JPH0345051B2 - - Google Patents

Info

Publication number
JPH0345051B2
JPH0345051B2 JP56059102A JP5910281A JPH0345051B2 JP H0345051 B2 JPH0345051 B2 JP H0345051B2 JP 56059102 A JP56059102 A JP 56059102A JP 5910281 A JP5910281 A JP 5910281A JP H0345051 B2 JPH0345051 B2 JP H0345051B2
Authority
JP
Japan
Prior art keywords
catalyst
toluene
chlorination
pct
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56059102A
Other languages
Japanese (ja)
Other versions
JPS57175133A (en
Inventor
Ryoji Hatsutori
Yoshihiko Abe
Sueo Sugano
Satoshi Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP56059102A priority Critical patent/JPS57175133A/en
Priority to US06/368,759 priority patent/US4444983A/en
Priority to EP82103317A priority patent/EP0063384B1/en
Priority to DE198282103317T priority patent/DE63384T1/en
Priority to DE8282103317T priority patent/DE3261594D1/en
Publication of JPS57175133A publication Critical patent/JPS57175133A/en
Publication of JPH0345051B2 publication Critical patent/JPH0345051B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、トル゚ンの塩玠化によ぀お栞塩玠化
トル゚ンを補造するにあたり、特にパラ䜍に察す
る極めお高い遞択性を䞎える新芏な助觊媒を䜿甚
するこずに係るものである。 トル゚ンの塩玠化により栞塩玠化トル゚ンを補
造するこずは、埓来よく知られおおり工業的にも
極めお重芁なものである。この塩玠化反応は、通
垞塩化アンチモン、塩化第二鉄、塩化アルミニり
ムのようなルむス酞觊媒の存圚䞋に行なわれ、モ
ノ塩玠化物、倚塩玠化物およびこれらの䜍眮異性
䜓が生成する他、条件によ぀おは塩化ベンゞルの
生成を䌎う。モノクロロトル゚ンの補造条件で
は、䞻生成物は、−クロロトル゚ン以䞋
OCTず略蚘するおよび−クロロトル゚ン
以䞋PCTず略蚘するであり、副生成物ずしお
少量の−クロロトル゚ン以䞋MCTず略蚘す
る。、ゞクロロトル゚ンおよび塩化ベンゞルなど
を含有する堎合がある。 䞻生成物であるOCTずPCTのうち、OCTは比
范的利甚䟡倀が少ないのに察し、PCTは工業薬
品、蟲薬、医薬の原料ずしお広い利甚䟡倀を有
し、工業的に極めお重芁な補品の䞀぀である。し
たが぀お、モノクロロトル゚ンの補造に際しお
は、PCTずOCTずの生成比、すなわちモノクロ
ロトル゚ンに察するPCTの比率を0.5でも倧き
くするこずが経枈的に倧きな課題であり、この目
的のため埓来から塩玠化条件、觊媒の遞択に぀い
お倚倧の努力が払われお来た。 たずえば、米囜特蚱第3000975号にはチタン、
スズ、ゞルコニりムの塩玠化物を觊媒ずする方法
PCTOCT2375が、米囜特蚱第3226447
には鉄、アルミニりム、アンチモンのハロゲン化
物ずメルカプト酢酞のような有機硫黄化合物ずを
組合せた觊媒を䜿甚する方法PCTOCT
31.538.0が蚘茉されおいる。さらにオランダ
特蚱出願第6511488号にはFeCl3ずS2Cl2ずの觊媒
系を、米囜特蚱第3317617号にはPtO2觊媒を、フ
ランス特蚱第1491143号には鉄觊媒にSOCl2、
CS2ZnSなど無機硫黄化合物を助觊媒ずしお䜵甚
した觊媒が、フランス特蚱第1491144号にはルむ
ス酞觊媒にセレンたたはチオプン、ゞメチルチ
オプン等有機硫黄化合物を䜿甚する觊媒が蚘茉
されおおり、それぞれ改善の効果を瀺しおいる。 このほか、特公昭50−34009号にはセレンたた
はセレンのハロゲン化物、酞化物ず鉄ずを組合せ
た觊媒系が蚘茉されPCTモノクロロトル゚
ン52.1〜52.6、さらに特開昭52−19631号に
はルむス酞にチアンスレンを助觊媒ずする觊媒が
PCTモノクロロトル゚ン50.5、特開昭52
−19630号には同じくポリクロロチアンスレンを
助觊媒ずする觊媒がPCTモノクロロトル゚
ン55.9、特開昭53−44529号、および特開昭
53−87323号には同じく電子求匕性眮換基ず電子
䟛䞎性眮換基を有するチアンスレン化合物を助觊
媒ずする觊媒がPCTモノクロロトル゚ン
56〜59蚘茉されおいる。 さらに特開昭56−5139号には−、−、
−、−䜍に氎玠原子、電子吞匕性基又は電子䟛
䞎性基を有するプノキサチン化合物が開瀺され
おいる。 䞊蚘の方法によれば、確かにPCTずOCTずの
生成比を倧にする改善の効果が認められる。しか
し、これらのうちには生成比の向䞊が期埅した皋
倧きくない觊媒も含たれおおり、たた工業的芋地
から高䟡で䞍適圓なもの、助觊媒の合成が困難な
もの、䜎収率に留たるもの、入手が困難なものな
どが含たれ、これらはたずえPCTの遞択性が倧
きくおも工業的に採甚するには困難が䌎う。 本発明の目的は、トル゚ンの盎接栞塩玠化を行
うための改良された方法を提䟛するこずである。 すなわち、モノクロロトル゚ンの補造に圓り、
パラ遞択性の極めお高い助觊媒を䜿甚するこずに
より工業的に有利なPCTの補造方法を提䟛する
こずにある。 本発明者等は、既に、特願昭55−01350号ずし
お、アルキル眮換および非眮換ハロゲン化プノ
キサチン化合物を助觊媒ずしお䜿甚する栞塩玠化
トル゚ンの補造方法を出願したが、さらに鋭意研
究の結果、特定のゞプニル゚ヌテルから合成さ
れるプノキサチン化合物、たたはさらに塩玠化
しお埗られる塩玠化プノキサチン化合物が、こ
ずに䜎枩反応においおは特異的にパラ遞択性の高
い助觊媒胜を有するこずを芋い出し本発明に至぀
た。 すなわち本発明は、ルむス酞を觊媒ずするトル
゚ンの栞塩玠化においお、䞀般匏 匏䞭、は䜍およびたたは䜍のメチル基
を、は〜の敎数を衚わし、はがの堎
合は塩玠原子を、が〜の堎合は氎玠原子を
衚わすによ぀お衚わされるプノキサチン化合
物を塩玠化するこずによ぀お埗られる党眮換塩玠
数1.4〜3.5の塩玠化プノキサチン化合物を助觊
媒ずしお䜿甚するこずを特城ずするトル゚ンの栞
塩玠化方法を提䟛するものである。 本発明で甚いる䞻觊媒はルむス酞であり、䞀般
に既知觊媒が䜿甚可胜である。塩玠化反応時にル
むス酞を圢成し、たたはその機胜を瀺すものも含
たれる。普通元玠状アンチモン、鉄、およびアン
チモン、鉄、アルミニりム、錫、チタンなどのハ
ロゲン化物、オキシハロゲン化物、酞化物、硫化
物、カルボニル化合物さらに有機金属化合物等が
挙げられる。代衚的なものは、䞉塩化アンチモ
ン、五塩化アンチモン、䞉酞化アンチモン、オキ
シ塩化アシチモン、塩化第二鉄、硫化鉄、塩化ア
ルミニりム、四塩化錫などであり、特に䞉塩化ア
ンチモン、五塩化アンチモン、塩化第二鉄などが
最も奜たしい。 本発明方法に甚いられる塩玠化前のプノキサ
チン化合物を具䜓的に瀺すず、−ゞメチル
−−ゞクロロプノキサチン、
−トリメチル−−クロロプノキサチン、およ
び−テトラメチル−−クロロフ
゚ノキサチンがあげられる。たたこれらのうち
Rn基のがの堎合、すなわち−メチルのも
のは硫黄による環化反応の際に、メチル基がの
ペリ䜍にある−トリメチル−−クロ
ロプノキサチンの生成があり埗るが、この化合
物も本発明に甚いるこずができる。 これら助觊媒ずしおのプノキサチン化合物の
䞀般的な補造法の䞀䟋をあげるず、−クロロ−
−キシレンを臭玠化しお埗た−クロロ−−
ブロモ−−キシレンを、実隓化孊講座第19å·»
182頁、たたはケミカルアブストラクツ
Chemical Abstracts第65巻、10530f1966
等に蚘茉されおいる方法に準じ、本発明のプノ
