JPH0344963B2 - - Google Patents

Info

Publication number
JPH0344963B2
JPH0344963B2 JP61061608A JP6160886A JPH0344963B2 JP H0344963 B2 JPH0344963 B2 JP H0344963B2 JP 61061608 A JP61061608 A JP 61061608A JP 6160886 A JP6160886 A JP 6160886A JP H0344963 B2 JPH0344963 B2 JP H0344963B2
Authority
JP
Japan
Prior art keywords
frequency
bimorph
carrier
vibration
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61061608A
Other languages
Japanese (ja)
Other versions
JPS62218308A (en
Inventor
Yoshinobu Nakamura
Hiroshi Doke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP6160886A priority Critical patent/JPS62218308A/en
Publication of JPS62218308A publication Critical patent/JPS62218308A/en
Publication of JPH0344963B2 publication Critical patent/JPH0344963B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] (産業上の利用分野) 本発明ほ、電子部品或は小形機械部品等の比較
的小さい部品を振動により搬送するものに係り、
特にその振動源として圧電素子を用いた圧電駆動
形搬送装置に関する。 (従来の技術) この種の搬送装置例えばパーツフイーダにおい
ては、一般に加振体として板ばね等の弾性板の両
側面に圧電素子を貼着して成るバイモルフを採用
している。このバイモルフの両側の圧電素子に分
極方向が反対になるように交流電圧を印加する
と、例えば正の半サイクルで一方の圧電素子が伸
び且つ他方の圧電素子が縮み、負の半サイクルで
一方の圧電素子が縮み且つ他方の圧電素子が伸び
るといつた伸縮運動を繰返すことによりバイモル
フが励振されてたわみ振動する。これによつて、
このバイモルフに連結した搬送体を斜め上下方向
に振動させて、その搬送体上の搬送品を順次搬送
するものである。 ところで、最も効率良く振動搬送を行うには、
パーツフイーダ全体を一つのばね系として共振振
動させることが必要であり、これにはバイモルフ
の振動数とパーツフイーダ全体の機械系の固有振
動数とを一致させる必要がある。 而して、従来構成のものでは、バイモルフに印
加する交流電圧の周波数が商用電源の周波数で一
定不変になつていたため、バイモルフの振動数は
一定不変であり、従つて全体の機械系の固有振動
数の方をバイモルフの振動数(50又は60Hz)に一
致させるように調節していた。このような機械系
の固有振動数の調節は、例えばバイモルフの弾性
板と搬送体とを連結する連結金具の種類を代えた
り、搬送体の高さ位置を調節したりする等して行
つていた。 しかし、このような機械系の調節作業は、かな
りの熟練者でも一度で正確に行うことは困難であ
り、調節作業性に難点があつた。 そこで、このような機械系の面倒な調節作業を
不要にするため、実公昭52−48554号公報に示す
ように、電源電圧の周波数を調節可能に構成し、
その周波数を調節することによりバイモルフの振
動数の方を全体の機械系の固有振動数に合せるよ
うに調節することが考えられている。しかし、こ
のものでは出力波形が矩形波である。このような
矩形波電圧を圧電素子に印加すると、圧電素子の
振動波形ひいては搬送体の振動波形が第4図にお
いてbで示すように高調波成分を多く含むように
なる。このため、搬送体の振動状態が不安定にな
つて搬送効率低下の原因となるばかりか、その高
調波成分によつて大きな騒音が発生する欠点があ
つた。 (発明が解決しようとする問題点) 上述したように、全体の機械系の固有振動数を
調節するものでは、その調節作業が頗る面倒であ
り、一方、電源電圧の周波数を調節するものでは
その電圧波形が矩形波であつたため、振動状態の
不安定化による搬送効率低下や高騒音化を招く欠
点があつた。 本発明は上述した欠点を解決するためのもの
で、従つてその目的は、全体を共振状態にするた
めの調節作業の簡単化、搬送体の振動安定化によ
る搬送効率向上及び低騒音化を図り得る圧電駆動
形搬送装置を提供するにある。 [発明の構成] (問題点を解決するための手段) 本発明は、搬送体を振動させる加振体の圧電素
子に交流電圧を印加する交流電源装置を、出力周
波数が可変で且つ出力波形が正弦波状となるよう
に構成したものである。 (作用) 共振状態を得るための調節時には、交流電源装
置の出力周波数を調節することによつて、加振体
の圧電素子の振動数を全体の機械系の固有振動数
に一致させるように調節する。また、この交流電
源装置から圧電素子に印加される交流電圧の波形
を正弦波状にすることによつて、圧電素子の振動
波形ひいては搬送体の振動波形に高調波成分が発
生することを防止するようにしたものである。 (実施例) 以下、本発明をボウル形パーツフイーダに適用
した一実施例を図面に基いて説明する。1は円盤
状の基台で、これの上面には取付基部2が突設さ
れている。3は複数個の加振体たるバイモルフ
(第1図においては便宜上2個のみ図示)で、各
バイモルフ3は第2図及び第3図に示すように帯
状の弾性板4の両側面に圧電素子5a,5bを例
えば貼着により取付けて構成されている。この場
合、圧電素子5a,5bとしては、例えばチタン
酸ジルコン酸鉛セラミツクスを採用している。こ
のようなバイモルフ3の弾性板4の下端部を取付
基部2の周側面部にねじ止め固定し、これによつ
て各バイモルフ3が基台1上の同一円周上に夫々
所定角度だけ傾斜された形態で等間隔に配置され
ている。6は各バイモルフ3の弾性板4の上端に
弾性材製の連結具7を介して連結した搬送体で、
これは全体として皿状を成し、その内周部に螺旋
状搬送路(図示せず)を形成している。一方、8
は商用電源9(100V又は200V、50Hz又は60Hz)
に接続した交流電源装置で、これには出力周波数
を可変にするための周波数可変回路、出力波形を
正弦波状に整形するための波形整形回路、及び出
力電圧を周波数とは別個に調節するための電圧調
節回路が設けられている。この交流電源装置8の
出力端子がリード線10a,10bを介してバイ
モルフ3の圧電素子5a,5bにその分極方向が
反対になるように接続されている。 次に、上記構成の作用について説明する。パー
ツフイーダ全体を共振状態にするための調節を行
う場合、まず交流電源装置8の出力電圧を例えば
150Vに調節してこれを圧電素子5a,5bに印
加する。すると、例えば正の半サイクルで一方の
圧電素子5aが伸び且つ他方の圧電素子5bが縮
み、負の半サイクルで一方の圧電素子5aが縮み
且つ他方の圧電素子5bが伸びるといつた伸縮運
動を繰返すことによりバイモルフ3が励振されて
たわみ振動して、搬送体6が周方向斜め上下方向
に振動する。そして、交流電源装置8の図示しな
い操作摘みを操作して交流電源装置8の出力周波
数(バイモルフ3の圧電素子5a,5bに印加す
る交流電圧の周波数)を変化させる。このときの
バイモルフ3の振動数は印加電圧の周波数に等し
くなるから、印加電圧の周波数の変化に伴つてバ
イモルフ3の振動数が変化し、ひいては搬送体6
の振動数が変化する。そして、バイモルフ3の振
動数がパーツフイーダ全体の機械系の固有振動数
に一致すると、全体が共振状態になつてバイモル
フ3の振動振幅ひいては搬送体6の振動振幅が急
激に大きくなつて最大になり、搬送品の搬送速度
が最大になる。従つて、作業者は搬送品の搬送速
度或は搬送体6の振動振幅又はバイモルフ3の振
動振幅を確認しながら交流電源装置8の出力周波
