572849B2/en
Publication of JPH0345452A publication Critical patent/JPH0345452A/en
Application granted granted Critical
Publication of JP2572849B2 publication Critical patent/JP2572849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent unwanted turning behavior of a vehicle by braking wheels to reduce detected vehicle speed to predetermined limit vehicle speed when any slip of the wheel is judged on the basis of a rate of a change in the steering amount of the wheel to a change in the turning behavior of the vehicle. CONSTITUTION:In a vehicle turned by the steering of a wheel W, the behaviors of the vehicle accompanying the steering amount of the wheel W, vehicle speed and turn are detected respectively by means A-C. When the rate of change in the steering amount to change in the behavior is less than a set value, the lateral slip of tire of the wheel W is judged by a means D. Tire grip limit vehicle speed corresponding to the steering amount is detected by a means E. In the judgement of the wheel slip, the wheel W is braked by a means F so that the detected vehicle speed is reduced up to the limit vehicle speed. Thus, the superfluous vehicle speed in the slip of the wheel W is restrained by braking the wheel W to prevent the vehicle from the unwanted turning behavior.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車両の旋回走行時における不所望な挙動を自動
ブレーキにより抑−制するための装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device for suppressing undesirable behavior of a vehicle during turning by automatic braking.

(従来の技術) この種車両の旋回挙動制御装置すなわち、自動ブレーキ
技術としては、旋回走行中に旋回方向内側車輪にのみ制
動力を与え、車両のヨーレートの発生を補助するように
した装置が特開昭63−279976号公報により提案
されている。
(Prior Art) As a turning behavior control device for this type of vehicle, that is, an automatic braking technology, there is a device that applies braking force only to the inner wheel in the turning direction during turning, and assists the generation of the vehicle's yaw rate. This is proposed in Japanese Patent Publication No. 63-279976.

(発明が解決しようとする課題) しかして、この装置は、旋回走行における車両のヨーレ
ートの発生を助長しようとするもので、車輪の横方向ス
リップの抑制に対しては有効でない。つまり、高車速で
旋回路に突入してステアリングホイールを切った場合や
、旋回走行中にステアリングホイールを切り増した場合
等において、車輪のグリップ限界を越えた遠心力が車両
に発生して車輪が横方向にスリップし、車両がスピンし
たり、旋回方向外側へドリフトアウトしたりするような
挙動を防止することができない。
(Problems to be Solved by the Invention) However, this device is intended to promote the generation of a yaw rate of the vehicle during cornering, and is not effective in suppressing lateral slip of the wheels. In other words, when the vehicle enters a corner at high speed and turns the steering wheel, or when the steering wheel is turned further while turning, a centrifugal force that exceeds the grip limit of the wheels is generated in the vehicle, causing the wheels to turn. It is not possible to prevent the vehicle from slipping laterally, spinning, or drifting out to the outside in the turning direction.

本発明は、かかる不所望な旋回挙動を操舵量変化に対す
る車両の挙動変化割合より判定し得ることから、又不所
望な旋回挙動が過剰車速に基くものであることから、当
該判定時車速の過剰分を自動ブレーキにより抑えて不所
望な旋回挙動が生じないようにした装置を提供すること
を目的とする。
The present invention is advantageous in that such undesirable turning behavior can be determined from the rate of change in vehicle behavior with respect to changes in steering amount, and since undesirable turning behavior is based on excessive vehicle speed, An object of the present invention is to provide a device that prevents undesirable turning behavior from occurring by suppressing the amount of movement caused by automatic braking.

(課題を解決するための手段) この目的のため本発明の旋回挙動制御装置は第1図に概
念を示す如く、 車輪の操舵により転向される車両において、車輪の操舵
量を検出する操舵量検出手段と、車速を検出する車速検
出手段と、 車両の旋回にともなう挙動を検出する旋回挙動検出手段
と、 操舵量変化に対する前記挙動の変化割合が設定値未満で
あるのを車輪タイヤの横方向スリップ状態と判定する車
輪スリップ判別手段と、操舵量に対応したタイヤグリッ
プ限界車速を求める限界車速検出手段と、 前記横方向スリップ状態の判定時検出車速が前記限界車
速まで低下するよう車輪を制動するブレーキ手段とを設
けて構成したものである。
(Means for Solving the Problems) For this purpose, the turning behavior control device of the present invention, as conceptually shown in FIG. means, vehicle speed detection means for detecting vehicle speed; turning behavior detection means for detecting behavior accompanying turning of the vehicle; a wheel slip determining means for determining the condition, a limit vehicle speed detecting means for determining a tire grip limit vehicle speed corresponding to the steering amount, and a brake for braking the wheels so that the detected vehicle speed decreases to the limit vehicle speed when determining the lateral slip condition. It is configured by providing means.

