JPH0345087Y2 - - Google Patents

Info

Publication number
JPH0345087Y2
JPH0345087Y2 JP14820885U JP14820885U JPH0345087Y2 JP H0345087 Y2 JPH0345087 Y2 JP H0345087Y2 JP 14820885 U JP14820885 U JP 14820885U JP 14820885 U JP14820885 U JP 14820885U JP H0345087 Y2 JPH0345087 Y2 JP H0345087Y2
Authority
JP
Japan
Prior art keywords
valve body
hole
flow path
valve
sealed pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14820885U
Other languages
Japanese (ja)
Other versions
JPS6257072U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14820885U priority Critical patent/JPH0345087Y2/ja
Publication of JPS6257072U publication Critical patent/JPS6257072U/ja
Application granted granted Critical
Publication of JPH0345087Y2 publication Critical patent/JPH0345087Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Description

【考案の詳細な説明】 本案は電磁コイルを利用して電気入力信号に比
例して冷媒の流量を制御する膨張弁に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an expansion valve that uses an electromagnetic coil to control the flow rate of refrigerant in proportion to an electrical input signal.

この種の膨張弁は従来特開昭59−137676号に示
すようなものがあつた。(第4図参照)この膨張
弁は弁本体1に取り付けられた吸引子2と、ばね
3,4によつて保持されたピストン5を有し、電
磁コイル6に入力するパルス信号に応じてピスト
ン状の弁体5が上下動を繰返へす事により、流通
口7を開閉して流路8から流路9へ、或はその逆
に冷媒を流してその流量を制御している。
This type of expansion valve was previously disclosed in Japanese Patent Application Laid-open No. 137676/1983. (See Figure 4) This expansion valve has an attractor 2 attached to a valve body 1 and a piston 5 held by springs 3 and 4. By repeatedly moving up and down, the shaped valve body 5 opens and closes the flow port 7 to flow the refrigerant from the flow path 8 to the flow path 9 or vice versa, thereby controlling the flow rate.

然し乍ら、このような膨張弁にあつては流量制
御動作中に弁体5が吸引子2に衝突し、断続的に
衝突音を発生し、耳ざわりであるばかりでなく、
弁体或は吸引子が損傷するという欠点があつた。
However, in such an expansion valve, the valve body 5 collides with the suction element 2 during the flow rate control operation, and the collision noise is generated intermittently, which is not only unpleasant to the ears, but also
There was a drawback that the valve body or suction element was damaged.

これを第3図により具体的に説明する。この図
の横軸は変位量即ち弁体の移動距離を、縦軸は弁
体に作用する力を示す。前記第4図に示す膨張弁
は電磁力とばね力とが弁体に作用している。今パ
ルス信号が0FF時の位置をA点とすると、0N時
には電磁力が発生し弁体5は瞬時に0点に移動す
る。この時ばね3が圧縮されるので荷重が増大し
弁体5を押し戻そうとするが、この力より電磁力
が大きいので弁体5は吸引子2に衝突することに
なる。この衝突がある一定の周期をもつて繰り返
へされるので断続的な衝突音が発生する。
This will be explained in detail with reference to FIG. In this figure, the horizontal axis indicates the amount of displacement, that is, the distance traveled by the valve body, and the vertical axis indicates the force acting on the valve body. In the expansion valve shown in FIG. 4, electromagnetic force and spring force act on the valve body. If we assume that the position when the pulse signal is 0FF is point A, then when the pulse signal is 0N, an electromagnetic force is generated and the valve body 5 instantly moves to the 0 point. At this time, since the spring 3 is compressed, the load increases and tries to push back the valve body 5, but since the electromagnetic force is greater than this force, the valve body 5 collides with the attractor 2. Since this collision is repeated at a certain period, an intermittent collision sound is generated.

このように弁体5と吸引子2とが衝突を繰り返
へすので、騒音を生じるばかりでなく、衝撃力に
より両者が著しく摩耗する為、弁体の寿命が非常
に短かい。そしてこの弁体は一定周期のパルス信
号により駆動され、然も保証期間中の弁体の動作
回数は108回程度になると考えられるので従来の
ものではこれを保証するのは不可能といつて差支
へない。
In this way, the valve body 5 and the suction element 2 repeatedly collide with each other, which not only generates noise, but also causes significant wear on both of them due to the impact force, resulting in a very short lifespan of the valve body. This valve body is driven by a pulse signal with a constant period, and it is thought that the number of times the valve body will operate during the warranty period is about 108 times, so it is impossible to guarantee this with conventional valves. There is no difference.