数を変化させ、その出力周波数を搬送速度が最大
になるように調節すれば良い。このため、共振状
態を得るための調節作業が、従来の機械系を調節
するものに比して、頗る簡単であり、従つて例え
ば搬送品の種類に応じて搬送体6を他の搬送体に
交換するような場合でも、調節作業にさほど手間
がかからず、生産性が向上する。 しかも、本実施例では交流電源装置8から圧電
素子5a,5bに印加する交流電圧の波形が正弦
波状であるから、電圧波形がバイモルフ3の基本
的な振動波形にほぼ一致する。このため、バイモ
ルフ3の振動波形ひいては搬送体6の振動波形に
高周波成分が発生することが防止される。本発明
者はこのときの搬送体6の振動波形を実際に測定
したので、その結果を第4図にaで示す。これか
ら明らかなように、搬送体6の振動波形が高調波
成分のない正弦波状になるから、印加電圧の波形
を矩形波とした場合に比し、搬送体6の振動状態
が安定化して搬送効率が向上すると共に、騒音が
大幅に低下する。ちなみに、搬送体6の径寸法が
150mmのものにおいて、バイモルフ3を200Hzの正
弦波電圧と矩形波電圧で駆動した時に発生する騒
音の測定結果を表1に示す。この表1から明らか
なように、正弦波の方が矩形波よりも5dB騒音が
低く、騒音低減効果が大きいことが分る。
[Object of the Invention] (Industrial Application Field) The present invention relates to a system for conveying relatively small parts such as electronic parts or small mechanical parts by vibration.
In particular, the present invention relates to a piezoelectrically driven conveyance device using a piezoelectric element as its vibration source. (Prior Art) This type of conveyance device, for example, a parts feeder, generally employs a bimorph, which is formed by pasting piezoelectric elements on both sides of an elastic plate such as a leaf spring, as a vibrating body. When an AC voltage is applied to the piezoelectric elements on both sides of this bimorph so that their polarization directions are opposite, for example, one piezoelectric element expands and the other piezoelectric element contracts in the positive half cycle, and one piezoelectric element contracts in the negative half cycle. By repeating the stretching motion in which one piezoelectric element contracts and the other piezoelectric element extends, the bimorph is excited and flexibly vibrates. By this,
A conveying body connected to this bimorph is vibrated diagonally in the vertical direction to sequentially convey the articles on the conveying body. By the way, in order to carry out vibration conveyance most efficiently,
It is necessary to cause the entire parts feeder to vibrate resonantly as one spring system, and for this to occur, it is necessary to match the frequency of the bimorph with the natural frequency of the mechanical system of the entire parts feeder. In the conventional configuration, the frequency of the AC voltage applied to the bimorph remains constant at the frequency of the commercial power supply, so the frequency of the bimorph remains constant and the natural vibration of the entire mechanical system. The number was adjusted to match the frequency of the bimorph (50 or 60Hz). The natural frequency of such a mechanical system can be adjusted by, for example, changing the type of connecting fittings that connect the elastic plate of the bimorph and the carrier, or adjusting the height position of the carrier. Ta. However, it is difficult for even a highly skilled person to accurately perform adjustment work on such a mechanical system at once, and there have been problems with the adjustment workability. Therefore, in order to eliminate the need for such troublesome adjustment work of the mechanical system, as shown in Japanese Utility Model Publication No. 52-48554, the frequency of the power supply voltage is configured to be adjustable.
