JPH0345445A - Frp member - Google Patents
Frp memberInfo
- Publication number
- JPH0345445A JPH0345445A JP18174589A JP18174589A JPH0345445A JP H0345445 A JPH0345445 A JP H0345445A JP 18174589 A JP18174589 A JP 18174589A JP 18174589 A JP18174589 A JP 18174589A JP H0345445 A JPH0345445 A JP H0345445A
- Authority
- JP
- Japan
- Prior art keywords
- frp
- main body
- auxiliary layer
- frp member
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 claims abstract description 20
- 239000011159 matrix material Substances 0.000 claims abstract description 9
- 239000011347 resin Substances 0.000 claims abstract description 9
- 229920005989 resin Polymers 0.000 claims abstract description 9
- 239000012783 reinforcing fiber Substances 0.000 claims description 17
- 239000004745 nonwoven fabric Substances 0.000 abstract description 2
- 239000002759 woven fabric Substances 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 25
- 230000007423 decrease Effects 0.000 description 6
- 239000000725 suspension Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 238000005336 cracking Methods 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 210000003195 fascia Anatomy 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、自動車のバンバ等における衝撃吸収用として
好適なFRP部材に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an FRP member suitable for use in shock absorption in automobile bumpers and the like.
[従来の技術]
周知のFRP板ばねは、主に板ばねの長手方向に沿う一
方向強化繊維とマトリックス樹脂とにょって成形されて
おり、必要に応じて弓状の反り(キャンバ)がつけられ
ている。このFRP板ばねは荷重が負荷された時に板厚
方向に撓むことにより、荷重を弾性的に支えるようにな
っている。[Prior art] Well-known FRP leaf springs are mainly formed from unidirectional reinforcing fibers along the length of the leaf spring and matrix resin, and are curved in an arched shape (camber) as necessary. It is being This FRP leaf spring is designed to elastically support the load by bending in the thickness direction when a load is applied.
従って過大な負荷がかかった時に、曲げ方向の撓みが限
界値を越えるあたりから繊維の一部が切れたり、繊維が
ささくれ立つなどしてついには破壊に至る。Therefore, when an excessive load is applied, some of the fibers break or the fibers stand up at the point where the deflection in the bending direction exceeds the limit value, eventually leading to destruction.
懸架用FRP板ばねの曲率半径は、車両の種類にもよる
が一例として800m■以上ある。また、懸架用FRP
板ばねのばね定数は一例として25kg f/1m程度
である。これに対し、懸架ばね以外の用途に使われるF
RP部材のなかには曲率半径が800mm以下のものも
ある。例えば第9図に示されているバンパ用衝撃吸収体
としてのU状のFRP部材aは、曲率半径Rが100m
m以下と小さく、しかも小さなストロークで大きなエネ
ルギーを吸収しなければならないから、ばね定数が例え
ば130kg f /1璽ときわめて大きい。この種の
FRP部材aには、図示矢印F方向すなわち曲率半径R
が減少する方向から荷重が負荷される。The radius of curvature of a suspension FRP leaf spring is, for example, 800 m or more, depending on the type of vehicle. In addition, FRP for suspension
The spring constant of the leaf spring is, for example, about 25 kg f/1 m. In contrast, F is used for purposes other than suspension springs.
Some RP members have a radius of curvature of 800 mm or less. For example, a U-shaped FRP member a as a bumper shock absorber shown in FIG. 9 has a radius of curvature R of 100 m.
Because it is small, less than m, and must absorb a large amount of energy with a small stroke, the spring constant is extremely large, for example, 130 kg f /1. This type of FRP member a has a radius of curvature R in the direction of the arrow F shown in the figure.
A load is applied from the direction in which the value decreases.
