JPH0344989A - Ic type optical semiconductor unit - Google Patents

Ic type optical semiconductor unit

Info

Publication number
JPH0344989A
JPH0344989A JP17982489A JP17982489A JPH0344989A JP H0344989 A JPH0344989 A JP H0344989A JP 17982489 A JP17982489 A JP 17982489A JP 17982489 A JP17982489 A JP 17982489A JP H0344989 A JPH0344989 A JP H0344989A
Authority
JP
Japan
Prior art keywords
laser
light
filter
optical
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17982489A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kitamura
北村 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17982489A priority Critical patent/JPH0344989A/en
Publication of JPH0344989A publication Critical patent/JPH0344989A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a highly stable and reliable IC type optical semiconductor unit for broadcasting reception at low cost by integrating optical components to form a receiver, receiving a beat signal produced by a signal light and station emission, and feeding back a part of the output to a laser control region. CONSTITUTION:This semiconductor unit is designed to comprise a waveguide passage 21 on a filter side and a waveguide passage 24 on a laser side and a light receiving element 25 so that the element 25 may be electrically connected with a control region 28 of a wavelength variable laser 23 by way of a control circuit 27. Under this structure, multi-channel signal light input from the left side of an optical filter 20 is selected by the filter 20 and jointed with the light of the laser 23 at a coupler 22 and its beat signal is detected by the element 25. The output of the element 25 is partially is fed back to a region 28 of the laser 23 by way of an amplification circuits 26 and the control circuit 27. This feedback mechanism enables stable reception constantly under the stable beat signal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は安全性に優れ、且つ低コストの集積型光半導体
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an integrated optical semiconductor device that is highly safe and low in cost.

(従来の技術) 加入者系コヒーレント光通信システムは将来の広帯域I
 SDNにおいて大量の情報を各加入者に分配できるシ
ステムとして注目を集めている。そのための方式として
種々の方式が提案されているが、十数チャンネルの光信
号をスターカップラ等を用いて各加入者に分配した後、
加入者側で受信するチャンネルを選択するという方式が
主流になりつつある。
(Prior art) Subscriber-based coherent optical communication systems will
It is attracting attention as a system that can distribute large amounts of information to each subscriber in SDN. Various methods have been proposed for this purpose, but after distributing optical signals of more than ten channels to each subscriber using a star coupler, etc.
A method in which the subscriber selects the channel to receive is becoming mainstream.

従来、そのような方式において、加入者側では例えば1
6チヤンネルの信号光を選択するための光フィルタ、局
部発振光用の半導体レーザ、信号受信用の受光素子、信
号光と局発行とを合わせるファイバカヅブラ等の光部品
を備えた受信用モジュールによって受信するといった方
式が提案されている。
Conventionally, in such a system, on the subscriber side, for example, 1
A receiving module equipped with optical components such as an optical filter for selecting 6 channels of signal light, a semiconductor laser for local oscillation light, a light-receiving element for signal reception, and a fiber coupler for combining signal light and local oscillation light. A method of receiving the information has been proposed.

(発明が解決しようとする課題) しかしながら上述のような方式では、多くの光部品とそ
れ等の間の良好な光結合特性が必要とされ、システムコ
ストが高くなってしまうという問題点があった。将来加
入者系システムを広め、各家庭に受信装置が設置される
ことを考える上でシステムコストを低減することは最も
重要な要請である。さらに、将来技術においては光部品
をモジュールの様な形で組み込むため、安定性、信頼性
等の点でも十分とはいえない。
(Problem to be Solved by the Invention) However, the above-mentioned method requires many optical components and good optical coupling characteristics between them, resulting in an increase in system cost. . Considering the future expansion of subscriber systems and the installation of receiving devices in each home, reducing system costs is the most important requirement. Furthermore, in future technology, optical components will be incorporated in the form of a module, which will not be sufficient in terms of stability, reliability, etc.