(作 用) 車輪を操舵した車両の旋回走行時、操舵量検出手段は車
輪の操舵量を検出し、この操舵量から限界車速検出手段
はタイヤグリップ限界車速を求める。そして旋回挙動検
出手段は、車両の旋回にともなう挙動を検出し、車輪ス
リップ判別手段は操舵量の変化に対する旋回挙動の変化
割合が設定値未満であるのを車輪タイヤの横方向スリッ
プ状態と判定する。ブレーキ手段は、かかる横方向スリ
ップ状態の判定時、車速検出手段による検出車速が上記
タイヤグリップ限界車速まで低下するよう車輪を自動的
に制動する。
(Operation) When the vehicle is turning with its wheels steered, the steering amount detection means detects the steering amount of the wheels, and the limit vehicle speed detection means determines the tire grip limit vehicle speed from this steering amount. The turning behavior detecting means detects the behavior of the vehicle as it turns, and the wheel slip determining means determines that the wheel tires are in a lateral slip state when the rate of change in the turning behavior with respect to a change in the steering amount is less than a set value. . The brake means automatically brakes the wheels so that the vehicle speed detected by the vehicle speed detection means decreases to the tire grip limit vehicle speed when such a lateral slip state is determined.

これによる車速低下で車輪タイヤは、いかなる操舵状態
のもとでも横方向スリップを解消されて車両を常時グリ
ップ域で走行させ得ることとなり、車両が旋回走行時ス
ピンしたり、ドリフトアウトするのを防止することがで
きる。
This reduces the vehicle speed, and the wheels and tires are free from lateral slip under any steering conditions, allowing the vehicle to always run in the grip range, preventing the vehicle from spinning or drifting out when turning. can do.

(実施例) 以下、本発明の実施例を図面に基き詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明装置の一実施例で、IL、 IRは左右
前輪、2L、 2Rは左右後輪、3L、 3Rは前輪ホ
イールシリンダ、4L、 4Rは後輪ホイールシリンダ
を夫々示す。5はブレーキペダル、6はブレーキペダル
の踏込みで2系統7,8に同時に同じ液圧を出力するマ
スターシリンダで、系7のマスターシリンダ液圧は分岐
した系7L、 7Rを経由し、ホイールシリンダ3L、
 3Rに至って前輪IL、 IRを制動し、系8のマス
ターシリンダ液圧は分岐した系8L、 8Rを経由し、
ホイールシリンダ4L、 4Rに至って後輪2L。
FIG. 2 shows an embodiment of the device of the present invention, in which IL and IR indicate left and right front wheels, 2L and 2R indicate left and right rear wheels, 3L and 3R indicate front wheel cylinders, and 4L and 4R indicate rear wheel cylinders, respectively. 5 is a brake pedal, and 6 is a master cylinder that simultaneously outputs the same hydraulic pressure to two systems 7 and 8 when the brake pedal is depressed.The master cylinder hydraulic pressure of system 7 is routed through branched systems 7L and 7R to wheel cylinder 3L. ,
When reaching 3R, the front wheels IL and IR are braked, and the master cylinder hydraulic pressure of system 8 is routed through the branched systems 8L and 8R.
Wheel cylinders 4L and 4R lead to rear wheel 2L.

2Rを制動する。Brake 2R.

かかる通常の前後スプリント式2系統液圧ブレーキ装置
に対し、本例では系7L、 7R,8L、 8Rに夫々
、常態でこれらの系を開通するカット弁11L。
In contrast to such a normal front and rear sprint type two-system hydraulic brake system, in this example, cut valves 11L are provided in systems 7L, 7R, 8L, and 8R, respectively, to open these systems in the normal state.

III?、 12L、 12Rを挿入する。そして、自
動ブレーキ用の液圧源として機能するアキュムレータ1
3を設け、これに向はポンプ14がリザーバ65のブレ
ーキ液を供給することにより自動ブレーキ用の液圧を蓄
圧する。ポンプ14の駆動モータ15は圧力スイッチ1
6を介して電源17に接続し、この圧力スイッチはアキ
ュムレータ13の内圧が規定値に達する時開き、モータ
15(ポンプ14)をOFFするものとする。かくして
、アキュムレータ13内には常時上記の規定圧が貯えら
れている。
III? , 12L, 12R. And an accumulator 1 that functions as a hydraulic pressure source for automatic braking.
3, to which the pump 14 supplies brake fluid from a reservoir 65 to accumulate hydraulic pressure for automatic braking. The drive motor 15 of the pump 14 is the pressure switch 1
6 to a power source 17, and this pressure switch opens when the internal pressure of the accumulator 13 reaches a specified value, turning off the motor 15 (pump 14). In this way, the above specified pressure is always stored in the accumulator 13.