キサチン化合物に適合する眮換プノヌル、䟋え
ば−クレゟヌルず反応させ、生成した
3′−トリメチル−−クロロゞプニル゚ヌテル
を枛圧蒞留によ぀お分取する。ひき続きこれを原
料にしおオヌガニツク・シンセシズ・コレクテむ
ブボリナヌムOrganic Syntheses.Col.Vol.第
巻485頁に蚘茉の方法に準じ、塩化アルミニり
ムを觊媒に硫黄、たたは塩化硫黄ず反応させお
−トリメチル−−クロロプノキサ
チンたたは−トリメチル−−クロロ
プノキサチンを合成するこずができる。 プノキサチン化合物をさらに塩玠化するには
必芁に応じ反応に䞍掻性な溶媒、䟋えばニトロベ
ンれン等を甚い、ルむス酞觊媒の存圚䞋に反応せ
しめる。ルむス酞觊媒はプノキサチン化合物に
察し0.001〜の範囲で䜿甚し、塩玠は求める
塩玠化床に必芁な圓量ないしその若干の過剰量
を、50゜〜150℃、奜たしくは70゜〜120℃の枩床範
囲䞋で導入するこずによ぀お、求める塩玠化床の
塩玠化プノキサチン化合物を合成するこずがで
きる。このようにさらに塩玠化するこずにより塩
玠化する前のプノキサチン化合物よりさらに優
れた助觊媒胜を付䞎するこずができる。 本発明にかかる塩玠化する前のプノキサチン
化合物の具備すべき条件は、−ゞメチル−
−クロロプノキサチンの䜍およびたたは
䜍にメチル基を、このメチル基のない堎合は
䜍に塩玠原子を有するこずによ぀おはじめおパラ
遞択性の卓越した助觊媒胜を発揮する。 塩玠化プノキサチンの党眮換塩玠数は1.4〜
3.5の範囲でその効果は顕著である。党眮換塩玠
数の異なる、即ち塩玠化床の異なる混合物であ぀
おも差支えない。党眮換塩玠数が3.7以䞊になる
ずその効果は著しく䜎䞋する。 䞊蚘䞻觊媒ず助觊媒ずの䜿甚量は、かなりの範
囲で倉えるこずができる。䞻觊媒ルむス酞の䜿甚
量は、トル゚ンに察し玄0.005重量から玄
であり、助觊媒ず䞻觊媒の䜿甚重量比は、0.05
ないし20の範囲で䜿甚できるが、PCT生
成比率の向䞊および経枈的芳点から䞻觊媒は、ト
ル゚ンに察し玄0.01重量から玄重量、助觊
媒ず䞻觊媒の䜿甚重量比は0.2ないし
で䜿甚するのが奜たしい。 本発明の䞻觊媒ず助觊媒ずを䜿甚しお塩玠化す
る堎合、その反応枩床は℃以䞋から沞点以䞋の
各枩床条件で行なうこずができる。 しかし䞀般には℃ないし80℃が遞ばれ、さら
に本発明の助觊媒は、特に䜎枩床においおパラ䜍
の高遞択性を瀺す特城があるこずから℃ないし
40℃で実斜するのが奜適である。 本発明方法においおは、反応系を枛圧たたは加
圧系でも行いうるが、ほが倧気圧䞋で実斜するの
が奜たしい。たた溶剀の存圚䞋でも行ないうるが
特に溶剀を存圚させる必芁性は芋圓らない。たた
回分匏、連続匏のいずれでも実斜できる。 本発明方法によれば、PCTずOCTずの生成比
は優に1.1を超える。PCTずモノクロロトル゚ン
ずの生成比で瀺すず55ないし条件により60を
超すか぀お䟋のない奜結果が埗られる。 さらに本発明の助觊媒を甚いれば、PCT、
OCT以倖の副生物、䟋えばMCTの生成も少な
く、か぀塩化ベンゞルの副生もごく僅かで条件に
よ぀おは殆んど皆無ずなる。助觊媒の補造も、い
わゆる公知の容易な方法で実斜でき、本発明の助
觊媒は、PCTを効率良く工業的に補造するのに
適しおおり、その䟡倀はきわめお高いものであ
る。 以䞋実斜䟋を掲げ本発明を説明する。なお実斜
䟋䞭、郚は特蚘しない限り重量郚を瀺す。 参考䟋  −クロロ−−ブロモ−−キシレンの合成 還流冷华噚、枩床蚈、撹拌機および滎䞋ロヌト
を付したの四口フラスコに−クロロ−−
キシレンb.p.183〜184℃400郚、無氎塩化ア
ルミニりム郚を仕蟌み、35〜60℃で臭玠360郚
を時間かけお滎䞋し反応させた。反応液に氎を
加えお氎掗脱觊媒し、のち油局を冷华した。析出
した結晶を濟過し、メタノヌルで掗浄しおm.p.60
〜64℃の−クロロ−−ブロモ−−キシレン
377郚を埗た。 参考䟋  3′−トリメチル−−クロロゞプ
ニル゚ヌテルの合成 還流冷华噚、枩床蚈、撹拌機を付した300mlの
四口フラスコに−クレゟヌル45郚ず苛性カリず
の反応物ず参考䟋で埗た−クロロ−−ブロ
モ−−キシレン80郚、沃化加里郚、および銅
粉0.5郚を仕蟌み170〜200℃で10時間反応させた。
この埌反応液に100mlのトル゚ンを加えお濟過し、
䞍溶物を陀き、次いで油局を皀苛性゜ヌダ氎溶液
および氎で各回掗浄、分液埌枛圧䞋に蒞留しお
163〜170℃mmHgにお3′−トリメチ
ル−−クロロゞプニル゚ヌテルの留分58郚を
埗た。 参考䟋  −トリメチル−−クロロプノ
キサチンの合成 䞊蚘四口フラスコに滎䞋ロヌトを付し、
3′−トリメチル−−クロロゞプニル゚ヌ
テル40郚、カ粒状塩化アルミニりム郚を仕蟌
み、50〜90℃にお塩化硫黄15.2郚を玄時間かけ
お滎䞋した。反応終了埌、反応液に氎100ml、ゞ
クロロ゚タン80mlを加え、ゞクロロ゚タン溶解分
のみを採取したのちゞクロロ゚タンを留去、さら
に枛圧濃瞮しお粘性のある−トリメチ
ル−−クロロプノキサチンの組補品を埗た。 参考䟋  塩玠化−トリメチル−−クロロ
プノキサチンの合成 䞊蚘参考䟋で埗た粗補プノキサチン化合物
30郚を、滎䞋ロヌトの替りに塩玠導入管を付した
前蚘四口フラスコに仕蟌み、さらにニトロベンれ
ン36郚、五塩化アンチモン0.5郚を加え、内枩90
〜110℃䞋で塩玠導入速床0.2〜0.4郚分の条件
で塩玠化し塩玠化床の異なる塩玠化−
トリメチル−−クロロプノキサチン以䞋塩
玠化−トリメチル−−クロロ−PX
ず略蚘するを合成した。 塩玠化反応液は窒玠ガスで曝気しおから、少量
のトル゚ンず倚量のメタノヌルを加え、析出した
結晶を濟別也燥しお助觊媒に甚いた。たたすべお
の詊料に぀き別の掗浄凊理を行぀お充分無機物を
陀き、それぞれ塩玠分析を実斜しお平均塩玠含有
量を算出した。 実斜䟋  トル゚ンの塩玠化反応には、管埄40mm、管の長
さ500mmのガラス容噚に枩床蚈、還流冷华噚、塩
玠吹蟌管を付した反応噚を甚いた。トル゚ン仕蟌
量460ml、䞻觊媒に䞉塩化アンチモン500ppm、助
觊媒には前蚘参考䟋で埗た塩玠化−
トリメチル−−クロロ−PXを500ppmを加え、
塩玠吹蟌速床1.2郚分で塩玠化した。 この結果を第衚に瀺す。実斜䟋〜は、参
考䟋においおプノキサチン化合物の平均塩玠
含有量を倉えた䟋であり、以䞋衚における反応液
組成はガスクロマトグラフむヌで定量分析した倀
である。 平均塩玠含有量ずは党眮換塩玠数のこずであ
り、前蚘参考䟋の塩玠分析から求めた平均倀で
ある。 なおPCTず分離困難な−クロロトル゚ンの
生成率は別の分析条件により定量したずころ、実
斜䟋の堎合、PCTに察しお玄0.4であ぀た。
たた実斜䟋においお塩化ベンゞルの生成量は反
応液䞭、怜出限界以䞋であ぀た。 比范䟋 〜 参考䟋〜に蚘茉の方法に準じお皮々の異な
るプノキサチン化合物を合成し、それらをさら
に塩玠化したものの助觊媒胜を本発明の助觊媒ず
察比するため比范䟋〜ずしお第衚に瀺し
た。たた−テトラクロロプノキ
サチンおよび−メチル−−トリクロ
ロプノキサチンのそれぞれを同様に助觊媒ずし
た結果を比范䟋ずしお第衚に瀺す。トル
゚ンの塩玠化条件はいずれも実斜䟋ず同様
である。なお原料の眮換ゞプニル゚ヌテルの構
造ず物性も第衚に䜵せ瀺した。
The present invention relates to the use of a new cocatalyst which provides extremely high selectivity, particularly towards the para position, in the production of nuclear chlorinated toluene by chlorination of toluene. The production of nuclear chlorinated toluene by chlorination of toluene has been well known and is of great industrial importance. This chlorination reaction is usually carried out in the presence of a Lewis acid catalyst such as antimony chloride, ferric chloride, or aluminum chloride, and produces monochlorinated products, polychlorinated products, and their positional isomers, depending on the conditions. This is accompanied by the formation of benzyl chloride. Under the production conditions of monochlorotoluene, the main product is o-chlorotoluene (hereinafter
