JPH0344968Y2 - - Google Patents
Info
- Publication number
- JPH0344968Y2 JPH0344968Y2 JP7010285U JP7010285U JPH0344968Y2 JP H0344968 Y2 JPH0344968 Y2 JP H0344968Y2 JP 7010285 U JP7010285 U JP 7010285U JP 7010285 U JP7010285 U JP 7010285U JP H0344968 Y2 JPH0344968 Y2 JP H0344968Y2
- Authority
- JP
- Japan
- Prior art keywords
- pulverized coal
- cylinder
- burner
- load
- inner cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003245 coal Substances 0.000 claims description 48
- 238000002485 combustion reaction Methods 0.000 claims description 7
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 230000002093 peripheral effect Effects 0.000 claims 1
- 239000000446 fuel Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Description
【考案の詳細な説明】
<産業上の利用分野>
本考案は微粉炭を燃焼させるバーナ装置に係
り、特に高燃料比炭を用いた場合でも幅広い負荷
制御を行うことのできる装置に関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a burner device for burning pulverized coal, and particularly to a device that can perform a wide range of load control even when using high fuel ratio coal.
<従来の技術及びその問題点>
例えば火力発電所用ボイラにおいては、燃料事
情の変化により、石油燃料から石炭燃料への転換
が積極的に行われている。この場合、発電所の電
力需要の変動、例えば夏場、冬場の季節差、平日
と休日の差等により発電所の発電負荷はかなり大
きく変動する。最近では原子力発電の発電量が増
大しているため、原子力発電をベースロードと
し、従来はベースロードとして一定負荷で運転し
て来た火力発電所用大型ボイラを負荷変動させる
必要が生じている。<Prior art and its problems> For example, in boilers for thermal power plants, conversion from petroleum fuel to coal fuel is actively being carried out due to changes in fuel conditions. In this case, the power generation load of the power station varies considerably due to fluctuations in the power demand of the power station, such as seasonal differences between summer and winter, and differences between weekdays and holidays. Recently, as the amount of power generated by nuclear power generation has increased, it has become necessary to use nuclear power generation as a base load and to vary the load of large boilers for thermal power plants, which have conventionally been operated at a constant load as a base load.
第2図は従来型微粉炭燃焼システムを示す。燃
料はコールバンカ41から給炭機43を経て、微
粉炭機45へ供給される。微粉炭機45内では、
燃料は紛砕されて1次空気フアン51からの熱空
気によつて乾燥、分級、移送が行われる。微粉炭
は微粉炭管46から微粉炭バーナ48を経て火炉
へ供給され、風道47及び風箱50から送気され
る燃焼空気と共に混合燃焼するものである。な
お、同図において符号32,33は一次及び2次
の空気予熱気、40は送風機である。 Figure 2 shows a conventional pulverized coal combustion system. Fuel is supplied from the coal bunker 41 to the pulverizer 45 via the coal feeder 43. Inside the pulverizer 45,
The fuel is pulverized and dried, classified, and transferred by hot air from the primary air fan 51. The pulverized coal is supplied to the furnace from the pulverized coal pipe 46 through the pulverized coal burner 48, and is mixed and burned with combustion air sent from the air passage 47 and the air box 50. In the figure, reference numerals 32 and 33 indicate primary and secondary air preheating, and 40 indicates a blower.
以上の装置において、第3図の如く、微粉炭機
への燃料炭の供給はその負荷率に比例して供給さ
れるのに対して、一次空気量は、微粉炭管内での
微粉炭の堆積防止、バーナからの逆火防止を目的
に微粉炭機負荷率が50%以下においても、最大負
荷の空気供給量の70%を保持するよう制御してい
る。 In the above device, as shown in Figure 3, the fuel coal is supplied to the pulverizer in proportion to its load factor, while the primary air amount is determined by the amount of pulverized coal accumulated in the pulverized coal pipe. In order to prevent flashback from the burner, the coal pulverizer is controlled to maintain 70% of the maximum load air supply even when the load factor of the coal pulverizer is below 50%.
一方バーナから火炉内に供給された微粉炭は火
炉内からの輻射熱の影響で、高負荷帯では雰囲気
温度が高く、低負荷帯では雰囲気温度が低下す
る。また燃料の性状、すなわち燃料中に含まれる
揮発分、全水分、灰分、粒径によつて着火温度、
着火温度迄に到達する時間(着火時間)は異なつ
て来る。第4図はこれらの点につき具体的に示し
たものである。 On the other hand, the pulverized coal supplied into the furnace from the burner has a high ambient temperature in a high load zone and a low ambient temperature in a low load zone due to the influence of radiant heat from within the furnace. In addition, the ignition temperature and
The time required to reach the ignition temperature (ignition time) varies. FIG. 4 specifically shows these points.