本発明の目的は上述の観点に立って、量産が可能でコス
トの低い、かつ安定性、信頼性に優れた、放送型加入者
系コヒーレントシステム等の受信装置として用いられる
集積型光半導体装置を提供することにある。
In view of the above, an object of the present invention is to provide an integrated optical semiconductor device that can be mass-produced, is low in cost, and has excellent stability and reliability, and is used as a receiving device in a broadcasting type subscriber coherent system, etc. It is about providing.

(課題を解決するための手段〉 本発明の集積型光半導体装置は、半導体基板上に少なく
とら導波型光フィルタ、波長可変レーザが集積された集
積型光半導体装置において、前記光フィルタの出力側お
よび前記波長可変レーザの出力側にそれぞれ形成された
フィルタ側導波路およびレーザ開導波路と、前記フィル
タ側導波路と前記レーザ(111導波路を導波される光
を結合する光結合部と、前記光結合部で結合された光が
入射される受光素子とを備え、前記受光素子と前記波長
可変レーザの波長制御領域とが制御回路を介して電気的
に接続されている。
(Means for Solving the Problems) An integrated optical semiconductor device of the present invention is an integrated optical semiconductor device in which at least a waveguide optical filter and a wavelength tunable laser are integrated on a semiconductor substrate. a filter side waveguide and a laser open waveguide formed on the side and the output side of the wavelength tunable laser, respectively; an optical coupling unit that couples light guided through the filter side waveguide and the laser (111 waveguide); The light receiving element is provided with a light receiving element into which the light coupled by the optical coupling part is incident, and the light receiving element and the wavelength control region of the wavelength tunable laser are electrically connected via a control circuit.

(作用) 本発明においては、上述のとおり受信に必要な光フィル
タ、局発用波長可変レーザ、カップラ、受信器等をすべ
て同一の半導体基板上に集積している。その場合に光フ
ィルタと波長可変レーザを連動させるだけではビート信
号が良好に取れなくなる可能性があるので、カップラに
相当する光結合部の後段に形成した受光素子の信号を波
長可変レーザにフィードバックする手段を同時に設けて
いる。これによって、光フィルタで選択した信号光を波
長可変レーザで常に追従することができ、安定性、信頼
性に優れた放送型システム用受信機を実現することが可
能となる。
(Function) In the present invention, as described above, the optical filter, local tunable wavelength laser, coupler, receiver, etc. necessary for reception are all integrated on the same semiconductor substrate. In that case, it may not be possible to obtain a good beat signal just by linking the optical filter and the wavelength tunable laser, so the signal from the light receiving element formed after the optical coupling part, which corresponds to a coupler, is fed back to the wavelength tunable laser. At the same time, the means are provided. This allows the variable wavelength laser to always follow the signal light selected by the optical filter, making it possible to realize a receiver for broadcasting systems with excellent stability and reliability.

(実施例) 以下に図面を参照して本発明をより詳細に説明する。(Example) The present invention will be explained in more detail below with reference to the drawings.

第1図は本発明の一実施例である集積型光半導体装置の
模式的な平面図である4本実斃例による集積型光半導体
装置おいては、光フィルタ20の左開端面から入力した
多チャンネルの信号光は光フィルタ20によって選択さ
れ、フィルタ@導波Fl@21を通過して光結合部22
で波長可変レーザの光と合波され、そのビート信号が受
光素子25によって検出される。この受光素子25の出
力の一部は増幅回路26、制御回路27を介して波長可
変レーザ23の制御領域28にフィードバックされる。
FIG. 1 is a schematic plan view of an integrated optical semiconductor device according to an embodiment of the present invention. The multi-channel signal light is selected by the optical filter 20, passes through the filter@waveguide Fl@21, and is connected to the optical coupling section 22.
The light is combined with the wavelength tunable laser light, and the beat signal thereof is detected by the light receiving element 25. A part of the output of the light receiving element 25 is fed back to the control region 28 of the wavelength tunable laser 23 via the amplifier circuit 26 and the control circuit 27.