アキュムレータ13の内圧は回路18によりカット弁1
1L、 IIR,12L、 12Rに印加し、これらカ
ット弁はアキュムレータ内圧に応動して対応する系7シ
The internal pressure of the accumulator 13 is controlled by the cut valve 1 by the circuit 18.
1L, IIR, 12L, and 12R, and these cut valves respond to the accumulator internal pressure to open the corresponding system 7.

7R,8L、 8Rを遮断するものとする。これら系に
夫々シリンダ19L、 19R,20L、 20Rの出
力室を接続し、該シリンダの入力室に電磁比例弁21L
、 21R。
7R, 8L, and 8R shall be cut off. The output chambers of cylinders 19L, 19R, 20L, and 20R are connected to these systems, respectively, and a solenoid proportional valve 21L is connected to the input chamber of the cylinder.
, 21R.

22L、 22Rの出力ポートを接続する。これら電磁
比例弁はソレノイド駆動電流i、xi、に応じて出力ポ
ートをアキュムレータ圧回路18及びドレン回路23に
通じ、対応するソレノイド駆動電流に比例した液圧をシ
リンダ19L、 19R,2OL、 2ORに供給する
Connect the output ports of 22L and 22R. These electromagnetic proportional valves connect their output ports to the accumulator pressure circuit 18 and the drain circuit 23 according to the solenoid drive currents i, xi, and supply hydraulic pressure proportional to the corresponding solenoid drive current to the cylinders 19L, 19R, 2OL, 2OR. do.

ソレノイド駆動電流i、〜i、はコントローラ31によ
り制御し、このコントローラには系7,8の液圧PF、
PRを検出する圧力センサ32.’ 33からの信号、
ステアリングホイール(図示せず)の切り角θを検出す
る舵角センサ34からの信号、及び左前輪回転数ω1、
右前輪回転数ω2、左後輪回転数ω3、右後輪回転数ω
4を夫々検出する車輪回転センサ35〜38からの信号
、車両のヨーレートYを検出するヨーレートセンサ39
又は車両に作用する横加速度Gを検出する横Gセンサ4
0からの信号を人力する。なお、ヨーレートY及び横加
速度Gは車両の旋回にともなう挙動の例示で、いずれか
一方のみを検出すればよい。
The solenoid drive currents i, ~i, are controlled by a controller 31, which includes hydraulic pressure PF of systems 7 and 8,
Pressure sensor 32 for detecting PR. 'Signal from 33,
A signal from the steering angle sensor 34 that detects the turning angle θ of the steering wheel (not shown), and the left front wheel rotation speed ω1,
Right front wheel rotation speed ω2, left rear wheel rotation speed ω3, right rear wheel rotation speed ω
Signals from wheel rotation sensors 35 to 38 that detect 4, respectively, and a yaw rate sensor 39 that detects the yaw rate Y of the vehicle.
Or a lateral G sensor 4 that detects lateral acceleration G acting on the vehicle.
The signal from 0 is manually generated. Note that the yaw rate Y and the lateral acceleration G are examples of the behavior of the vehicle as it turns, and only one of them needs to be detected.

コントローラ31はこれら入力情報から第3図の制御プ
ログラムを一定時間、6を毎に繰返し実行して以下に説
明する通常通りの車輪制動及び旋回挙動制御用の車輪制
動を行う。すなわち、先ずステップ41〜43で系7.
8の液圧PFIPR1車輪回転数ω、〜ω4、ヨーレー
1−Y又は横加速度G、及び操舵角θを読込む。圧力P
F、PRは勿論ブレーキペダル5を踏込んでいなければ
Oである。
Based on this input information, the controller 31 repeatedly executes the control program shown in FIG. 3 for a certain period of time at intervals of 6 to perform normal wheel braking and wheel braking for turning behavior control, which will be described below. That is, first, in steps 41 to 43, system 7.
8 hydraulic pressure PFIPR1 wheel rotational speed ω, ~ω4, yaw 1-Y or lateral acceleration G, and steering angle θ are read. pressure P
Of course, F and PR are O unless the brake pedal 5 is depressed.

次のステップ44では、今回の旋回挙動読込み値Y(又
はG)及び操舵角θと前回の演算周期zt前における旋
回挙動Y(OLD) (又はG(OLD) )及びθ(
OLD)との差AY(又はAG)及び2θを演算する。
In the next step 44, the current turning behavior read value Y (or G) and steering angle θ and the turning behavior Y(OLD) (or G(OLD)) and θ(
AY (or AG) and 2θ are calculated.