本案は上記の点に鑑み考案されたもので本案に
よれば、第1の流路、この第1の流路と通孔及び
弁室を介して連通する第2の流路を有する弁本体
と、この弁本体と一体に設けられた密封パイプ
と、この密封パイプを包囲するように設けられた
電磁コイルと、この電磁コイルにより制御され、
中心部に流通孔、この流通孔と連通する均圧孔及
び前記通孔に連通するオリフイスを有し密封パイ
プと弁本体内を摺動し得るピストン状弁体と、前
記密封パイプ内にあつて電磁コイルの枠に固定さ
れ、前記弁体の均圧孔に対応してピストン状の弁
体が接近するに従い均圧孔の断面積が減少する形
状の突起部を有する吸引子と、この吸引子と弁体
との間に介挿されたばねとよりなる事を要旨とし
たものである。
The present invention has been devised in view of the above points, and according to the present invention, the valve body has a first flow path, a second flow path communicating with the first flow path via a through hole, and a valve chamber. , a sealed pipe provided integrally with this valve body, an electromagnetic coil provided to surround this sealed pipe, and controlled by this electromagnetic coil,
a piston-shaped valve body having a communication hole in the center, a pressure equalization hole communicating with the communication hole, and an orifice communicating with the communication hole, and capable of sliding within the sealed pipe and the valve body; An attractor fixed to a frame of an electromagnetic coil and having a protrusion corresponding to a pressure equalizing hole of the valve body and having a shape such that the cross-sectional area of the pressure equalizing hole decreases as the piston-shaped valve body approaches the pressure equalizing hole, and this attractor. The gist of this is that it consists of a spring inserted between the valve body and the valve body.

従て今電磁コイルにパルス信号が印加されると
弁体はばね力に抗して上昇し吸引子に近づくがこ
の時弁体と吸引子間に存在する液冷媒は均圧孔か
ら流出し始める。然し、弁体が移動するのに伴い
吸引子に設けられた突起部により均圧孔の液冷媒
の通過断面積が減少するので、液冷媒は弁体に電
磁力と反対方向に作用する抵抗力として作用し、
吸引子との衝突を防止するものである。
Therefore, when a pulse signal is applied to the electromagnetic coil, the valve body rises against the spring force and approaches the suction element, but at this time, the liquid refrigerant existing between the valve body and the suction element begins to flow out from the pressure equalization hole. . However, as the valve body moves, the passage cross-sectional area of the liquid refrigerant in the pressure equalization hole decreases due to the protrusion provided on the suction element, so the liquid refrigerant has a resistance force acting on the valve body in the opposite direction to the electromagnetic force. acts as
This is to prevent collision with the suction element.

以下第1図に示す一実施例について本案を説明
する。11は弁本体で第1の流路12と第2の流
路13とを有する。この弁本体11には軸方向に
弁室14を有する。前記第1の流路12には一方
がこの第1の流路に、他方が前記弁室14に開口
する通孔15を設けている。又第2の流路13は
弁室14に連通している。
The present invention will be explained below with reference to an embodiment shown in FIG. Reference numeral 11 denotes a valve body having a first flow path 12 and a second flow path 13. This valve body 11 has a valve chamber 14 in the axial direction. The first flow path 12 is provided with a through hole 15 that opens into the first flow path on one side and opens into the valve chamber 14 on the other side. Further, the second flow path 13 communicates with the valve chamber 14 .