このフィードバックR梢によって常に安定なビート信号
のもとで受信することが可能となる。
This feedback R top makes it possible to always receive a stable beat signal.

上記の集積型光半導体装置を得るための作製方法を第1
図中A−A’、B−B’部分の断面図である。第2図お
よび第3図を用いて説明する。
The first manufacturing method for obtaining the above-mentioned integrated optical semiconductor device is described below.
It is a sectional view of the AA' and BB' portions in the figure. This will be explained using FIGS. 2 and 3.

まず、n−InP基板1上に位相シフト領域3を含む回
折格子2を部分的に形成する。回折格子の周期は約24
00人とする。また位相シフト領域の形成は通常の位相
制御マスクを用いた干渉露光法によって行なうことがで
きる。なお回折格子2は光フィルタ20および、波長可
変レーザ23を形成する領域のみに形成する。
First, a diffraction grating 2 including a phase shift region 3 is partially formed on an n-InP substrate 1 . The period of the diffraction grating is approximately 24
00 people. Further, the phase shift region can be formed by an interference exposure method using a normal phase control mask. Note that the diffraction grating 2 is formed only in the region where the optical filter 20 and the wavelength tunable laser 23 are formed.

以上のように部分的に回折格子2を形成した基板1上に
発光波長1.2μmのI nGaAsPガイド層4、I
nPエッチストップ層5、発光波長1.55μmのIn
GaAsP活性層6、pInPクラッド層7、をそれぞ
れ0,1μm。
As described above, on the substrate 1 on which the diffraction grating 2 is partially formed, an I nGaAsP guide layer 4 with an emission wavelength of 1.2 μm, an I
nP etch stop layer 5, In with an emission wavelength of 1.55 μm
The GaAsP active layer 6 and pInP cladding layer 7 are each 0.1 μm thick.

0.02μm、O,1μm、0.3μmの厚さで順次成
長する。
Thicknesses of 0.02 μm, O, 1 μm, and 0.3 μm are sequentially grown.

その後、第1図の波長可変レーザおよび光フィルタの活
性領域および受光素子とする部分を除いて活性層6を除
去し、第3図のような梢成で化学エツチングによって必
要な部分のメサエッチングを行ない、導波路等の領域を
メサストライプとする。メサストライプの幅、高さはい
ずれも1.5μmとする。その時にマスクとして用いた
絶縁膜を残したまま、埋め込み成長を行ない、メサスト
ライプ以外の領域にFeドープ高抵抗1nP層9、n−
InP層■0をそれぞれ厚さ1.3μm。
Thereafter, the active layer 6 is removed except for the active region of the wavelength tunable laser and optical filter shown in FIG. 1, and the portion that will become the light receiving element, and the necessary portions are mesa-etched by chemical etching in the top layer as shown in FIG. The waveguide and other areas are formed into mesa stripes. The width and height of the mesa stripe are both 1.5 μm. At that time, while leaving the insulating film used as a mask, buried growth was performed, and an Fe-doped high-resistance 1nP layer 9, n-
Each InP layer ■0 has a thickness of 1.3 μm.

0.2μm成長する。Grows 0.2 μm.

続いて、絶縁膜を除去した後、全面にわたってp−1n
P埋め込み層11、発光波長1.3μmのInGaAs
Pコンタクト層12をそれぞれ厚さ1μm、0.5μm
成長する。さらに必要な部分に独立した電極12.13
および各領域を分離するための分離溝15、光入射端面
に反射防止膜16(第2図)を形成して所望の集積型光
半導体装置を得る。
Subsequently, after removing the insulating film, p-1n was applied over the entire surface.
P buried layer 11, InGaAs with emission wavelength of 1.3 μm
The P contact layer 12 has a thickness of 1 μm and 0.5 μm, respectively.
grow up. Furthermore, independent electrodes in necessary areas 12.13
Then, a separation groove 15 for separating each region and an antireflection film 16 (FIG. 2) are formed on the light incident end face to obtain a desired integrated optical semiconductor device.