次にステップ45で操舵量変化Aθに対する旋回挙動変
化JY(又は、JG)の割合、!IY/Jθ(又はlG
/lθ)を演算する。次のステップ46では、車輪回転
数ω1〜ω4から車速Vを演算する。この演算に当って
は、ブレーキペダル5を踏込まない非制動中は非駆動輪
である前輪の回転数ω8.ω2が車速にほぼ一致するこ
とから、前輪半径をR3とした時V=L (ω1+ω2
)/2の演算により求める。しかして制動中は全ての車
輪回転数ω1〜ω、からアンチスキッド制御で通常行わ
れている手法により擬似車速を求め、これを車速Vとす
る。
Next, in step 45, the ratio of the turning behavior change JY (or JG) to the steering amount change Aθ! IY/Jθ (or lG
/lθ). In the next step 46, the vehicle speed V is calculated from the wheel rotational speeds ω1 to ω4. In this calculation, during non-braking when the brake pedal 5 is not depressed, the rotation speed of the front wheel, which is a non-driving wheel, is ω8. Since ω2 almost matches the vehicle speed, when the front wheel radius is R3, V=L (ω1+ω2
)/2. During braking, a pseudo vehicle speed is determined from all the wheel rotational speeds ω1 to ω by a method commonly used in anti-skid control, and this is set as the vehicle speed V.

ステップ47では、第4図のテーブルデータから車速■
に対応した、操舵量変化に対する旋回挙動変化割合、d
Y#lθCIG/13θ)の設定値βをルックアップす
る。第4図は車輪タイヤが路面をグリップしているか横
方向にスリップしているかの境界を、操舵量変化に対す
る旋回挙動変化割合で表わしたもので、車両毎に車速■
の関数として予め実験により求めることができる。よっ
て第4図の境界線より上方がグリップ域を、又下方がス
リップ域を夫々示し、例えば車速をVoにしたA点での
(スリップ域での)走行状態であれば、旋回走行にとも
なう遠心力に抗しきれずタイヤが横方向にスリップして
いることを表わし、車両のスピンやドリフトアウトを生
ずる。そして、上記設定値βは第4図中現在の車速に対
応する境界線上の旋回挙動割合(第4図のβは車速V0
に対応するものを例示している)とし、車速■。におい
て旋回挙動割合、dY/Jθ(又はJ G#θ)が設定
値β以上であれば車輪タイヤが路面をグリップしている
ことを示すも、設定値β未満であれば車輪タイヤが横方
向にスリップしていることを示す。
In step 47, the vehicle speed ■ is determined from the table data in FIG.
The turning behavior change rate with respect to the steering amount change, d
Look up the setting value β of Y#lθCIG/13θ). Figure 4 shows the boundary between whether the wheel tires are gripping the road surface or slipping laterally, expressed as the rate of change in turning behavior relative to changes in the amount of steering.
It can be determined in advance through experiments as a function of . Therefore, the area above the boundary line in Fig. 4 indicates the grip area, and the area below indicates the slip area.For example, if the vehicle is running at point A (in the slip area) with the vehicle speed set to Vo, the centrifugal This indicates that the tires are unable to resist the force and slip laterally, causing the vehicle to spin or drift out. The above set value β is the turning behavior ratio on the boundary line corresponding to the current vehicle speed in Figure 4 (β in Figure 4 is the vehicle speed V0
) and the vehicle speed■. If the turning behavior ratio, dY/Jθ (or JG#θ), is greater than or equal to the set value β, it indicates that the wheels and tires are gripping the road surface; however, if it is less than the set value β, the wheels and tires are horizontally Indicates a slip.

ステップ48では、このことからlY#Iθ≧β(又は
a G#θ≧β)めグリップ域か否(スリップ域)かを
判別する。グリップ域であれば、車両のスピンやドリフ
トアウト等の不所望な旋回挙動を生じないから、制御を
ステップ49〜51に進めて以下の如くにブレーキペダ
ル踏力にまかせた通常通りの車輪制動を行う。つまりス
テップ49では、前輪ホイールシリンダ3L、 3Rへ
の目標ブレーキ液圧P+、Pzを対応する系7の液圧P
vに同じにセットし、後輪ホイールシリンダ4L、 4
Rへの目標ブレーキ液圧P、、P4を対応する系8の液
圧PRに同じにセットする。そしてステップ50で、こ
れら目標ブレーキ液圧が得られるよう第6図に対応する
テーブルデータから電磁比例弁21L、 21R,22
L22Rの駆動電流11〜i4をルックアップし、これ
らをステップ51で対応する電磁比例弁に出力する。
In step 48, based on this, it is determined whether lY#Iθ≧β (or aG#θ≧β) and whether or not the grip region is in the grip region (slip region). If the grip is in the grip range, undesirable turning behavior such as vehicle spin or drift-out will not occur, so the control proceeds to steps 49 to 51 and normal wheel braking is performed depending on the brake pedal depression force as described below. . That is, in step 49, the target brake fluid pressures P+ and Pz for the front wheel cylinders 3L and 3R are changed to the fluid pressure P of the corresponding system 7.
Set the same to v, rear wheel cylinder 4L, 4
The target brake hydraulic pressures P, , P4 for R are set to be the same as the hydraulic pressure PR of the corresponding system 8. Then, in step 50, the electromagnetic proportional valves 21L, 21R, 22 are determined from the table data corresponding to FIG. 6 in order to obtain these target brake fluid pressures.
The drive currents 11 to i4 of L22R are looked up, and in step 51 these are output to the corresponding electromagnetic proportional valves.