It is considered that by adjusting the frequency, the frequency of the bimorph can be adjusted to match the natural frequency of the entire mechanical system. However, in this case, the output waveform is a rectangular wave. When such a rectangular wave voltage is applied to the piezoelectric element, the vibration waveform of the piezoelectric element, and thus the vibration waveform of the carrier, will contain many harmonic components, as shown by b in FIG. 4. For this reason, the vibration state of the conveyor becomes unstable, which not only causes a decrease in conveyance efficiency, but also has the drawback that a large amount of noise is generated due to its harmonic components. (Problems to be Solved by the Invention) As mentioned above, in the case of adjusting the natural frequency of the entire mechanical system, the adjustment work is extremely troublesome, whereas in the case of adjusting the frequency of the power supply voltage, the adjustment work is extremely troublesome. Since the voltage waveform was a rectangular wave, there were drawbacks such as a decrease in conveying efficiency and an increase in noise due to the instability of the vibration state. The present invention is intended to solve the above-mentioned drawbacks, and its purpose is to simplify the adjustment work to bring the whole into a resonant state, improve transport efficiency by stabilizing the vibration of the transport body, and reduce noise. The object of the present invention is to provide a piezoelectrically driven conveying device that obtains the desired results. [Structure of the Invention] (Means for Solving the Problems) The present invention provides an AC power supply device that applies an AC voltage to a piezoelectric element of a vibrating body that vibrates a conveyance body, in which the output frequency is variable and the output waveform is variable. It is configured to have a sine wave shape. (Function) When adjusting to obtain a resonant state, the frequency of the piezoelectric element of the vibrating body is adjusted to match the natural frequency of the entire mechanical system by adjusting the output frequency of the AC power supply. do. Furthermore, by making the waveform of the AC voltage applied from this AC power supply device to the piezoelectric element sinusoidal, harmonic components are prevented from being generated in the vibration waveform of the piezoelectric element and, ultimately, the vibration waveform of the carrier. This is what I did. (Example) Hereinafter, an example in which the present invention is applied to a bowl-shaped parts feeder will be described based on the drawings. Reference numeral 1 denotes a disc-shaped base, and a mounting base 2 is protruded from the upper surface of this base. Reference numeral 3 denotes a plurality of bimorphs (only two are shown for convenience in FIG. 1) as vibrating bodies, and each bimorph 3 has piezoelectric elements on both sides of a band-shaped elastic plate 4, as shown in FIGS. 2 and 3. 5a and 5b are attached by, for example, adhesion. In this case, the piezoelectric elements 5a and 5b are made of, for example, lead zirconate titanate ceramics. The lower end of the elastic plate 4 of the bimorph 3 is screwed and fixed to the circumferential side of the mounting base 2, so that each bimorph 3 is tilted at a predetermined angle on the same circumference on the base 1. They are arranged at equal intervals. 6 is a carrier connected to the upper end of the elastic plate 4 of each bimorph 3 via a connector 7 made of an elastic material;
This has a dish-like shape as a whole, and a spiral conveyance path (not shown) is formed on the inner circumference thereof. On the other hand, 8
is commercial power supply 9 (100V or 200V, 50Hz or 60Hz)
An AC power supply device connected to A voltage regulation circuit is provided. The output terminals of this AC power supply device 8 are connected to the piezoelectric elements 5a, 5b of the bimorph 3 via lead wires 10a, 10b so that their polarization directions are opposite. Next, the operation of the above configuration will be explained. When making adjustments to bring the entire parts feeder into a resonant state, first set the output voltage of the AC power supply 8 to, for example,