高負荷域では雰囲気温度が高くかつ粉炭濃度が
高いため、同一揮発分、例えば30%の状態で、着
火温度約500℃の下において、着火時間は約0.05
秒であるが、低負荷域では着火時間が約0.15秒と
約3倍となる。ここで、高負荷域の雰囲気温度は
約1200℃、粉炭濃度は0.55、低負荷域の雰囲気温
度は約1000℃、粉炭濃度は0.3とする。この様に
低負荷域では着火時間が長くなる結果、保炎が困
難となり、いわゆる吹き飛び燃焼となり、長炎
化、燃焼の不安定が生じ、最低負荷のより一層の
低下は困難となつている。このためボイラに要求
される負荷を実現することが困難となる場合も生
じている。なお、NOx低減上は粉炭濃度を高め
た方が効果的であることは判明しているが、微粉
炭機の機能及び微粉炭輸送上微粉炭濃度は0.6〜
0.7が限界となつている。 In the high load range, the ambient temperature is high and the powder coal concentration is high, so the ignition time is about 0.05 at an ignition temperature of about 500°C with the same volatile content, for example 30%.
However, in the low load range, the ignition time is about 0.15 seconds, which is about three times as long. Here, the ambient temperature in the high load area is approximately 1200°C and the powder coal concentration is 0.55, and the ambient temperature in the low load area is approximately 1000°C and the powder coal concentration is 0.3. As a result of the longer ignition time in the low load range, it becomes difficult to hold the flame, resulting in so-called blow-off combustion, resulting in a longer flame and unstable combustion, making it difficult to further reduce the minimum load. For this reason, it sometimes becomes difficult to realize the load required for the boiler. Although it has been found that increasing the concentration of pulverized coal is more effective in reducing NO
0.7 is the limit.
<本考案の目的>
本考案は上述した問題点を解決するよう構成し
たものであり、ターンダウン比を拡大し得るバー
ナ装置を提供することを目的とする。<Object of the present invention> The present invention is configured to solve the above-mentioned problems, and an object of the present invention is to provide a burner device that can increase the turndown ratio.
<本考案の概要>
要するに本考案は微粉炭バーナ基部にサイクロ
ンセパレータを取り付け、噴射微粉炭を、外周部
は微粉炭濃度を高く、噴射軸心側は低くすること
により保炎性の向上と、燃焼性の向上を図り、か
つバーナとしての負荷制御範囲を拡大するよう構
成した装置である。<Summary of the present invention> In short, the present invention improves flame stability by attaching a cyclone separator to the base of the pulverized coal burner, injecting pulverized coal, and increasing the pulverized coal concentration on the outer periphery and lowering it on the injection axis side. This device is designed to improve combustibility and expand the load control range of the burner.
<実施例>
以下本考案の実施例を第1図を用いて説明す
る。<Example> An example of the present invention will be described below with reference to FIG.
図中符号5はバーナ本体を構成する外筒であ
り、この外筒内には中心軸線にほぼ等しくするよ
う内筒20が配置してある。19はこの外筒の基
部、つまり微粉炭流上流側に接続したサイクロン
セパレータである。21はこのサイクロンセパレ
ータ内に配置され、かつ内筒20の端部に挿通配
置したコントロールスリーブであり、油圧、空気
圧等の駆動装置22によりロツド23を介して内
筒20の軸心方向に移動可能なよう構成してあ
る。24はコントロールスリーブと内筒との接続
部の気密性を保持するためのベローである。微粉
炭供給管25〔同図B〕はこのサイクロンセパレ
ータ19に対し、その接線方向に接続している。 Reference numeral 5 in the figure is an outer cylinder constituting the burner body, and an inner cylinder 20 is disposed within this outer cylinder so as to be approximately equal to the central axis. 19 is a cyclone separator connected to the base of this outer cylinder, that is, to the upstream side of the pulverized coal flow. Reference numeral 21 denotes a control sleeve disposed within the cyclone separator and inserted through the end of the inner cylinder 20, and is movable in the axial direction of the inner cylinder 20 via a rod 23 by a drive device 22 such as hydraulic pressure or pneumatic pressure. It is structured like this. 24 is a bellows for maintaining airtightness of the connection between the control sleeve and the inner cylinder. The pulverized coal supply pipe 25 (FIG. B) is connected to the cyclone separator 19 in a tangential direction.