ところで、自動ブレーキ液圧源13〜17が正常でアキ
ュムレータ13に圧力が貯えられていれば、これに応動
してカット弁11L、 111?、 12L、 12R
が対応する系7L、 7R,8L、 8Rを遮断してい
る。このため、電磁比例弁21L、 21R,22L、
 22Rが駆動電流11〜i4を供給され、これらに比
例した圧力を対応するシリンダ19L、 19R,20
L、 20Rに供給する時、これらシリンダは対応する
ホイールシリンダにブレ−主液圧を供給することができ
る。ところで、これらブレーキ液圧がマスターシリンダ
6からの液圧Pr、P*と同じになるよう電磁比例弁駆
動電流11〜i4を前記の通りに決定するため、各車輪
はブレーキペダル踏力に応じ通常通りに制動される。
By the way, if the automatic brake fluid pressure sources 13 to 17 are normal and pressure is stored in the accumulator 13, the cut valves 11L, 111? , 12L, 12R
is blocking the corresponding systems 7L, 7R, 8L, and 8R. For this reason, the electromagnetic proportional valves 21L, 21R, 22L,
22R is supplied with drive currents 11 to i4, and pressures proportional to these are applied to the corresponding cylinders 19L, 19R, 20.
L, 20R, these cylinders can supply brake main hydraulic pressure to the corresponding wheel cylinders. By the way, in order to determine the electromagnetic proportional valve drive currents 11 to i4 as described above so that these brake fluid pressures are the same as the fluid pressures Pr and P* from the master cylinder 6, each wheel operates normally according to the brake pedal depression force. is braked.

なお最終ステップ52では、今回の読込値Y(又はG)
及びθをY (OLD)  (又はG (OLD) )
及びθ(OLD)にセットし、次回のステップ44に備
える。
In addition, in the final step 52, the current read value Y (or G)
and θ as Y (OLD) (or G (OLD) )
and θ(OLD) in preparation for the next step 44.

ステップ48でスリップ域と判別する場合、ステップ5
3に制御を進めて以下の如く旋回挙動制御用の自動ブレ
ーキを作用させる。つまりステップ53では第5図に対
応するテーブルデータから現在の操舵角θに対応するタ
イヤグリップ限界車速■。
If the slip area is determined in step 48, step 5
The control proceeds to step 3, and the automatic brake for turning behavior control is applied as follows. That is, in step 53, the tire grip limit vehicle speed ■ corresponding to the current steering angle θ is determined from the table data corresponding to FIG.

をルックアップする。第5図中αはタイヤグリップ限界
車速を示し、操舵角θ毎に異なるも車速Vが限界車速以
下ならグリップ域、限界車速を越えればスリップ域であ
る。スリップ域では、第4図につき前述した通り旋回走
行にともなう遠心力に抗しきれずタイヤが横方向スリッ
プして、車両のスピンやドリフトアウトを生ずる。例え
ば第5図中B点(車速VO+操舵角θ。)での走行中、
操舵角θをθ1へと切り増しすることによりA点(第4
図中のA点と同じ)での走行に移行した場合について説
明すると、この時グリップ域からスリップ域に入り、車
両のスピンやドリフトアウトを生ずる。この場合、車速
か線α上の限界車速V、以下であれば、上記の不所望な
旋回挙動を生じない。
Look up. In FIG. 5, α indicates the tire grip limit vehicle speed, which varies depending on the steering angle θ, but if the vehicle speed V is less than the limit vehicle speed, it is in the grip region, and if it exceeds the limit vehicle speed, it is in the slip region. In the slip region, as described above with reference to FIG. 4, the tires cannot resist the centrifugal force that accompanies cornering and slip in the lateral direction, causing the vehicle to spin or drift out. For example, while driving at point B (vehicle speed VO + steering angle θ) in Fig. 5,
By increasing the steering angle θ to θ1, point A (fourth
To explain the case where the vehicle shifts to running at point A (same as point A in the figure), at this time the vehicle enters the slip region from the grip region, causing the vehicle to spin or drift out. In this case, if the vehicle speed is equal to or less than the limit vehicle speed V on the line α, the above-mentioned undesirable turning behavior will not occur.