(abbreviated as OCT) and p-chlorotoluene (hereinafter abbreviated as PCT), and may contain small amounts of m-chlorotoluene (hereinafter abbreviated as MCT), dichlorotoluene, benzyl chloride, etc. as by-products. be. Of the main products OCT and PCT, OCT has relatively little utility value, whereas PCT has wide utility value as a raw material for industrial chemicals, agricultural chemicals, and pharmaceuticals, and is one of the extremely important industrial products. It is one. Therefore, when producing monochlorotoluene, it is economically important to increase the production ratio of PCT and OCT, that is, the ratio of PCT to monochlorotoluene by even 0.5%, and for this purpose, chlorination has traditionally been Much effort has been put into the selection of conditions and catalysts. For example, U.S. Patent No. 3000975 describes titanium,
A method using chlorinated tin and zirconium as a catalyst (PCT/OCT=23/75) was published in U.S. Patent No. 3226447.
A method using a catalyst consisting of a combination of iron, aluminum, or antimony halides and an organic sulfur compound such as mercaptoacetic acid (PCT/OCT=
31.5/38.0) are listed. Furthermore, Dutch patent application No. 6511488 describes a catalyst system of FeCl 3 and S 2 Cl 2 , U.S. Pat .
A catalyst using an inorganic sulfur compound such as CS 2 ZnS as a co-catalyst is described, and French Patent No. 1491144 describes a catalyst using a Lewis acid catalyst and an organic sulfur compound such as selenium or thiophene or dimethylthiophene, each of which has been improved. It shows the effect of In addition, JP-A No. 50-34009 describes a catalyst system that combines selenium or selenium halides or oxides with iron (PCT/monochlorotoluene = 52.1-52.6%), and JP-A No. 52-19631 In the issue, a catalyst consisting of a Lewis acid and thianthrene as a promoter (PCT/monochlorotoluene = 50.5%) was published in JP-A-52
-19630 also contains a catalyst using polychlorothianthrene as a cocatalyst (PCT/monochlorotoluene = 55.9%);
No. 53-87323 also discloses a catalyst using a thianthrene compound having an electron-withdrawing substituent and an electron-donating substituent as a cocatalyst (PCT/monochlorotoluene=
56-59%) described. Furthermore, in JP-A-56-5139, 2-, 3-, 7
Phenoxatine compounds having a hydrogen atom, an electron-withdrawing group, or an electron-donating group at the - and 8-positions are disclosed. According to the above method, the improvement effect of increasing the production ratio of PCT and OCT is certainly recognized. However, some of these catalysts do not improve the production ratio as much as expected, are expensive and unsuitable from an industrial standpoint, are difficult to synthesize co-catalysts, and have low yields. These include those that are difficult to obtain, and even if the selectivity of PCT is high, it is difficult to employ them industrially. It is an object of the present invention to provide an improved method for carrying out the direct nuclear chlorination of toluene. That is, in producing monochlorotoluene,