The voltage is adjusted to 150V and applied to the piezoelectric elements 5a and 5b. Then, for example, in a positive half cycle, one piezoelectric element 5a extends and the other piezoelectric element 5b contracts, and in a negative half cycle, one piezoelectric element 5a contracts and the other piezoelectric element 5b extends, and so on. By repeating this, the bimorph 3 is excited and flexibly vibrates, causing the carrier 6 to vibrate diagonally up and down in the circumferential direction. Then, an operation knob (not shown) of the AC power supply device 8 is operated to change the output frequency of the AC power supply device 8 (the frequency of the AC voltage applied to the piezoelectric elements 5a and 5b of the bimorph 3). Since the frequency of the bimorph 3 at this time is equal to the frequency of the applied voltage, the frequency of the bimorph 3 changes as the frequency of the applied voltage changes, and as a result, the frequency of the bimorph 3 changes, and as a result, the frequency of the bimorph 3 changes as the frequency of the applied voltage changes.
The frequency of vibration changes. Then, when the frequency of the bimorph 3 matches the natural frequency of the mechanical system of the entire parts feeder, the whole becomes in a resonant state, and the vibration amplitude of the bimorph 3 and, in turn, the vibration amplitude of the carrier 6 suddenly increases and reaches its maximum. The conveyance speed of the conveyed items is maximized. Therefore, the operator changes the output frequency of the AC power supply device 8 while checking the conveyance speed of the conveyed product, the vibration amplitude of the conveyor 6, or the vibration amplitude of the bimorph 3, and sets the output frequency to the maximum conveyance speed. You can adjust it accordingly. For this reason, the adjustment work to obtain a resonant state is much easier than adjusting the conventional mechanical system, and therefore, it is possible to change the transport body 6 to another transport body depending on the type of goods to be transported, for example. Even in the case of replacement, the adjustment work does not require much effort, improving productivity. Furthermore, in this embodiment, since the waveform of the AC voltage applied from the AC power supply device 8 to the piezoelectric elements 5a and 5b is sinusoidal, the voltage waveform almost matches the basic vibration waveform of the bimorph 3. Therefore, generation of high frequency components in the vibration waveform of the bimorph 3 and, ultimately, in the vibration waveform of the carrier 6 is prevented. The inventor actually measured the vibration waveform of the carrier 6 at this time, and the results are shown in FIG. 4 by a. As is clear from this, since the vibration waveform of the carrier 6 becomes a sine wave with no harmonic components, the vibration state of the carrier 6 is stabilized and the transport efficiency is improved compared to when the waveform of the applied voltage is a rectangular wave. is improved, and noise is significantly reduced. By the way, the diameter of the conveyor 6 is
Table 1 shows the measurement results of the noise generated when Bimorph 3 was driven with a 200Hz sine wave voltage and a square wave voltage in a 150mm model. As is clear from Table 1, the noise of the sine wave is 5 dB lower than that of the rectangular wave, and it can be seen that the noise reduction effect is greater.