弁本体11の図において上方には弁室14より
径大の密封パイプ16を設けて居て、この密封パ
イプを包囲するように電磁コイル17を設けてい
る。18は電磁コイル17の枠である。19はピ
ストン状の段付弁体で密封コイル16と前記弁本
体11内を摺動し得るようになつている。この弁
体19の中心部軸方向には流通孔20が設けられ
て居り一方は弁室14に、他方は均圧孔21を介
して密封パイプ16内に開口している。弁体19
には複数個のオリフイス22,23,24を設け
各オリフイスの夫々一方は前記流通孔20に開口
し、又他方は環状の溝25に開口している。
A sealed pipe 16 having a larger diameter than the valve chamber 14 is provided above the valve body 11 in the figure, and an electromagnetic coil 17 is provided to surround this sealed pipe. 18 is a frame of the electromagnetic coil 17. Reference numeral 19 is a piston-shaped stepped valve body that can slide within the sealing coil 16 and the valve body 11. A communication hole 20 is provided in the central axial direction of the valve body 19, and one side opens into the valve chamber 14 and the other side opens into the sealed pipe 16 through a pressure equalization hole 21. Valve body 19
A plurality of orifices 22, 23, and 24 are provided, one of which opens into the communication hole 20, and the other of which opens into the annular groove 25.

弁本体11の内周には前記通孔15と連通する
円形の溝26を有し、常時この溝と前記環状の溝
25とを連通している。
The inner periphery of the valve body 11 has a circular groove 26 that communicates with the through hole 15, and this groove and the annular groove 25 are always in communication.

前記密封パイプ16内には弁体19に対向する
ように吸引子27を設け、電磁コイル17の枠1
8にねじ28により固定している。この吸引子に
は突起部29を突設し、前記均圧孔21に対向せ
しめている。然して突起部29は先細りに形成さ
れている事が好ましい。
An attractor 27 is provided in the sealed pipe 16 so as to face the valve body 19, and the frame 1 of the electromagnetic coil 17 is
8 with screws 28. A protrusion 29 is provided on the suction element to face the pressure equalization hole 21. However, it is preferable that the protrusion 29 is formed to be tapered.

弁体19の段部30と弁本体11との間には緩
衝物31が介挿され更に吸引子27と弁体19と
の間にはばね32が介挿されている。
A buffer 31 is interposed between the stepped portion 30 of the valve body 19 and the valve body 11, and a spring 32 is interposed between the suction element 27 and the valve body 19.

次にこの実施例に示す膨張弁の作用について説
明する。
Next, the operation of the expansion valve shown in this embodiment will be explained.

電磁コイル17に対しパルス信号が与へられて
ない時は、弁体19はばね32の弾力により図に
おいて下降し、オリフイス22,23,24は環
状の溝25を介して円形の溝26より、通孔15
に連通している。従て第2の流路13は弁体19
の流通孔20、オリフイス22,23,24、環
状の溝25、円形の溝26、通孔15を経て第1
の流路12に連通している。このようにして第2
の流路13から流入する液冷媒はオリフイス2
2,23,24から第2の流路12に減圧されて
低温、低圧となつて流れ所望の冷却をする。
When no pulse signal is applied to the electromagnetic coil 17, the valve body 19 is lowered in the figure by the elasticity of the spring 32, and the orifices 22, 23, 24 are moved from the circular groove 26 through the annular groove 25. Through hole 15
is connected to. Therefore, the second flow path 13 is connected to the valve body 19
The first
It communicates with the flow path 12 of. In this way the second
The liquid refrigerant flowing from the flow path 13 flows through the orifice 2.
The pressure is reduced from 2, 23, and 24 to the second flow path 12, and the flow becomes low temperature and low pressure, thereby achieving desired cooling.

次に電磁フイル17にパルス信号が印加される
と、弁体19はばね32の弾力に抗して吸引子2
7に引きつけられ、オリフイス22,23,24
と第2の流路12との連通が遮断される。このよ
うにして弁体19は電磁コイル17に入力するパ
ルス信号に応じて上下動を繰り返へして冷媒の流
量を制御するが、弁体19が上昇する時、均圧孔
21は吸引子27に設けられた突起部27により
その断面積が減少するので液冷媒は弁体19に電
磁力と反対方向に作用する抵抗力として働き吸引
子27との衝突を防止する。従て両者の衝突によ
る騒音は阻止される。
Next, when a pulse signal is applied to the electromagnetic film 17, the valve body 19 resists the elasticity of the spring 32 and moves the attractor 2
Attracted by 7, orifice 22, 23, 24
Communication between the second flow path 12 and the second flow path 12 is cut off. In this way, the valve body 19 repeatedly moves up and down in accordance with the pulse signal input to the electromagnetic coil 17 to control the flow rate of the refrigerant, but when the valve body 19 rises, the pressure equalizing hole 21 Since the cross-sectional area of the protrusion 27 is reduced by the protrusion 27 provided on the valve body 19, the liquid refrigerant acts as a resistance force acting on the valve body 19 in the opposite direction to the electromagnetic force, thereby preventing collision with the attractor 27. Therefore, noise caused by collision between the two is prevented.