光フィルタ20の3分割領域の長さはいずれら100μ
m、波長可変レーザ23の中央部は50μm長の2つの
領域に分割する。また分離溝15は20μm長とする。
Each of the three divided regions of the optical filter 20 has a length of 100 μm.
m, the central part of the wavelength tunable laser 23 is divided into two regions each having a length of 50 μm. Further, the separation groove 15 has a length of 20 μm.

第1図においては斜線をひいた部分のみに活性層6が残
っていることになる。
In FIG. 1, the active layer 6 remains only in the shaded area.

受光素子25の長さは200czm、光結合部の長さは
600μmとする。集積装置の全長は1.2mmである
The length of the light receiving element 25 is 200 czm, and the length of the optical coupling part is 600 μm. The total length of the integration device is 1.2 mm.

光フィルタ20の3つの分割領域中、両開の活性層を有
する領域に適当なバイアス電流を印加した状態で、中央
部分に電流注入することによって、そこでの実行的な位
相シフト量を制御することができ、光フィルタの共振周
波数条件を変えることができる。その周波数範囲は各領
域の長さ、回折格子との光の結合係数を最適化すること
により150GHz程度が可能である。波長可変レーザ
23も同様な原理で発振波長を制御することができる。
Among the three divided regions of the optical filter 20, while applying an appropriate bias current to the region having a double-opened active layer, current is injected into the central portion to control the effective amount of phase shift there. It is possible to change the resonant frequency conditions of the optical filter. The frequency range can be approximately 150 GHz by optimizing the length of each region and the coupling coefficient of light with the diffraction grating. The oscillation wavelength of the wavelength tunable laser 23 can also be controlled using the same principle.

また光フィルタ20は活性層6を有しており、その部分
に電流を注入することにより増幅作用を持たせることが
可能である。20dB程度の利得を得ることは容易であ
り、したがって微弱な信号光を良好に受信することが可
能となる。
Further, the optical filter 20 has an active layer 6, and by injecting a current into the active layer 6, it is possible to provide an amplification effect. It is easy to obtain a gain of about 20 dB, and therefore it is possible to receive weak signal light well.

以上において、第1図に示すように、光フィルタ20と
波長可変レーザ23とはいずれも回折格子、ガイド層、
活性層を有し、光の共振方向に3分割され、分割された
中央領域においてのみ活性層が除去され、位相領域が形
成される。また、波長可変レーザの中央領域が更に2分
割され、その一方に上記制御回路の出力が接続されてい
る。
In the above, as shown in FIG. 1, both the optical filter 20 and the wavelength tunable laser 23 include a diffraction grating, a guide layer,
It has an active layer and is divided into three parts in the optical resonance direction, and the active layer is removed only in the divided central region to form a phase region. Further, the central region of the wavelength tunable laser is further divided into two parts, and the output of the control circuit is connected to one of the parts.

このような装置に光フイルタ20開から入射させた信号
光を選択した後、合波受信することによって16チヤン
ネルの放送信号光を良好に受信することができる。l、
2Gb/sの高速放送システムに用いた場合の受信感度
は平均−40dBm程度と十分良好な受信感度の状態で
受信することができる。しかも主要な光部品が同一基板
上に集積されているので従来構成と比べて大幅な安定性
、信頼性向上が期待できる。
After selecting the signal light incident on such a device through the open optical filter 20, it is possible to receive the broadcast signal light of 16 channels satisfactorily by multiplexing and receiving the signal light. l,
When used in a 2 Gb/s high-speed broadcasting system, the receiving sensitivity is approximately -40 dBm on average, which is a sufficiently good receiving sensitivity state. Moreover, since the main optical components are integrated on the same substrate, it is expected to significantly improve stability and reliability compared to conventional configurations.