以上の構成の装置において、微粉炭管25内の
微粉炭Cはサイクロンセパレータ19の接線方向
から流入することによりセパレータ内で旋回流を
形成する。これにより、気流輸送された微粉炭は
セパレータ内周壁側に移動し、相当量の微粉炭は
内筒20と外筒5との間の通路10a内に流入す
る。一方コントロールスリーブ21に流入する微
粉炭量は相対的に低下し、通路10b内の微粉炭
濃度は低下する。つまり火炉内に対してはバーナ
中心部からは微粉炭濃度の低い噴流が、その周囲
からは濃度の高い噴流が噴射される。つまりバー
ナに対する全体量としては微粉炭濃度が低下して
も、分級により、微粉炭濃度の高い噴流を層状に
噴射するため、高濃度部の着火性が高く、かつ低
濃度部はこの高濃度部火炎に包囲されることなる
ため、雰囲気温度が高くなり、低濃度であつても
着火性は向上し、バーナ本全体としての着火性は
大幅に向上することになる。 In the apparatus configured as above, the pulverized coal C in the pulverized coal pipe 25 flows in from the tangential direction of the cyclone separator 19, thereby forming a swirling flow within the separator. As a result, the air-transported pulverized coal moves toward the inner circumferential wall of the separator, and a considerable amount of pulverized coal flows into the passage 10a between the inner cylinder 20 and the outer cylinder 5. On the other hand, the amount of pulverized coal flowing into the control sleeve 21 is relatively reduced, and the concentration of pulverized coal in the passage 10b is reduced. In other words, a jet stream with a low concentration of pulverized coal is injected into the furnace from the center of the burner, and a jet stream with a high concentration is injected from the surrounding area. In other words, even if the pulverized coal concentration decreases in terms of the overall amount to the burner, the pulverized coal concentration is jetted in a layered manner due to classification, so the ignitability of the high concentration area is high, and the low concentration area is the same as the low concentration area. Since the burner is surrounded by flame, the atmospheric temperature becomes high and the ignitability improves even at low concentrations, resulting in a significant improvement in the ignitability of the burner as a whole.
また、通路10a,10bに対する微粉炭量の
振り分けはコントロールスリーブ21を内筒20
の軸心方向に移動させることにより行う。ちなみ
に、コントロールスリーブ21を火炉側に移動さ
せることにより分級率は低下し、反対側に移動さ
せることによりコントロールスリーブ21の開口
部とサイクロンセパレータ後壁との空間、つまり
コントロールスリーブに対する微粉炭流入空間が
減少し分級率は相対的に向上する。 In addition, the amount of pulverized coal is distributed to the passages 10a and 10b by connecting the control sleeve 21 to the inner cylinder 20.
This is done by moving it in the axial direction. By the way, by moving the control sleeve 21 to the furnace side, the classification rate decreases, and by moving it to the opposite side, the space between the opening of the control sleeve 21 and the rear wall of the cyclone separator, that is, the pulverized coal inflow space to the control sleeve, decreases. It decreases and the classification rate improves relatively.
なお、図中符号1は火炉、2は風箱、3は3次
空気、4は2次空気、11は点火トーチ、12は
バーナスロート、16は2次空気旋回ベーン、1
7は3次レジスタ、18は2次レジスタである。 In the figure, 1 is a furnace, 2 is a wind box, 3 is tertiary air, 4 is secondary air, 11 is an ignition torch, 12 is a burner throat, 16 is a secondary air swirling vane, 1
7 is a tertiary register, and 18 is a secondary register.
<効果>
本考案を実施することにより、バーナに対する
微粉炭供給量が少い場合でも、微粉炭噴射部の一
部に微粉炭濃度の高い部分を形成するため、着火
性が良好であり、一方微粉炭濃度の低い部分の雰
囲気温度を高めるため、バーナ全体としての着火
性、燃焼性が向上し、高いターンダウン比を得る
ことができるので、ボイラ等、燃焼装置の負荷制
御範囲を拡大することができる。<Effects> By implementing the present invention, even when the amount of pulverized coal supplied to the burner is small, a portion with a high concentration of pulverized coal is formed in a part of the pulverized coal injection part, so ignitability is good; By increasing the atmospheric temperature in areas with low pulverized coal concentration, the ignitability and combustibility of the burner as a whole improves, and a high turndown ratio can be obtained, which expands the load control range of combustion equipment such as boilers. I can do it.