The object of the present invention is to provide an industrially advantageous method for producing PCT by using a cocatalyst with extremely high para-selectivity. The present inventors have already filed a patent application No. 55-01350 for a method for producing nuclear chlorinated toluene using alkyl-substituted and unsubstituted halogenated phenoxatine compounds as promoters, but as a result of further intensive research, It was discovered that a phenoxatin compound synthesized from a specific diphenyl ether, or a chlorinated phenoxatin compound obtained by further chlorination, has cocatalytic ability with specific high para-selectivity, especially in low-temperature reactions. I've reached it. That is, the present invention provides a method for nuclear chlorination of toluene using a Lewis acid as a catalyst, using the general formula (In the formula, R represents a methyl group at the 1st and/or 3rd position, m represents an integer of 0 to 2, X represents a chlorine atom when m is 0, and a hydrogen atom when m is 1 to 2. A method for nuclear chlorination of toluene, characterized in that a chlorinated phenoxatine compound having a total substituted chlorine number of 1.4 to 3.5 obtained by chlorinating a phenoxatine compound represented by This is what we provide. The main catalyst used in the present invention is a Lewis acid, and generally known catalysts can be used. It also includes those that form a Lewis acid during a chlorination reaction or exhibit that function. Examples include common elemental antimony, iron, and halides, oxyhalides, oxides, sulfides, carbonyl compounds, and organometallic compounds of antimony, iron, aluminum, tin, titanium, and the like. Typical examples include antimony trichloride, antimony pentachloride, antimony trioxide, acitimony oxychloride, ferric chloride, iron sulfide, aluminum chloride, and tin tetrachloride, especially antimony trichloride, antimony pentachloride, and tin chloride. Ferric iron and the like are most preferred. Specifically, the phenoxatin compounds before chlorination used in the method of the present invention include 6,9-dimethyl-2,8-dichlorophenoxatin, 3,6,9
-trimethyl-8-chlorophenoxatin, and 1,3,6,9-tetramethyl-8-chlorophenoxatin. Also among these
When m of the R n group is 1, that is, 3-methyl, 1,6,9-trimethyl-8-chlorophenoxatin, in which the methyl group is at the peri-position of S, is produced during the cyclization reaction with sulfur. However, this compound can also be used in the present invention. An example of a general method for producing phenoxatin compounds as cocatalysts is 2-chloro-
2-chloro-5- obtained by brominating p-xylene
Bromo-p-xylene, Experimental Chemistry Course Volume 19
p. 182, or Chemical Abstracts Vol. 65, 10530f (1966)
The 2,5,
3'-Trimethyl-4-chlorodiphenyl ether is separated by vacuum distillation. Subsequently, using this as a raw material, it was reacted with sulfur or sulfur chloride using aluminum chloride as a catalyst, according to the method described in Organic Syntheses.Col.Vol. 2, page 485. 1,6,9-trimethyl-8-chlorophenoxatin or 3,6,9-trimethyl-8-chlorophenoxatin can be synthesized. To further chlorinate the phenoxatin compound, the reaction is carried out in the presence of a Lewis acid catalyst using an inert solvent such as nitrobenzene, if necessary. The Lewis acid catalyst is used in the range of 0.001 to 5% based on the phenoxatin compound, and the equivalent or slight excess of chlorine required for the desired degree of chlorination is used at a temperature of 50° to 150°C, preferably 70° to 120°C. By introducing the compound under a temperature range, a chlorinated phenoxatin compound having a desired degree of chlorination can be synthesized. By further chlorinating in this manner, it is possible to impart a cocatalyst ability that is even better than that of the phenoxatin compound before chlorination. The conditions that the phenoxatine compound should have before chlorination according to the present invention are 6,9-dimethyl-
A methyl group is added to the 1st and/or 3rd position of 8-chlorophenoxatin, or 2 if there is no methyl group.
Only by having a chlorine atom in this position does it exhibit excellent cocatalytic ability with para-selectivity. The total number of substituted chlorines in chlorinated phenoxatin is 1.4~