[発明が解決しようとする課題]
上記FRP部材aのように、曲率半径Rが小さくかっば
ね定数が大きく、しかも曲率半径Rが減少する方向に荷
重が負荷されるものにおいて、許容値以上の荷重を負荷
した場合、従来の車両懸架用FRP板ばねでは曲げ荷重
により強化繊維が切れて破壊していたが、曲率半径Rが
小さくかっばね定数が大きい時には、従来のFRP板ば
ねとは違った破壊状況を呈することが本発明者らの研究
によって判明した。すなわち、この種のFRP部材部材
層げによって強化繊維が切れて破壊するのではなく、層
間せん断破壊を生じたり、長手方向の強化繊維に沿って
縦割れを生じるようになるのである。第10図は従来の
FRP部材部材層壊荷重を負荷し、た時の試験結果を示
している。この場合、約4500kg f付近で層間せ
ん断破壊を生じてしまった。[Problems to be Solved by the Invention] When the radius of curvature R is small, the spring constant is large, and the load is applied in the direction in which the radius of curvature R decreases, such as the above FRP member a, if the load exceeds the allowable value. When a conventional FRP leaf spring for vehicle suspension is subjected to a load of The present inventors' research has revealed that this situation occurs. That is, due to this type of FRP member layering, the reinforcing fibers do not break and break, but interlaminar shear failure occurs or longitudinal cracks occur along the reinforcing fibers in the longitudinal direction. FIG. 10 shows the test results when a conventional FRP member layer failure load was applied. In this case, interlaminar shear failure occurred at around 4,500 kgf.
FRP部材部材層間せん断破壊を生じにくくするには、
FRP部材の断面積を大きくすることによってせん断応
力を下げればよいことがわかっている。しかしながら、
単にFRP部材部材層面積を大きくしてしまうとばね定
数が重加し、FRP部材部材層求されている設計仕様に
合わなくなってしまう。To make it difficult to cause interlayer shear failure of FRP members,
It has been found that the shear stress can be reduced by increasing the cross-sectional area of the FRP member. however,
If the area of the FRP member layer is simply increased, the spring constant will be increased and the FRP member layer will no longer meet the required design specifications.
従って本発明の目的は、ばね定数に実質的な影響を与え
ることなく、層間せん断破壊や縦割れ等の破壊を抑制で
きるようなFRP部材を提供することにある。Therefore, an object of the present invention is to provide an FRP member that can suppress fractures such as interlaminar shear fractures and longitudinal cracks without substantially affecting the spring constant.
[課題を解決するための手段]
上記目的を果たすために本発明者が開発したFRP部材
は、長手方向に沿う一方向強化繊維とマトリックス樹脂
とによって略UないしJ状に湾曲した形状に成形されか
つ曲率半径が減少する方向に荷重が負荷される。使われ
方をするFRP本体と、このFRP本体の少なくとも湾
曲外側のテンション面にFRP本体と一体に設けられて
いて上記一方向強化繊維と交差する方向の繊維を含有す
る織物または不織布マット状のFRP補助層とを具備し
たものである。[Means for Solving the Problems] In order to achieve the above object, the FRP member developed by the present inventor is formed into a substantially U- or J-shaped curved shape by unidirectional reinforcing fibers along the longitudinal direction and matrix resin. In addition, a load is applied in a direction in which the radius of curvature decreases. FRP body in the form of a woven or non-woven mat that is integrally provided with the FRP body at least on the tension surface on the outside of the curve and contains fibers in a direction that intersects the unidirectional reinforcing fibers. It is equipped with an auxiliary layer.
[作 用]
本発明のFRP部材の断面積はFRP本体にFRP補助
層を加えたものであるから、FRP本体のみの場合に比
べてせん断応力が下がる。そしてFRP補助層に含有さ
れている長手方向と交差する方向の強化繊維によって、
FRP本体の層間せん断破壊や縦割れの発生が抑制され
る。長手方向と交差する方向の繊維は、このFRP部材
の曲率半径を狭める方向の荷重に対して強化繊維として
の影響が小であるとともに、FRP補助層の厚みはFR
P部材全体からみれば僅かであり、しかもFRP本体の
ばね定数が大きいことなどから、FRP補助層が設けら
れていてもばね定数に実質的な影響を与えるほどではな
い。[Function] Since the cross-sectional area of the FRP member of the present invention is the FRP main body plus the FRP auxiliary layer, the shear stress is lower than in the case of only the FRP main body. And, due to the reinforcing fibers in the direction intersecting the longitudinal direction contained in the FRP auxiliary layer,
The occurrence of interlayer shear failure and vertical cracking in the FRP body is suppressed. The fibers in the direction crossing the longitudinal direction have a small effect as reinforcing fibers against the load in the direction that narrows the radius of curvature of this FRP member, and the thickness of the FRP auxiliary layer is
It is small when viewed from the entire P member, and since the spring constant of the FRP main body is large, even if the FRP auxiliary layer is provided, it does not have a substantial effect on the spring constant.