第1図Aは本考案の実施例を示すバーナの縦断
面図、同BはAのA−A線による断面図、第2図
は微粉炭の供給系統を示す系統図、第3図は炭量
及び1次空気量と微粉炭機負荷率との関係を示す
線図、第4図は着火温度、着火時間と石炭中の揮
発分との関係を示す線図である。
1……火炉、5……外筒、10a,10b……
微粉炭通路、19……サイクロンセパレータ、2
0……内筒、21……コントロールスリーブ。
Fig. 1A is a vertical sectional view of a burner showing an embodiment of the present invention, Fig. 1B is a sectional view taken along line A-A of A, Fig. 2 is a system diagram showing a pulverized coal supply system, and Fig. 3 is a pulverized coal supply system diagram. Fig. 4 is a diagram showing the relationship between the ignition temperature, the ignition time, and the volatile content in the coal. 1...Furnace, 5...Outer cylinder, 10a, 10b...
Pulverized coal passage, 19...Cyclone separator, 2
0...Inner cylinder, 21...Control sleeve.
Claims (1)
において、バーナ本体を構成する噴射筒の基部
にサイクロンセパレータを取り付け、噴射筒内
周面近傍の微粉炭濃度を、噴射筒中心軸側の微
粉炭濃度よりも高くして噴射するよう構成した
微粉炭燃焼用バーナ。 2 実用新案登録請求の範囲第1項記載の微粉炭
燃焼用バーナにおいて、噴射筒を、外筒と、こ
の外筒内に配置した内筒とにより構成し、内筒
の一端はサイクロンセパレータ内に開口位置さ
せ、かつこの内筒端部に対して内筒軸心方向に
移動可能なようコントロールスリーブを挿通位
置させたもの。[Claims for Utility Model Registration] 1. In a device that injects and burns pulverized coal transported by air current, a cyclone separator is attached to the base of the injection cylinder that constitutes the burner body, and the pulverized coal concentration near the inner peripheral surface of the injection cylinder is A pulverized coal combustion burner configured to inject pulverized coal at a concentration higher than that on the central axis side of the injection cylinder. 2. In the pulverized coal combustion burner described in claim 1 of the utility model registration claim, the injection cylinder is composed of an outer cylinder and an inner cylinder disposed within the outer cylinder, and one end of the inner cylinder is disposed within the cyclone separator. The control sleeve is placed in an open position, and a control sleeve is inserted through the end of the inner cylinder so that it can move in the axial direction of the inner cylinder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7010285U JPH0344968Y2 (en) | 1985-05-14 | 1985-05-14 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7010285U JPH0344968Y2 (en) | 1985-05-14 | 1985-05-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61186914U JPS61186914U (en) | 1986-11-21 |
JPH0344968Y2 true JPH0344968Y2 (en) | 1991-09-24 |
Family
ID=30606401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7010285U Expired JPH0344968Y2 (en) | 1985-05-14 | 1985-05-14 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0344968Y2 (en) |
-
1985
- 1985-05-14 JP JP7010285U patent/JPH0344968Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS61186914U (en) | 1986-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5685242A (en) | Pulverized coal combustion burner | |
JPH05507140A (en) | Collective concentric angular combustion system | |
CN101324334B (en) | Low NOx liquid state slag-off double-eddy flow coal-powder combustor | |
EP0284629B1 (en) | Dust coal igniting burner device | |
CA1065701A (en) | Steam boilers | |
JPS6323442B2 (en) | ||
JP2638040B2 (en) | Pulverized coal combustion equipment | |
JPH0330650Y2 (en) | ||
JP3830582B2 (en) | Pulverized coal combustion burner | |
JPH0344968Y2 (en) | ||
CN204574022U (en) | Many bluff bodies air-coal separating coal powder burner | |
JPS618513A (en) | Low pressure loss burner for coal-water slurry or fuel oil | |
CN114777114A (en) | Deep low-oxygen combustion system for pulverized coal | |
CN209116326U (en) | A kind of coal burner | |
JPH0450481B2 (en) | ||
JPS61285306A (en) | Burning method for pulverized carbon fuel | |
CA1204999A (en) | Low nox multifuel burner | |
CN109114545A (en) | Burning process and multistage burner | |
JPH0450482B2 (en) | ||
JPS6011286B2 (en) | Combustion method and combustion device | |
WO2023204102A1 (en) | Pulverized fuel burner | |
JPH0241443Y2 (en) | ||
RU1802266C (en) | Burner assembly | |
JPH0318832Y2 (en) | ||
JPH05264015A (en) | Afterburner for gas turbine exhaust |