これを第3図により説明すると、電磁力に対向
する抵抗力は図に示すようにA点から0点に向う
に従い急激に上昇し、B点において電磁力と交叉
する従て電磁力により吸引子27に向つて引張ら
れていた弁体は吸引子27の手前で停止する事が
理解出来よう。
To explain this using Fig. 3, the resistance force opposing the electromagnetic force increases rapidly from point A to point 0 as shown in the figure, and at point B it intersects with the electromagnetic force. It can be seen that the valve body that was being pulled toward 27 stops before the suction element 27.

次に第2図に示す他の実施例について説明す
る。説明の簡略化の為第2図においては第1図と
同一部分を同一符号で示した。
Next, another embodiment shown in FIG. 2 will be described. In order to simplify the explanation, the same parts in FIG. 2 as in FIG. 1 are designated by the same reference numerals.

段部を有さない弁体19には図において上部側
方に流通孔20と密封パイプ16内に連通する均
圧孔33を設け、吸引子27の突起部29を流通
孔20内に嵌合している。そしてこの場合弁体1
9と弁室14との間に緩衝物31を介挿してい
る。
The valve body 19, which does not have a stepped portion, is provided with a pressure equalizing hole 33 that communicates with the communication hole 20 and the inside of the sealing pipe 16 at the upper side in the figure, and the protrusion 29 of the suction element 27 is fitted into the communication hole 20. are doing. And in this case valve body 1
A buffer 31 is inserted between the valve chamber 9 and the valve chamber 14.

従てこの実施例においては弁体19が前記のよ
うにばね32の弾力に抗して上昇した時は、吸引
子27の突起部29は相対的に弁体19の流通孔
20内に侵入する。このようにして突起部29が
流通孔20内に侵入すると、均圧孔33の断面積
は突起部29により減少し、前記と同様に弁体1
9が吸引子27に衝突するのを阻止し得る。
Therefore, in this embodiment, when the valve body 19 rises against the elasticity of the spring 32 as described above, the protrusion 29 of the suction element 27 relatively enters the flow hole 20 of the valve body 19. . When the protrusion 29 enters the flow hole 20 in this way, the cross-sectional area of the pressure equalization hole 33 is reduced by the protrusion 29, and the valve body 1
9 can be prevented from colliding with the attractor 27.