The effect is significant in the range of 3.5. There is no problem even if it is a mixture of different numbers of total substituted chlorine, that is, different degrees of chlorination. When the number of total substituted chlorine is 3.7 or more, the effect decreases significantly. The amounts of the main catalyst and cocatalyst used can vary within a considerable range. The amount of main catalyst Lewis acid used is about 0.005% to about 5% by weight based on toluene.
The weight ratio of co-catalyst to main catalyst used is 0.05:
Although it can be used in the range of 1 to 20:1, from the viewpoint of improving the PCT production ratio and economical aspects, the main catalyst is about 0.01% to about 1% by weight based on toluene, and the weight ratio of co-catalyst to main catalyst is 0.2. :1 to 5:1
It is preferable to use it in When chlorinating using the main catalyst and co-catalyst of the present invention, the reaction temperature can be from 0° C. or lower to the boiling point or lower. However, in general, the temperature range is between 0°C and 80°C, and since the cocatalyst of the present invention has a characteristic of exhibiting high selectivity at the para position, especially at low temperatures, the temperature between 0°C and 80°C is selected.
Preferably it is carried out at 40°C. In the method of the present invention, the reaction system can be carried out under reduced pressure or pressurized system, but it is preferably carried out under approximately atmospheric pressure. Although it can be carried out in the presence of a solvent, there is no particular need for the presence of a solvent. Further, it can be carried out either batchwise or continuously. According to the method of the present invention, the production ratio of PCT to OCT is well over 1.1. In terms of the production ratio of PCT to monochlorotoluene, unprecedentedly good results can be obtained, ranging from 55% to over 60% depending on the conditions. Furthermore, if the promoter of the present invention is used, PCT,
The production of by-products other than OCT, such as MCT, is small, and the by-product of benzyl chloride is also very small, and depending on the conditions, it can be almost eliminated. The cocatalyst can also be produced by a known easy method, and the cocatalyst of the present invention is suitable for industrially producing PCT efficiently and is of extremely high value. The present invention will be explained below with reference to Examples. In the examples, parts indicate parts by weight unless otherwise specified. Reference Example 1 Synthesis of 2-chloro-5-bromo-p-xylene 2-chloro-p-
400 parts of xylene (bp 183-184°C) and 2 parts of anhydrous aluminum chloride were charged, and 360 parts of bromine was added dropwise over 5 hours at 35-60°C to react. Water was added to the reaction solution to remove the catalyst by washing with water, and then the oil layer was cooled. Filter the precipitated crystals, wash with methanol, and use mp60.
2-chloro-5-bromo-p-xylene at ~64°C
Obtained 377 copies. Reference Example 2 Synthesis of 2,5,3'-trimethyl-4-chlorodiphenyl ether In a 300 ml four-necked flask equipped with a reflux condenser, thermometer, and stirrer, a reaction product of 45 parts of m-cresol and caustic potash was added. 80 parts of 2-chloro-5-bromo-p-xylene obtained in Reference Example 1, 2 parts of potassium iodide, and 0.5 part of copper powder were charged and reacted at 170 to 200°C for 10 hours.
After this, 100ml of toluene was added to the reaction solution and filtered.
After removing insoluble matter, the oil layer was washed once each with dilute aqueous caustic soda solution and water, and after separation, it was distilled under reduced pressure.