この観点から、次のステップ54において検出車速Vと
限界車速V、との偏差Eを演算し、ステップ55でこの
偏差を小さくするための、つまり車速Vを限界車速■、
に近付けるための目標ブレーキ液圧P、〜P4をP、−
に、・E(但し、i=1〜4)により演算する。ここで
に、(K、〜に4)は比例定数で、偏差EをOにするた
めの速度を決定する因子となる。
From this point of view, in the next step 54, the deviation E between the detected vehicle speed V and the limit vehicle speed V is calculated, and in step 55, the deviation E between the detected vehicle speed V and the limit vehicle speed V is calculated, and in order to reduce this deviation, that is, the vehicle speed V is changed to the limit vehicle speed
Set the target brake fluid pressure P, ~P4 to P, - to bring it closer to
Then, calculate by E (where i=1 to 4). Here, (K, ~4) is a proportionality constant, which is a factor that determines the speed at which the deviation E becomes O.

次に制御はステップ50.51へ進み、目標ブレーキ液
圧P1〜P4を得るための電磁比例弁駆動電流i、〜i
4を求め、これを対応する電磁比例弁に出力することで
、車速をブレーキペダルの踏込みによらずとも、自動ブ
レーキにより限界車速に持ち来たす。よってスリップ域
に入ると、車速か限界車速まで低下されてグリップ域に
戻されることになり、車両のスピンやドリフトアウトを
防止することができる。
Next, the control proceeds to step 50.51, where the electromagnetic proportional valve drive currents i, to i are used to obtain the target brake fluid pressures P1 to P4.
4 is determined and outputted to the corresponding electromagnetic proportional valve to bring the vehicle speed to the limit vehicle speed by automatic braking without having to press the brake pedal. Therefore, when the vehicle enters the slip region, the vehicle speed is reduced to the limit vehicle speed and returned to the grip region, thereby preventing the vehicle from spinning or drifting out.

なお、液圧源13〜17の故障で上記の制動作用が不能
になった場合、アキュムレータ圧回路18の圧力がなく
なるためカット弁11L、 IIR,12L、 12R
が対応する系7L、 7R,8L、 8Rを開通する。
In addition, if the above-mentioned braking operation becomes impossible due to a failure of the hydraulic pressure sources 13 to 17, the pressure in the accumulator pressure circuit 18 disappears, so the cut valves 11L, IIR, 12L, 12R
opens the corresponding systems 7L, 7R, 8L, and 8R.

よって、ブレーキペダル5の踏込みによりマスターシリ
ンダ6から系7.8へ出力されるマスターシリンダ液圧
が、そのままホイールシリンダ3L、 3R,4L。
Therefore, when the brake pedal 5 is depressed, the master cylinder hydraulic pressure output from the master cylinder 6 to the system 7.8 is directly applied to the wheel cylinders 3L, 3R, and 4L.

4Rへ向かい、各車輪を直接制動することができ、制動
不能になることはない。
Heading to 4R, you can brake each wheel directly without becoming unable to brake.

なお、第3図中ステップ55で演算する目標ブレーキ液
圧P、は上記に代え、 P、=に、・E+L、・ −E t (但し、L、は微分定数) により求め、偏差Eの変化が大きいほど偏差Eを急速に
0にするようにしてよい。又、車輪IL、 IR2L、
 2Rの支持荷重L ”L  を検出し、P、=に、・
Wl・E 又は、 Pi=W1(Kl−E + Li−E)t により目標ブレーキ液圧力P、を求めてもよい。
In addition, the target brake fluid pressure P, calculated in step 55 in Fig. 3, is calculated by P,=,・E+L,・−Et (where L is a differential constant) instead of the above, and the change in deviation E is calculated as follows. The deviation E may be set to 0 more quickly as the difference E becomes larger. Also, wheels IL, IR2L,
Detect the supporting load L ''L of 2R, and set P,=,・
The target brake fluid pressure P may be determined by Wl·E or Pi=W1(Kl-E + Li-E)t.

この場合車輪間の荷重配分をも考慮した目標ブレーキ液
圧となり、車輪間で制動力がアンバランスなるのを防止
することができる。
In this case, the target brake fluid pressure takes into consideration the load distribution between the wheels, and it is possible to prevent the braking force from becoming unbalanced between the wheels.