なお、実施例においてはInPを基板とする1μm帯の
素子について述べたが、用いる材料系はこれに限るもの
でなく、GaAs系等、他の材料を用いてなんら差し支
えない、また、素子の作製には化学エツチングのみなら
ずドライエツチング等の手法を用いて得ることは勿論で
ある。さらに導波構造も埋め込み′W4造に限るもので
はない。
In the examples, a 1 μm band element using InP as a substrate was described, but the material system used is not limited to this, and other materials such as GaAs may be used without any problem. Of course, this can be obtained by using not only chemical etching but also dry etching and other methods. Further, the waveguide structure is not limited to the buried 'W4 structure.

光フィルタ、波長可変レーザとして3分割、ないし4分
割で中央の領域が制御領域となる構成としたが、もちろ
んこのような構成に限るものではなく、報告、提案され
ている種々の構成が可能である。更に光フィルタとして
は内部に活性層を有する能動型のものを示したが、活性
層のない構成であってもなんら差し支えない。
The optical filter and wavelength tunable laser are divided into three or four parts, with the central area serving as the control area, but the configuration is of course not limited to this, and various configurations that have been reported and proposed are possible. be. Furthermore, although an active type optical filter having an internal active layer is shown, a structure without an active layer may be used without any problem.

(発明の効果) 以上説明したように、本発明は主要な光部品を集積した
受信機を形成し、かつ信号光と局発光とのビート信号を
受光素子によって信号し、その出力の一部を局発光域で
ある波長可変レーザの制御領域にフィードバックさせて
いるので、安定性、信頼性に優れ、かつシステムコスト
の低い放送型加入者系光システム等が構成可能となる。
(Effects of the Invention) As explained above, the present invention forms a receiver that integrates the main optical components, and signals the beat signal of the signal light and the local light by a light receiving element, and a part of the output is transmitted. Since feedback is provided to the control region of the wavelength tunable laser, which is the local light region, it is possible to construct a broadcast type subscriber optical system, etc., which is excellent in stability and reliability and has low system cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である集積型光半導体装置の
平面図、第2図および第3図は第1図中A−A’ 、B
−B’部分の断面図である。 l・・・基板、2・・・回折格子、3・・・位相シフト
領域、4・・・ガイド層、5・・・エッチストップ層、
6・・・活性層、7・・・クラッド層、8・・・メサス
トライプ、9・・・高抵抗層、10・・・n−InP層
、11・・・埋め込み層、12・・・コンタクト層、1
3・・・p電極、14・・・n電極、15・・・分離酒
、16・・・反射防止膜、20・−・光フィルタ、21
・・・フィルタ側導波路、22・・・光結合部、23・
・・波長可変レーザ、24・・・レーザ側導波路、25
・・・受光素子、26・・・増幅回路、27・・・制御
回路、28・・・制御領域。
FIG. 1 is a plan view of an integrated optical semiconductor device which is an embodiment of the present invention, and FIGS. 2 and 3 are taken along lines A-A' and B in FIG.
It is a sectional view of the -B' portion. 1... Substrate, 2... Diffraction grating, 3... Phase shift region, 4... Guide layer, 5... Etch stop layer,
6... Active layer, 7... Cladding layer, 8... Mesa stripe, 9... High resistance layer, 10... n-InP layer, 11... Buried layer, 12... Contact layer, 1
3...p electrode, 14...n electrode, 15...separate sake, 16...antireflection film, 20...optical filter, 21
...Filter side waveguide, 22... Optical coupling section, 23.
... Tunable wavelength laser, 24 ... Laser side waveguide, 25
... Light receiving element, 26 ... Amplification circuit, 27 ... Control circuit, 28 ... Control region.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に少なくとも導波型光フィルタ、波長可変
レーザが集積された集積型光半導体装置において、前記
光フィルタの出力側および前記波長可変レーザの出力側
にそれぞれ形成されたフィルタ側導波路およびレーザ側
導波路と、前記フィルタ側導波路と前記レーザ側導波路
を導波される光を結合する光結合部と、前記光結合部で
結合された光が入射される受光素子とを備え、前記受光
素子と前記波長可変レーザの波長制御領域とが制御回路
を介して電気的に接続されていることを特徴とする集積
型光半導体装置。
In an integrated optical semiconductor device in which at least a waveguide optical filter and a wavelength tunable laser are integrated on a semiconductor substrate, a filter side waveguide and a laser are respectively formed on the output side of the optical filter and the output side of the wavelength tunable laser. a side waveguide, an optical coupling section that couples light guided through the filter side waveguide and the laser side waveguide, and a light receiving element into which the light coupled by the optical coupling section is incident, An integrated optical semiconductor device, wherein a light receiving element and a wavelength control region of the wavelength tunable laser are electrically connected via a control circuit.
JP17982489A 1989-07-12 1989-07-12 Ic type optical semiconductor unit Pending JPH0344989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17982489A JPH0344989A (en) 1989-07-12 1989-07-12 Ic type optical semiconductor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17982489A JPH0344989A (en) 1989-07-12 1989-07-12 Ic type optical semiconductor unit