58 parts of a fraction of 2,5,3'-trimethyl-4-chlorodiphenyl ether were obtained at 163-170°C/4 mmHg. Reference Example 3 Synthesis of 3,6,9-trimethyl-8-chlorophenoxatin A dropping funnel was attached to the above four-necked flask.
40 parts of 5,3'-trimethyl-4-chlorodiphenyl ether and 2 parts of granular aluminum chloride were charged, and 15.2 parts of sulfur chloride was added dropwise at 50 to 90°C over about 3 hours. After the reaction was completed, 100 ml of water and 80 ml of dichloroethane were added to the reaction solution, and only the dissolved dichloroethane was collected. Dichloroethane was distilled off, and the viscous 3,6,9-trimethyl-8-chlorophenoxatin was concentrated under reduced pressure. I got a assembled product. Reference Example 4 Synthesis of chlorinated 3,6,9-trimethyl-8-chlorophenoxatin Crude phenoxatin compound obtained in Reference Example 3 above
Pour 30 parts into the four-necked flask equipped with a chlorine introduction tube instead of the dropping funnel, add 36 parts of nitrobenzene and 0.5 parts of antimony pentachloride, and bring the internal temperature to 90.
Chlorination with different degrees of chlorination 3,6,9-
Trimethyl-8-chlorophenoxatin (hereinafter referred to as chlorinated 3,6,9-trimethyl-8-chloro-PX)
) was synthesized. After aerating the chlorination reaction solution with nitrogen gas, a small amount of toluene and a large amount of methanol were added, and the precipitated crystals were filtered, dried, and used as a promoter. In addition, all samples were subjected to another cleaning treatment to sufficiently remove inorganic substances, and each sample was subjected to chlorine analysis to calculate the average chlorine content. Examples 1 and 2 For the chlorination reaction of toluene, a reactor equipped with a glass container having a diameter of 40 mm and a length of 500 mm and equipped with a thermometer, a reflux condenser, and a chlorine blowing tube was used. The amount of toluene charged was 460 ml, the main catalyst was antimony trichloride 500 ppm, and the co-catalyst was the chlorinated 3,6,9- obtained in Reference Example 4.
Add 500 ppm of trimethyl-8-chloro-PX,
Chlorination was carried out at a chlorine injection rate of 1.2 parts/min. The results are shown in Table 1. Examples 1 and 2 are examples in which the average chlorine content of the phenoxatin compound was changed in Reference Example 4, and the reaction liquid compositions in the table below are values quantitatively analyzed by gas chromatography. The average chlorine content refers to the total number of substituted chlorine, and is the average value determined from the chlorine analysis of Reference Example 4. The production rate of m-chlorotoluene, which is difficult to separate from PCT, was quantified under different analysis conditions, and in the case of Example 2, it was about 0.4% relative to PCT.
Furthermore, in Example 2, the amount of benzyl chloride produced in the reaction solution was below the detection limit. Comparative Examples 1 to 5 Various different phenoxatin compounds were synthesized according to the methods described in Reference Examples 1 to 4, and these compounds were further chlorinated. Comparative Examples 1 to 5 were used to compare the cocatalyst ability of the compounds with the cocatalyst of the present invention. 3 in Table 1. In addition, the results using 2,3,7,8-tetrachlorophenoxatin and 3-methyl-2,7,8-trichlorophenoxatin as cocatalysts are shown in Table 1 as Comparative Examples 4 and 5. . The conditions for chlorinating toluene were the same as in Examples 1 and 2. The structure and physical properties of the substituted diphenyl ether used as a raw material are also shown in Table 1.