(発明の効果) かくして本発明装置は上述の如(、車両の不所望な旋回
挙動が生ずるタイヤスリップ域を、操舵量変化2θに対
する旋回挙動変化(ヨーレート変化AY又は横加速度変
化、dG等)割合により判定し、この判定時車両の不所
望な旋回挙動を招く車速過剰分を自動ブレーキにより抑
える構成としたから、車両を常時グリップ域で走行させ
得ることとなり、車両のスピンやドリフトアウト等の不
所望な旋回挙動を防止することができ、安全に大いに寄
与する。
(Effects of the Invention) Thus, the device of the present invention detects the tire slip region where undesirable turning behavior of the vehicle occurs by adjusting the ratio of turning behavior change (yaw rate change AY or lateral acceleration change, dG, etc.) to steering amount change 2θ as described above. Since the vehicle is configured to use automatic braking to suppress excess vehicle speed that causes undesirable turning behavior at the time of this determination, the vehicle can be driven in the grip range at all times, thereby preventing problems such as vehicle spin or drift-out. Desired turning behavior can be prevented, greatly contributing to safety.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明旋回挙動制御装置の概念図、第2図は本
発明装置の一実施例を示すシステム図、 第3図は同側におけるコントローラの制御プログラムを
示すフローチャート、 第4図は本発明で用いるスリップ域−グリップ域判定線
図、 第5図はタイヤグリップ限界車速を例示する線図、 第6図は電磁比例弁駆動電流と目標ブレーキ液圧との関
係線図である。 IL、 IR・・・前輪 2L、 2R・・・後輪 3L、 3R,4L、 4R・・・ホイールシリンダ5
・・・ブレーキペダル 6・・・マスターシリンダ ILL、 111?、 12L、 12R・・・カット
弁13・・・アキュムレータ 14・・・ポンプ
Fig. 1 is a conceptual diagram of the turning behavior control device of the present invention, Fig. 2 is a system diagram showing an embodiment of the device of the present invention, Fig. 3 is a flowchart showing the control program of the controller on the same side, and Fig. 4 is the main A slip area-grip area determination diagram used in the invention, FIG. 5 is a diagram illustrating tire grip limit vehicle speed, and FIG. 6 is a relationship diagram between electromagnetic proportional valve drive current and target brake fluid pressure. IL, IR...Front wheel 2L, 2R...Rear wheel 3L, 3R, 4L, 4R...Wheel cylinder 5
...Brake pedal 6...Master cylinder ILL, 111? , 12L, 12R...Cut valve 13...Accumulator 14...Pump

Claims (1)

【特許請求の範囲】 1、車輪の操舵により転向される車両において、車輪の
操舵量を検出する操舵量検出手段と、車速を検出する車
速検出手段と、 車両の旋回にともなう挙動を検出する旋回挙動検出手段
と、 操舵量変化に対する前記挙動の変化割合が設定値未満で
あるのを車輪タイヤの横方向スリップ状態と判定する車
輪スリップ判別手段と、 操舵量に対応したタイヤグリップ限界車速を求める限界
車速検出手段と、 前記横方向スリップ状態の判定時検出車速が前記限界車
速まで低下するよう車輪を制動するブレーキ手段とを具
備してなることを特徴とする車両の旋回挙動制御装置。
[Scope of Claims] 1. In a vehicle that is turned by wheel steering, a steering amount detection means for detecting the amount of wheel steering, a vehicle speed detection means for detecting vehicle speed, and a turning means for detecting behavior accompanying the turning of the vehicle. behavior detection means; wheel slip determination means for determining that a wheel tire is in a lateral slip state when a change rate of the behavior with respect to a change in steering amount is less than a set value; and a limit for determining a tire grip limit vehicle speed corresponding to the steering amount. A turning behavior control device for a vehicle, comprising: a vehicle speed detecting means; and a braking means for braking a wheel so that the vehicle speed detected at the time of determining the lateral slip condition is reduced to the limit vehicle speed.
JP1179155A 1989-07-13 1989-07-13 Vehicle turning behavior control device Expired - Lifetime JP2572849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1179155A JP2572849B2 (en) 1989-07-13 1989-07-13 Vehicle turning behavior control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1179155A JP2572849B2 (en) 1989-07-13 1989-07-13 Vehicle turning behavior control device

Publications (2)

Publication Number Publication Date
JPH0345452A true JPH0345452A (en) 1991-02-27
JP2572849B2 JP2572849B2 (en) 1997-01-16

Family

ID=16060913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1179155A Expired - Lifetime JP2572849B2 (en) 1989-07-13 1989-07-13 Vehicle turning behavior control device

Country Status (1)