[実施例]
以下に本発明の一実施例について第1図ないし第4図を
参照して説明する。第3図に例示されたバンパシステム
1に左右一対のFRP部材2が用いられている。バンバ
システム1は、車体のサイドメンバ3の端部に固定され
た上記FRP部材2と、このFRP部材2の前面側に配
置されたアマ−チャー5と、このアマ−チャー5を覆う
フェイシャ6などを備えて構成されている。7はタイヤ
である。FRP部材2の一端(固定端)は連結用部材1
0によってサイドメンバ3に固定され、FRP部材2の
他端(自由端)は接続用部材11を介してアマ−チャー
5に接している。[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. A pair of left and right FRP members 2 are used in the bumper system 1 illustrated in FIG. The bumper system 1 includes the FRP member 2 fixed to the end of the side member 3 of the vehicle body, an armature 5 disposed on the front side of the FRP member 2, a fascia 6 covering the armature 5, etc. It is configured with. 7 is a tire. One end (fixed end) of the FRP member 2 is connected to the connecting member 1
0 to the side member 3, and the other end (free end) of the FRP member 2 is in contact with the armature 5 via the connecting member 11.
FRP部材2の一例を第1図と第2図に示す。An example of the FRP member 2 is shown in FIGS. 1 and 2.
FRP部材2の湾曲部2aの曲率半径Rは一例として6
0 mmである。FRP部材2は、FRP本体15と、
このFRP本体15の湾曲外側すなわちテンション側に
FRP本体15と一体に設けられたFRP補助層16と
を備えて構成されている。The radius of curvature R of the curved portion 2a of the FRP member 2 is, for example, 6
It is 0 mm. The FRP member 2 includes an FRP main body 15,
An FRP auxiliary layer 16 is provided on the curved outer side of the FRP main body 15, that is, on the tension side, and is provided integrally with the FRP main body 15.
FRP本体15は、この本体15の長手方向に沿う一方
向強化繊維17(一部のみ図示)と、周知のマトリック
ス樹脂18とにより略U−ないしJ状に成形されている
。一方向強化繊維17にはガラスロービングが用いられ
るが、場合によっては炭素繊維束や有機繊維束が使用さ
れてもよい。The FRP main body 15 is formed into a substantially U- to J-shape by unidirectional reinforcing fibers 17 (only a portion of which is shown) along the longitudinal direction of the main body 15 and a well-known matrix resin 18. A glass roving is used as the unidirectional reinforcing fiber 17, but a carbon fiber bundle or an organic fiber bundle may be used depending on the case.
FRP部材2の一端側に上記連結用部材10に固定する
ボルト等を挿通させるための孔19が設けられている。A hole 19 is provided at one end of the FRP member 2 through which a bolt or the like fixed to the connecting member 10 is inserted.
FRP補助層16は、ガラス繊維21からなる経糸と緯
糸とによって構成される織物にFRP本体15と同様の
マトリックス樹脂を含浸・硬化させたものであり、この
FRP補助層16はFRP本体15と一体化している。The FRP auxiliary layer 16 is made by impregnating and hardening the same matrix resin as the FRP main body 15 into a fabric made of warp and weft made of glass fibers 21, and this FRP auxiliary layer 16 is integrated with the FRP main body 15. It has become
補助層16の繊維21に炭素繊維や有機繊維が用いられ
てもよい。Carbon fibers or organic fibers may be used for the fibers 21 of the auxiliary layer 16.
図示例の補助層16の経糸と緯糸は、FRP本体15の
長手方向すなわち一方向強化繊維17の配向方向に対し
45@の角度で交差している。但し、経糸を一方向強化
繊維17に沿わせるとともに、緯糸を一方向強化繊維1
7に対して906直交する方向に配してもよい。織物の
代りに、短繊維がランダムな方向を向いているガラスマ
ット状の不織布が用いられてもよい。いずれにせよ、F
RP補助層16に、一方向強化繊維17に対して交差す
る方向の繊維21が含有されていればよい。The warp and weft of the auxiliary layer 16 in the illustrated example intersect with the longitudinal direction of the FRP main body 15, that is, the orientation direction of the unidirectional reinforcing fibers 17 at an angle of 45@. However, while the warp is aligned with the unidirectional reinforcing fiber 17, the weft is aligned with the unidirectional reinforcing fiber 1.