Publications (1)

Publication Number Publication Date
JPH0344989A true JPH0344989A (en) 1991-02-26

Family

ID=16072533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17982489A Pending JPH0344989A (en) 1989-07-12 1989-07-12 Ic type optical semiconductor unit

Country Status (1)

Country Link
JP (1) JPH0344989A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030535A (en) * 1996-04-24 2000-02-29 Yukiko Hayashi Method of and apparatus for producing potable water and salt
JP2015056515A (en) * 2013-09-12 2015-03-23 日本オクラロ株式会社 Semiconductor optical element and optical communication module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030535A (en) * 1996-04-24 2000-02-29 Yukiko Hayashi Method of and apparatus for producing potable water and salt
JP2015056515A (en) * 2013-09-12 2015-03-23 日本オクラロ株式会社 Semiconductor optical element and optical communication module

Similar Documents

Publication Publication Date Title
US5654814A (en) Optical semiconductor apparatus and optical communication system using the apparatus
JP3816157B2 (en) InP / InGaAs monolithic integrated demultiplexed photoreceiver and manufacturing method thereof
US5349598A (en) Optical semiconductor apparatus, a method of driving the same and an optical transmission system using the same
US6134368A (en) Optical semiconductor device with a current blocking structure and method for making the same
JP2869819B2 (en) Wavelength tunable filter / receiver for unpolarized light directional coupler
US5608572A (en) Optical apparatus and a method using the apparatus, which utilizes the occurrence of a change in a both-end voltage of an amplifying region
JPH04268765A (en) Manufacture of optical integrated circuit
DE19637396A1 (en) Coupling arrangement for coupling waveguides together
EP1159774B1 (en) A tunable laser source with an integrated wavelength monitor and method of operating same
JPH06120906A (en) Optical communication system and optical receiver, semiconductor device, and optical communication system using them
US6597718B2 (en) Electroabsorption-modulated fabry perot laser
EP0316194B1 (en) A tunable wavelength filter
JPH0344989A (en) Ic type optical semiconductor unit
JP2986604B2 (en) Semiconductor optical filter, method for controlling selected wavelength thereof, and optical communication system using the same
JPH08184789A (en) Polarization nondependent wavelength filter
Koch et al. InP-based photonic integrated circuits
EP0411145A1 (en) Integrated optical semiconductor device and method of producing the same
JPH0529602A (en) Semiconductor optical integrated element and manufacture thereof
JP2907234B2 (en) Semiconductor wavelength tunable device
JP4365464B2 (en) External reflector laser device and transmission device
JPS6373585A (en) Frequency tunable distributed bragg reflection-type semiconductor laser
JPH07142699A (en) Semiconductor optical integrated device and manufacture thereof
KR100228396B1 (en) Method of manufacturing laser device
JPS63147387A (en) Semiconductor laser device
JP3391952B2 (en) Integrated optical semiconductor device in which waveguide filter devices are formed in parallel