Country Link
JP (1) JP2572849B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287438A (en) * 1990-04-05 1991-12-18 Toyota Motor Corp Turning abnormality judging device for vehicle
US6263261B1 (en) 1999-12-21 2001-07-17 Ford Global Technologies, Inc. Roll over stability control for an automotive vehicle
US6324446B1 (en) 1999-12-21 2001-11-27 Ford Global Technologies, Inc. Roll over stability control for an automotive vehicle
US6332104B1 (en) 1999-12-21 2001-12-18 Ford Global Technologies, Inc. Roll over detection for an automotive vehicle
US6397127B1 (en) 2000-09-25 2002-05-28 Ford Global Technologies, Inc. Steering actuated wheel lift identification for an automotive vehicle
US6654674B2 (en) 2001-11-21 2003-11-25 Ford Global Technologies, Llc Enhanced system for yaw stability control system to include roll stability control function
US6799092B2 (en) 2001-02-21 2004-09-28 Ford Global Technologies, Llc Rollover stability control for an automotive vehicle using rear wheel steering and brake control
US10352262B2 (en) 2016-09-22 2019-07-16 Hyundai Motor Company Speed limiting device, vehicle having the same and method for controlling the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638422A (en) * 1979-09-05 1981-04-13 Kawasaki Steel Corp Manufacture of cold-rolled lower electromagnetic steel plate
JPS6485862A (en) * 1987-07-03 1989-03-30 Mazda Motor Slip control device for automobile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638422A (en) * 1979-09-05 1981-04-13 Kawasaki Steel Corp Manufacture of cold-rolled lower electromagnetic steel plate
JPS6485862A (en) * 1987-07-03 1989-03-30 Mazda Motor Slip control device for automobile

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287438A (en) * 1990-04-05 1991-12-18 Toyota Motor Corp Turning abnormality judging device for vehicle
US6263261B1 (en) 1999-12-21 2001-07-17 Ford Global Technologies, Inc. Roll over stability control for an automotive vehicle
US6324446B1 (en) 1999-12-21 2001-11-27 Ford Global Technologies, Inc. Roll over stability control for an automotive vehicle
US6332104B1 (en) 1999-12-21 2001-12-18 Ford Global Technologies, Inc. Roll over detection for an automotive vehicle
US6338012B2 (en) 1999-12-21 2002-01-08 Ford Global Technologies, Inc. Roll over stability control for an automotive vehicle
US6496758B2 (en) 1999-12-21 2002-12-17 Ford Global Technologies, Inc. Rollover stability control for an automotive vehicle using front wheel actuators
US6529803B2 (en) 1999-12-21 2003-03-04 Ford Global Technologies, Inc. Roll over stability control for an automotive vehicle having rear wheel steering
US6397127B1 (en) 2000-09-25 2002-05-28 Ford Global Technologies, Inc. Steering actuated wheel lift identification for an automotive vehicle
US6799092B2 (en) 2001-02-21 2004-09-28 Ford Global Technologies, Llc Rollover stability control for an automotive vehicle using rear wheel steering and brake control
US6654674B2 (en) 2001-11-21 2003-11-25 Ford Global Technologies, Llc Enhanced system for yaw stability control system to include roll stability control function
US10352262B2 (en) 2016-09-22 2019-07-16 Hyundai Motor Company Speed limiting device, vehicle having the same and method for controlling the same

Also Published As

Publication number Publication date
JP2572849B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US5134352A (en) Vehicle turning behavior control system
JP3269421B2 (en) Automatic vehicle deceleration control device
JPH0712813B2 (en) Slip control type brake system
JPH0999826A (en) Vehicle behavior control device
US6923514B1 (en) Electronic brake control system
KR970059020A (en) Anti-skid Control System for Automotive
JP3607985B2 (en) Vehicle body speed estimation device and control device
US5488557A (en) Anti-skid controlling system and method for automotive vehicle
US6280003B1 (en) Method of braking force distribution control for a vehicle hydraulic device
JP3267137B2 (en) Vehicle behavior control device
JPH0345452A (en) Turning behavior controller of vehicle
JPH07223520A (en) Turning behavior control device for vehicle
JP2623840B2 (en) Vehicle turning behavior control device
JP3336835B2 (en) Vehicle behavior control device
JP2572856B2 (en) Vehicle turning behavior control device
JPH03112756A (en) Turn action control device for vehicle
JP2572850B2 (en) Vehicle turning behavior control device
JP2572851B2 (en) Vehicle turning behavior control device
JP3348579B2 (en) Vehicle behavior control device
JP3522157B2 (en) Vehicle braking operation state determining means and front / rear braking force distribution control device provided with the braking operation state determining means
JPH10203334A (en) Control method in braking force control device for vehicle
JP3275576B2 (en) Vehicle behavior control device
JPH03112755A (en) Turn action control device for vehicle
JPH0532380Y2 (en)
JPH06144176A (en) Braking force distribution control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13