It may be arranged in a direction 906 perpendicular to 7. Instead of a woven fabric, a glass mat-like nonwoven fabric in which short fibers are oriented in random directions may be used. In any case, F
It is sufficient that the RP auxiliary layer 16 contains fibers 21 in a direction crossing the unidirectional reinforcing fibers 17.
バンパシステム1における衝撃吸収体として用いられる
上記FRP部材2は、曲率半径Rが減少する方向から荷
重Fを受けるようにして使われる。The FRP member 2 used as a shock absorber in the bumper system 1 is used so as to receive a load F from a direction in which the radius of curvature R decreases.
限られたスペースで衝撃吸収機能を満足するには、FR
P部材2のばね定数が懸架用ばねに比べて数倍ないし数
十倍に設定されている必要がある。例えば、2個のFR
P部材2,2で車重1300kg、車速8 km/時の
エネルギー328kgmを50mmのストロークで吸収
させるのに必要な1個のFRP部材2のばね定数には1
30 )cg f / i+mである。なお、FRP部
材2全体に占めるガラス繊維の量は、−例として体積で
約55%1重量で約72〜73%である。To satisfy the shock absorption function in a limited space, FR
The spring constant of the P member 2 needs to be set to several times to several tens of times that of the suspension spring. For example, two FR
The spring constant of one FRP member 2 required for the P members 2, 2 to absorb 328 kgm of energy at a vehicle weight of 1300 kg and a vehicle speed of 8 km/hour with a stroke of 50 mm is 1.
30) cg f / i + m. The amount of glass fibers in the entire FRP member 2 is, for example, about 55% by volume and about 72 to 73% by weight.
FRP部材2全体でFRP補助層16の占める厚みは、
約10%前後あるいはそれ以下である。The thickness of the FRP auxiliary layer 16 in the entire FRP member 2 is:
It is around 10% or less.
荷fiFが負荷された場合、FRP本体15が撓むこと
によりマトリックス樹脂18と一方向強化繊維17とが
協働してエネルギーを蓄えるとともに、FRP補助層1
6もFRP本体15と同じ方向に一体に撓む。しかしF
RP補助層16の繊維21はFRP部材2の長手方向と
交差する方向に配向されており、しかもFRP補助層1
6はFRP本体15に比べて充分薄いから、荷重Fに対
して実質的にばね定数に関与するのはFRP本体15で
ある。When a load fiF is applied, the FRP main body 15 bends, and the matrix resin 18 and the unidirectional reinforcing fibers 17 work together to store energy, and the FRP auxiliary layer 1
6 also bends integrally in the same direction as the FRP main body 15. But F
The fibers 21 of the RP auxiliary layer 16 are oriented in a direction intersecting the longitudinal direction of the FRP member 2, and the fibers 21 of the RP auxiliary layer 16
6 is sufficiently thinner than the FRP main body 15, it is the FRP main body 15 that substantially takes part in the spring constant for the load F.
FRP部材2は、FRP本体15のテンション側に一体
化されているFRP補助層16の分だけ断面積が大きく
なっており、断面積の増大に応じて層間せん断応ツノを
下げることができるとともに、長手方向と交差する方向
に埋設されている補助層16の繊維21によって強化さ
れているから、層間せん断破壊や縦割れを防ぐ上できわ
めて効果的である。そしてFRP本体15自体のばね定
数が約130 kg f / m+sと大きいこととあ
いまって、FRP補助層16が積層されていてもばね定
数に実質的な影響はでない。このため、FRP部材2の
形状を変えることなく設計仕様通りの特性を満足できる
。The FRP member 2 has a larger cross-sectional area due to the FRP auxiliary layer 16 integrated on the tension side of the FRP main body 15, and the interlayer shear stress can be lowered in accordance with the increase in the cross-sectional area. Since it is reinforced by the fibers 21 of the auxiliary layer 16 buried in the direction crossing the longitudinal direction, it is extremely effective in preventing interlaminar shear failure and vertical cracking. Coupled with the fact that the spring constant of the FRP main body 15 itself is as large as about 130 kg f/m+s, even if the FRP auxiliary layer 16 is laminated, there is no substantial effect on the spring constant. Therefore, the characteristics according to the design specifications can be satisfied without changing the shape of the FRP member 2.