【衚】【table】

【衚】 第衚から、実斜䟋ず比范䟋〜ずの
察比から−ゞメチル−−クロロの眮換基
の必芁性、およびそれに付随しお䜵せ有すべき
−、−基の有無、䜍眮、及び有する党眮換塩玠
数によ぀お効果が著しく異なるこずが刀る。さら
に比范䟋ずの察比から、公知助觊媒よりト
ル゚ンの塩玠化におけるパラ遞択性は驚くべき改
善のなされるこずが明癜である。 実斜䟋 〜 参考䟋〜に準じお−ゞメチル−
4′−ゞクロロゞプニル゚ヌテルおよび
3′5′−テトラメチル−−クロロゞプニル゚
ヌテルを合成し、各々−ゞメチル−
−ゞクロロプノキサチン、および
−テトラメチル−−クロロプノキサチンず
し、さらにこれらを塩玠化しお助觊媒に䜿甚し
た。実斜䟋ず同様にしおトル゚ンを塩玠化
した結果を第衚に瀺す。 比范䟋  本発明の助觊媒ず察比するため塩玠化
−トリメチル−−クロロ−PXを参考䟋〜
に準じお合成し、実斜䟋、ず同様にしおト
ル゚ンを塩玠化した結果を第衚に瀺す。
[Table] From Table 1, from the comparison of Examples 1 and 2 and Comparative Examples 1 to 3, the necessity of the 6,9-dimethyl-8-chloro substituent and the X that should be included in conjunction with it
It can be seen that the effects vary significantly depending on the presence or absence of the -, R- groups, their positions, and the total number of substituted chlorine groups. Furthermore, from comparison with Comparative Examples 4 and 5, it is clear that the paraselectivity in toluene chlorination is surprisingly improved compared to known cocatalysts. Examples 3 to 6 According to Reference Examples 1 to 4, 2,5-dimethyl-4,
4'-dichlorodiphenyl ether and 2,5,
3′,5′-tetramethyl-4-chlorodiphenyl ether was synthesized, and 6,9-dimethyl-2,8
-dichlorophenoxatin, and 1,3,6,
9-tetramethyl-8-chlorophenoxatin was obtained, and these were further chlorinated and used as a co-catalyst. Table 2 shows the results of chlorinating toluene in the same manner as in Examples 1 and 2. Comparative Example 6 Chlorinated 1, 3,
9-trimethyl-8-chloro-PX from Reference Example 1~
Table 2 shows the results of chlorinating toluene in the same manner as in Examples 1 and 2.

【衚】【table】

【衚】 実斜䟋ず比范䟋ずの察比から䜍のメチル
基のごずく本発明で限定した眮換基の有無によ぀
おPCTの遞択率が倧巟に異なるこずが刀る。な
お実斜䟋ずから本発明の助觊媒は䜎枩の塩玠
化においおより有効であり、たた実斜䟋からフ
゚ノキサチン化合物は混合物であ぀おも高氎準の
パラ遞択性を瀺すこずが刀぀た。 実斜䟋 〜10 参考䟋〜に準じお−トリメチル
−−クロロプノキサチンを合成、ひき続き塩
玠化しお埗た塩玠化−トリメチル−
−クロロ−PXを助觊媒ずし、この量、平均塩玠
含有量、および䞻觊媒の皮類、反応枩床を倉えた
以倖は実斜䟋ず同様にしおトル゚ンを塩玠
化した。これらの結果を第衚に瀺す。 比范䟋 〜 参考䟋〜に準じお、−メチルゞプニル
゚ヌテルから塩玠化−メチル−PXを合成し、
実斜䟋、、10ず察比するため、これらずほゞ
同様にしお、トル゚ンの塩玠化を行぀た。これら
の結果を第衚に䜵蚘した。
[Table] From the comparison between Example 5 and Comparative Example 6, it can be seen that the selectivity of PCT varies greatly depending on the presence or absence of the substituent defined in the present invention, such as the methyl group at the 6-position. It was found from Examples 3 and 4 that the cocatalyst of the present invention was more effective in low-temperature chlorination, and from Example 6 that the phenoxatin compound showed a high level of paraselectivity even in the form of a mixture. Examples 7 to 10 Chlorinated 3,6,9-trimethyl-8 obtained by synthesizing 3,6,9-trimethyl-8-chlorophenoxatin and subsequently chlorinating it according to Reference Examples 1 to 4
Toluene was chlorinated in the same manner as in Examples 1 and 2, except that -chloro-PX was used as a promoter and the amount, average chlorine content, type of main catalyst, and reaction temperature were changed. These results are shown in Table 3. Comparative Examples 7 to 9 Chlorinated 3-methyl-PX was synthesized from 3-methyl diphenyl ether according to Reference Examples 1 to 4,
For comparison with Examples 7, 8, and 10, toluene was chlorinated in substantially the same manner as in Examples 7, 8, and 10. These results are also listed in Table 3.