【表】【table】

【表】 また、表2は本実施例の圧電式パーツフイーダ
と、電磁石により搬送体を振動させる電磁式パー
ツフイーダにおける駆動時の最大電流を比較した
ものである。この場合、両者とも共振周波数を50
Hzに設定した上で、径寸法が100mmから300mmまで
の複数種の搬送体を順次取替えて比較したもの
で、この表2から明らかなように圧電式の方が電
磁式よりも大幅に電流値が小さく、消費電力が極
めて少ないことが分る。 尚、本発明はボウル形パーツフイーダばかりで
なく直進形パーツフイーダにも適用して実施で
き、また加振体としはバイモルフばかりでなく弾
性板の片面のみに圧電素子を貼着したものも利用
できる等、要旨を逸脱しない範囲内で種々変更可
能である。 [発明の効果] 本発明は以上の説明から明らかなように、交流
電源装置の出力周波数を可変に構成したので、全
体を共振状態にするための調節作業を出力周波数
を調節することによつて行うことができ、その調
節作業を簡単化できる。しかも、交流電源装置の
出力波形を正弦波状にするようにしたから、圧電
素子の振動波形ひいては搬送体の振動波形に高調
波成分が発生することを防止でき、以つて搬送体
の振動安定化による搬送効率向上及び低騒音化を
図り得るという優れた効果を奏する。
Table 2 also compares the maximum current during driving in the piezoelectric parts feeder of this embodiment and the electromagnetic parts feeder in which the carrier is vibrated by an electromagnet. In this case, both have a resonant frequency of 50
Hz, and compared multiple types of carriers with diameters from 100 mm to 300 mm.As is clear from Table 2, the piezoelectric type has a significantly higher current value than the electromagnetic type. It can be seen that the power consumption is extremely small. Note that the present invention can be applied not only to bowl-shaped parts feeders but also to linear parts feeders, and as the vibrator, not only bimorphs but also elastic plates with piezoelectric elements affixed to only one side can be used. Various changes can be made without departing from the gist. [Effects of the Invention] As is clear from the above description, the present invention is configured to make the output frequency of the AC power supply variable. Therefore, the adjustment work to bring the whole into a resonant state can be done by adjusting the output frequency. The adjustment work can be simplified. Moreover, since the output waveform of the AC power supply is made into a sine wave, it is possible to prevent harmonic components from being generated in the vibration waveform of the piezoelectric element and ultimately the vibration waveform of the carrier, thereby stabilizing the vibration of the carrier. This has the excellent effect of improving conveyance efficiency and reducing noise.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示したもので、第1
図は全体の斜視図、第2図はバイモルフの側面
図、第3図は同正面図、第4図は搬送体の振動の
オシロ波形を示した写真である。 図面中、3はバイモルフ、4は弾性板、5a及
び5bは圧電素子、6は搬送体、8は交流電源装
置である。
The drawings show one embodiment of the present invention.
2 is a side view of the bimorph, FIG. 3 is a front view thereof, and FIG. 4 is a photograph showing an oscilloscope waveform of the vibration of the carrier. In the drawings, 3 is a bimorph, 4 is an elastic plate, 5a and 5b are piezoelectric elements, 6 is a carrier, and 8 is an AC power supply device.