第4図は、上記FRP部材2に目標値5250kg付近
まで荷重を負荷した場合の荷重−撓み特性の実測値を示
している。目標値の撓みは40關である。FIG. 4 shows the actual measured values of the load-deflection characteristics when the FRP member 2 was loaded with a load up to around the target value of 5250 kg. The target value deflection is 40 degrees.
本実施例のFRP部材2は4回の繰返し荷重試験にも破
壊せず、従来品に比べて耐久性が大幅に向上することが
確認された。The FRP member 2 of this example did not break even after four repeated load tests, and it was confirmed that the durability was significantly improved compared to the conventional product.
なお、第5図に示されるようにFRP部材2の湾曲部2
aの外側(テンション側)に前記実施例と同様のFRP
補助層16を一体化させてもよいし、あるいは第6図に
示されるようにFRP本体15の表面上にFRP補助層
16を付設するようにしてもよい。また第7図に示され
るようにFRP部材2の角部2bに曲面状あるいは斜め
ストレート状の面取りを施せば、角部2bの損傷を防ぐ
上で好ましい。第8図はFRP部材2の一面側の角部2
Cを円弧状に仕上げた例である。また、FRP部材2の
長手方向の等応力化を図るために、FRP部材2の自由
端側の厚みが漸減するような変化厚・等幅の形状、ある
いはFRP部材2の自由端側の幅が漸減するような変化
幅・等厚の形状が採用されてもよい。In addition, as shown in FIG. 5, the curved portion 2 of the FRP member 2
FRP similar to the above example on the outside (tension side) of a
The auxiliary layer 16 may be integrated, or the FRP auxiliary layer 16 may be provided on the surface of the FRP main body 15 as shown in FIG. Further, as shown in FIG. 7, it is preferable to chamfer the corners 2b of the FRP member 2 in a curved or diagonal straight shape to prevent damage to the corners 2b. FIG. 8 shows the corner 2 on one side of the FRP member 2.
This is an example of C finished in an arc shape. In addition, in order to equalize the stress in the longitudinal direction of the FRP member 2, it is possible to create a shape with a variable thickness and equal width such that the thickness of the free end side of the FRP member 2 gradually decreases, or a shape with a constant width such that the thickness of the FRP member 2 on the free end side gradually decreases. A shape with a gradually decreasing change width and constant thickness may be adopted.
[発明の効果]
本発明によれば、UないしJ状に成形されているFRP
部材のばね定数に実質的な影響を及ぼすことなく、この
FRP部材の層間せん断破壊や縦割れの発生を抑制でき
、耐久性を向上させることができる。[Effects of the Invention] According to the present invention, FRP formed in a U or J shape
The occurrence of interlaminar shear failure and vertical cracking in this FRP member can be suppressed, and durability can be improved without substantially affecting the spring constant of the member.
第1図ないし第4図は本発明の一実施例を示し、第1図
はFRP部材の斜視図、第2図はFRP部材の側面図、
第3図はFRP部材を用いたバンバシステムの平面図、
第4図はFRP部材の荷重撓み線図、第5図と第6図は
それぞれ本発明の他の実施例を示すFRP部材のそれぞ
れ側面図、第7図と第8図は更に本発明の別の実施例を
示すFRP部材の断面図、第9図は従来のFRP部材を
示す斜視図、第10図は第9図に示された従来のFRP
部材の荷重−撓み線図である。
1・・・バンバシステム、2・・・FRP部材、15・
・・FRP本体、16・・・FRP補助層、17・・・
一方向強化繊維1.18・・・マトリックス樹脂、21
・・・補助層の繊維。1 to 4 show one embodiment of the present invention, FIG. 1 is a perspective view of an FRP member, FIG. 2 is a side view of an FRP member,
Figure 3 is a plan view of the Bamba system using FRP members.