以上の如く、本案によれば、弁体と吸引子が衝
突を起さないよう、液冷媒を利用した第3の力で
あるダンパー効果を吸引子と弁体により形成さ
せ、無音で然も耐久性の高い膨張弁を提供し得る
ものである。
As described above, according to the present invention, in order to prevent the valve body and the suction element from colliding, a damper effect, which is a third force using liquid refrigerant, is formed by the suction element and the valve element, and the system is silent and durable. Therefore, it is possible to provide a highly flexible expansion valve.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本案膨張弁の一実施例の概略の縦断面
図、第2図は他の実施例の同様断面図、第3図は
弁体の変位量と弁体に作用する力とを示す曲線図
で第4図は従来の膨張弁の概略の縦断面図であ
る。 12……第1の流路、13……第2の流路、1
4……弁室、15……通孔、16……密封パイ
プ、17……電磁コイル、19……弁体、20…
…流通孔、21,33……均圧孔、22,23,
24……オリフイス、27……吸引子、29……
突起部、32……ばね。
Fig. 1 is a schematic vertical sectional view of one embodiment of the expansion valve of the present invention, Fig. 2 is a similar sectional view of another embodiment, and Fig. 3 shows the amount of displacement of the valve body and the force acting on the valve body. In the curve diagram, FIG. 4 is a schematic vertical sectional view of a conventional expansion valve. 12...first channel, 13...second channel, 1
4... Valve chamber, 15... Through hole, 16... Sealed pipe, 17... Electromagnetic coil, 19... Valve body, 20...
...Flow hole, 21, 33...Pressure equalization hole, 22, 23,
24... Orifice, 27... Suction element, 29...
Projection, 32...spring.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 第1の流路、この第1の流路と通孔及び弁室を
介して連通する第2の流路を有する弁本体と、こ
の弁本体と一体に設けられた密封パイプと、この
密封パイプを包囲するように設けられた電磁コイ
ルと、この電磁コイルにより制御され、中心部に
流通孔、この流通孔と連通する均圧孔、及び前記
通孔に連通するオリフイスを有し密封パイプと弁
本体内を摺動し得るピストン状弁体と、前記密封
パイプ内にあつて電磁コイルの枠に固定され、前
記弁体の均圧孔に対応してピストン状の弁体が接
近するに従い均圧孔の断面積が減少する形状の突
起部を有する吸引子と、この吸引子と弁体との間
に介挿されたばねとよりなる膨張弁。
A valve body having a first flow path, a second flow path communicating with the first flow path via a through hole and a valve chamber, a sealed pipe provided integrally with the valve body, and this sealed pipe. A sealed pipe and a valve that are controlled by the electromagnetic coil and have a communication hole in the center, a pressure equalization hole that communicates with the communication hole, and an orifice that communicates with the communication hole. A piston-shaped valve body that can slide inside the main body, and a piston-shaped valve body that is fixed to the frame of the electromagnetic coil within the sealed pipe, and equalizes the pressure as the piston-shaped valve body approaches the pressure equalization hole of the valve body. An expansion valve comprising a suction element having a protrusion having a shape that reduces the cross-sectional area of the hole, and a spring interposed between the suction element and the valve body.
JP14820885U 1985-09-30 1985-09-30 Expired JPH0345087Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14820885U JPH0345087Y2 (en) 1985-09-30 1985-09-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14820885U JPH0345087Y2 (en) 1985-09-30 1985-09-30

Publications (2)

Publication Number Publication Date
JPS6257072U JPS6257072U (en) 1987-04-09
JPH0345087Y2 true JPH0345087Y2 (en) 1991-09-24

Family

ID=31062264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14820885U Expired JPH0345087Y2 (en) 1985-09-30 1985-09-30

Country Status (1)

Country Link
JP (1) JPH0345087Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018415A (en) * 1998-07-02 2000-01-18 Denso Corp solenoid valve
JP2000074237A (en) * 1998-08-28 2000-03-14 Toyota Autom Loom Works Ltd Logic valve and hydraulic controller for industrial vehicle

Also Published As

Publication number Publication date
JPS6257072U (en) 1987-04-09

Similar Documents

Publication Publication Date Title
US6000508A (en) Vibration damper and a damping valve with adjustable damping force for a vibration damper
KR100675113B1 (en) Damping Force Adjustable Hydraulic Shock Absorber
US4500067A (en) Pilot operated low flow valve
JPH0243051B2 (en)
CN218468253U (en) Electromagnetic valve
JPH08230636A (en) Magent valve with pressure restricting apparatus for slip controlling type brake of vehicle
KR102140353B1 (en) Shock absorber
JP2013524130A (en) solenoid valve
JPH0345087Y2 (en)
JP3588572B2 (en) Solenoid valve for anti-lock brake system
US5628491A (en) Pilot valve
JP2020534491A (en) Valve device
CN218992202U (en) Shock absorber and vehicle with same
CN212536510U (en) Electromagnetic switch valve for adjusting damping of shock absorber
JPH0327263Y2 (en)
US2888234A (en) Pilot controlled diaphragm valve
JPH0327262Y2 (en)
US4875739A (en) Independent continual quick service valve device
US4057216A (en) Electromagnetic valve
JPH0324946Y2 (en)
JPH10152042A (en) Brake fluid pressure control valve device
JPH09236185A (en) Control valve
JPH0483980A (en) Constant flow rate valve
JPS5836883Y2 (en) Cushion mechanism of fluid pressure cylinder
CN220518382U (en) Steering wheel position adjusting device and vehicle