Claims (1)

【特許請求の範囲】[Claims] 1 弾性板に圧電素子を取付けて成る加振体に搬
送体を連結し、前記圧電素子に交流電圧を印加し
てこれを励振させることにより前記搬送体を振動
させるようにしたものにおいて、前記圧電素子に
交流電圧を印加する交流電源装置を、出力周波数
が可変で且つ出力波形が正弦波状となるように構
成したことを特徴とする圧電駆動形搬送装置。
1. A carrier is connected to a vibrating body comprising a piezoelectric element attached to an elastic plate, and the carrier is vibrated by applying an alternating current voltage to the piezoelectric element to excite it, in which the piezoelectric 1. A piezoelectric drive type conveyance device, characterized in that an AC power supply device that applies an AC voltage to an element is configured so that the output frequency is variable and the output waveform is sinusoidal.
JP6160886A 1986-03-19 1986-03-19 Piezoelectric drive type conveying device Granted JPS62218308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6160886A JPS62218308A (en) 1986-03-19 1986-03-19 Piezoelectric drive type conveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6160886A JPS62218308A (en) 1986-03-19 1986-03-19 Piezoelectric drive type conveying device

Publications (2)

Publication Number Publication Date
JPS62218308A JPS62218308A (en) 1987-09-25
JPH0344963B2 true JPH0344963B2 (en) 1991-07-09

Family

ID=13176047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6160886A Granted JPS62218308A (en) 1986-03-19 1986-03-19 Piezoelectric drive type conveying device

Country Status (1)

Country Link
JP (1) JPS62218308A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128951A (en) * 1988-11-10 1990-05-17 Nippon Denso Co Ltd Brake device
US7004306B2 (en) * 2002-12-19 2006-02-28 Fmc Technologies, Inc. Conveying apparatus with piezoelectric driver
JP4776884B2 (en) * 2004-03-05 2011-09-21 株式会社 Bfcアプリケーションズ Piezoelectric parts feeder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167913U (en) * 1979-05-16 1980-12-03

Also Published As

Publication number Publication date
JPS62218308A (en) 1987-09-25

Similar Documents

Publication Publication Date Title
CN101909834B (en) Vibration cutting device and method for vibration cutting
JP2018127287A (en) Workpiece transfer device
US9181037B1 (en) Conveyor assembly
JPH0344963B2 (en)
TWI603904B (en) Vibrating bowl feeder
US6588581B1 (en) Vibratory apparatus having adjustable spring assembly
JP3567570B2 (en) Vibration equipment
JP7128407B2 (en) vibrating feeder
JPS62116415A (en) Parts feeder
JPH0321447B2 (en)
KR20190027709A (en) Work transfer device and manufacturing method of work transfer device
JPS62196217A (en) Piezoelectric driving conveyor
JPH0595678U (en) Resonant vibrator control device
JPH01203112A (en) Piezoelectricity type vibration giving body and piezoelectricity drive type transport device equipped with it
JPH03264416A (en) Vibration type carrying device
JP2012071956A (en) Oscillation type part conveying device
JPH0240016Y2 (en)
JPH04271874A (en) Vibration device
JP5793941B2 (en) Article conveying device
JPH01261109A (en) Parts feeder
JPH07277466A (en) Piezoelectric drive type conveying device
JPS62222917A (en) Piezoelectric driven type feeding device
JPH09175623A (en) Parts supplying device
JPH0242660Y2 (en)
JPS6317574A (en) Piezo-electric bimorph element