FIG. 4 is a load-deflection diagram of the FRP member, FIGS. 5 and 6 are side views of the FRP member showing other embodiments of the present invention, and FIGS. 7 and 8 are further embodiments of the present invention. FIG. 9 is a perspective view of a conventional FRP member, and FIG. 10 is a cross-sectional view of the conventional FRP member shown in FIG. 9.
It is a load-deflection diagram of a member. 1... Bamba system, 2... FRP member, 15.
...FRP main body, 16...FRP auxiliary layer, 17...
Unidirectional reinforcing fiber 1.18 Matrix resin, 21
...Auxiliary layer fibers.
Claims (1)
よって略UないしJ状に湾曲した形状に成形されかつ曲
率半径が減少する方向に荷重が負荷される使われ方をす
るFRP本体と、 上記FRP本体の少なくとも湾曲外側のテンション面に
FRP本体と一体に設けられていて上記一方向強化繊維
と交差する方向の繊維を含有する織物または不織布マッ
ト状のFRP補助層とを具備したことを特徴とするFR
P部材。[Claims] FRP is formed into a substantially U- or J-curved shape by unidirectional reinforcing fibers along the longitudinal direction and matrix resin, and is used in such a way that a load is applied in a direction that reduces the radius of curvature. a main body; and an FRP auxiliary layer in the form of a woven or nonwoven mat, which is provided integrally with the FRP main body on at least the tension surface on the outside of the curve of the FRP main body and contains fibers in a direction intersecting the unidirectional reinforcing fibers. FR characterized by
P member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18174589A JPH0345445A (en) | 1989-07-14 | 1989-07-14 | Frp member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18174589A JPH0345445A (en) | 1989-07-14 | 1989-07-14 | Frp member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0345445A true JPH0345445A (en) | 1991-02-27 |
Family
ID=16106144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18174589A Pending JPH0345445A (en) | 1989-07-14 | 1989-07-14 | Frp member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0345445A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102365194A (en) * | 2009-03-25 | 2012-02-29 | 丰田自动车株式会社 | Brake controlling device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54124168A (en) * | 1978-02-27 | 1979-09-26 | Budd Co | Energy attenuator and method of producing same |
JPS60501617A (en) * | 1983-06-20 | 1985-09-26 | イギリス国 | Spring for high specific energy storage |
-
1989
- 1989-07-14 JP JP18174589A patent/JPH0345445A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54124168A (en) * | 1978-02-27 | 1979-09-26 | Budd Co | Energy attenuator and method of producing same |
JPS60501617A (en) * | 1983-06-20 | 1985-09-26 | イギリス国 | Spring for high specific energy storage |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102365194A (en) * | 2009-03-25 | 2012-02-29 | 丰田自动车株式会社 | Brake controlling device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109383209B (en) | Suspension system for vehicle comprising composite leaf spring | |
US5419416A (en) | Energy absorber having a fiber-reinforced composite structure | |
US20040201252A1 (en) | Fiber composite crash structure | |
US8448989B2 (en) | Composite trailer | |
JP4118264B2 (en) | Shock absorbing member | |
US11167708B2 (en) | Bumper beam and production method thereof | |
US4976412A (en) | Resilient support with anisotropic stiffnesses particularly for bodywork suspensions | |
US7837256B2 (en) | Front body structure for vehicle | |
US20210291603A1 (en) | Multi-point link for an undercarriage of a motor vehicle | |
JPH06101732A (en) | Shock absorbing member for composite structure | |
US6435485B1 (en) | Composite bow mono-leaf spring | |
JP4583775B2 (en) | Shock absorber for automobile | |
US4801019A (en) | Shock absorbing unit assisted by fiberglass reinforced spring | |
US6679487B2 (en) | Hybrid leaf spring with reinforced bond lines | |
JP4118263B2 (en) | Shock absorber for automobile | |
KR102335355B1 (en) | Bumper beam for car vehicle | |
JPH0345445A (en) | Frp member | |
KR20170038395A (en) | Hybrid impact beam | |
JPS6117731A (en) | Torsion bar | |
KR20190064170A (en) | Imapact beam | |
JP2726710B2 (en) | FRP member | |
JPH01215533A (en) | Arm member made of frp | |
JPH03220042A (en) | Shock absorber equipped with frp member | |
CN216343611U (en) | Shock-absorbing device | |
JP3007744B2 (en) | Energy absorbing material |