【衚】 第衚の結果から、本発明の助觊媒は特願昭55
−013050号の䟋より奜結果が埗られ、しかも特に
䜎枩反応の塩玠化条件ではPCTの遞択性が顕著
に向䞊するこずが刀る。
[Table] From the results in Table 3, it can be seen that the promoter of the present invention is
It can be seen that better results were obtained than in the example of No.-013050, and that the selectivity of PCT was significantly improved, especially under the chlorination conditions of the low-temperature reaction.

Claims (1)

【特蚱請求の範囲】  ルむス酞を觊媒ずするトル゚ンの栞塩玠化に
おいお、䞀般匏 匏䞭、は䜍およびたたは䜍のメチル基
を、は〜の敎数を衚わし、はがの堎
合は塩玠原子を、が〜の堎合は氎玠原子を
衚わすによ぀お衚わされるプノキサチン化合
物を塩玠化するこずによ぀お埗られる党眮換塩玠
数1.4〜3.5の塩玠化プノキサチン化合物を助觊
媒ずしお䜿甚するこずを特城ずするトル゚ンの栞
塩玠化方法。
[Claims] 1. In the nuclear chlorination of toluene using a Lewis acid as a catalyst, the general formula (In the formula, R represents a methyl group at the 1st and/or 3rd position, m represents an integer of 0 to 2, X represents a chlorine atom when m is 0, and a hydrogen atom when m is 1 to 2. A method for nuclear chlorination of toluene, characterized in that a chlorinated phenoxatin compound having a total substituted chlorine number of 1.4 to 3.5 obtained by chlorinating a phenoxatin compound represented by the following formula is used as a cocatalyst.
JP56059102A 1981-04-21 1981-04-21 Nulear chlorinating method of toluene Granted JPS57175133A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56059102A JPS57175133A (en) 1981-04-21 1981-04-21 Nulear chlorinating method of toluene
US06/368,759 US4444983A (en) 1981-04-21 1982-04-15 Process for the nuclear chlorination of toluene
EP82103317A EP0063384B1 (en) 1981-04-21 1982-04-20 Process for the nuclear chlorination of toluene
DE198282103317T DE63384T1 (en) 1981-04-21 1982-04-20 METHOD FOR CORE CHLORINE TOLUOL.
DE8282103317T DE3261594D1 (en) 1981-04-21 1982-04-20 Process for the nuclear chlorination of toluene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56059102A JPS57175133A (en) 1981-04-21 1981-04-21 Nulear chlorinating method of toluene

Publications (2)

Publication Number Publication Date
JPS57175133A JPS57175133A (en) 1982-10-28
JPH0345051B2 true JPH0345051B2 (en) 1991-07-09

Family

ID=13103623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56059102A Granted JPS57175133A (en) 1981-04-21 1981-04-21 Nulear chlorinating method of toluene

Country Status (1)

Country Link
JP (1) JPS57175133A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565139A (en) * 1979-06-28 1981-01-20 Ihara Chem Ind Co Ltd Chlorination catalyst for alkylbenzene nucleus
JPS56110630A (en) * 1980-02-07 1981-09-01 Hodogaya Chem Co Ltd Preparation of chlorinated toluene

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565139A (en) * 1979-06-28 1981-01-20 Ihara Chem Ind Co Ltd Chlorination catalyst for alkylbenzene nucleus
JPS56110630A (en) * 1980-02-07 1981-09-01 Hodogaya Chem Co Ltd Preparation of chlorinated toluene

Also Published As

Publication number Publication date
JPS57175133A (en) 1982-10-28

Similar Documents

Publication Publication Date Title
US4031147A (en) Process for directed chlorination of alkylbenzenes
EP0296517B1 (en) Process for preparing monohalogenated benzocyclobutene
US4031142A (en) Process for the directed chlorination of alkylbenzenes
US4190609A (en) Process for the directed chlorination of xylenes
CA2113530C (en) Process for the preparation of polyhalogenated benzotrichlorides and benzoyl chlorides and new trihalogeno-benzotrichlorides and -benzoyl chlorides
US5003117A (en) Process for decabromodiphenyl methane
JPS6030299B2 (en) Direct chlorination method of alkylbenzene
JPS6165832A (en) Toluene ring chlorination
JPS6236014B2 (en)
JPH0345051B2 (en)
EP0063384B1 (en) Process for the nuclear chlorination of toluene
US4935562A (en) Method for producing 4,4'-dibromobiphenyl
JPH0134208B2 (en)
JP2556357B2 (en) Method for producing 3,5-di-tert-butyl-2,6-dichlorotoluene
US4334112A (en) Process for producing 2,5-dichloro-p-xylene
JP2002154995A (en) Method for producing chlorinated aromatic compound
JPS63250331A (en) Separation of m-chlorotoluene from chlorotoluene mixture
US4130594A (en) Liquid phase fluorination process
CA1087211A (en) Process for polybrominating bisphenoxy alkanes
EP0038223B1 (en) Process for the preparation of trifluoromethylbenzoyl halides
US4608448A (en) Process for producing 2,5-dichloro-p-xylene
JP2000044500A (en) Aromatic mono-nuclear chlorination of alkyl aromatic hydrocarbon and its aromatic nuclear chlorination catalyst
US3405111A (en) Halogenation of organic compounds in halogenated acetonitrile solvents
JPS6130667B2 (en)
JPS6242656B2 (en)