JPH0344915A - Manufacture of x-ray exposure mask - Google Patents
Manufacture of x-ray exposure maskInfo
- Publication number
- JPH0344915A JPH0344915A JP1181088A JP18108889A JPH0344915A JP H0344915 A JPH0344915 A JP H0344915A JP 1181088 A JP1181088 A JP 1181088A JP 18108889 A JP18108889 A JP 18108889A JP H0344915 A JPH0344915 A JP H0344915A
- Authority
- JP
- Japan
- Prior art keywords
- mask
- ray
- electron beam
- pattern
- reticle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 238000010894 electron beam technology Methods 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 7
- 238000000609 electron-beam lithography Methods 0.000 abstract description 7
- 229910052710 silicon Inorganic materials 0.000 abstract description 7
- 239000010703 silicon Substances 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 6
- 239000006096 absorbing agent Substances 0.000 abstract description 5
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract description 3
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 2
- 230000008602 contraction Effects 0.000 abstract 2
- 238000005516 engineering process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明(よ ハーフミクロン以下の微細パターン形成を
目的とするX線露光装置に用いられるX線マスクの製造
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing an X-ray mask used in an X-ray exposure apparatus for forming fine patterns of half a micron or less.
従来の技術
半導体デバイスの高集積化が著しく進む中で、微細パタ
ーン形成技術の開発が盛んに行われている。これまで量
産技術を支えてきた光方式の縮小投影露光技術(よ 光
源波長とレンズNA (開口数)により決まる解像性能
にも限界があり、64MDRAM以降のデバイスに必要
とされる0、25μmレベルの露光技術に(上 電子ビ
ーム露光技術あるいはX線露光技術が有望と考えられて
いる。X線露光に(ヨX線を吸収する材料により作製さ
れたX線マスクが必要とされる。第2図に従来から用い
られているX線マスクの代表的な製造方法を示す。まず
、シリコンウェハ10上にX線透過膜として用いるSi
N膜11を1μm程度CVD法により形成する(第2図
(a))。次にX線透過領域用の窓12形戊用として、
裏面のSin膜11をエツチングにより除去する(第2
図(b))。次に X線吸収体として低応力重金属Ta
13を全面に形成する(第2図(C))。次に二層レジ
ストプロセスの中間層として用いる5iOa 14を全
面に形成する(第2図(d))。次に電子線レジストを
塗布した徽 電子ビーム描画15により回路パターンを
露光L 現象処理を行う(第2図(e))。次にレジス
トパターン16をマスクとし 中間層をエツチングして
5i(h14上へパターン転写を行う(第2図(f))
。次に5iO214をマスクとしてTa13をエツチン
グしてパターン転写を行う(第2図(g))。最後にレ
ジスト16を除去した後、 シリコン基板ICを裏面よ
りエツチングしてX線透過窓を形成してX線マスクとし
て完成する(第2図(h))。BACKGROUND OF THE INVENTION As semiconductor devices have become increasingly highly integrated, techniques for forming fine patterns have been actively developed. The optical reduction projection exposure technology that has supported mass production technology up until now has a limit to its resolution performance, which is determined by the light source wavelength and lens NA (numerical aperture), and is at the 0.25 μm level required for devices after 64 MDRAM. Electron beam exposure technology or X-ray exposure technology is considered to be promising for exposure technology (1). The figure shows a typical manufacturing method of an X-ray mask that has been used conventionally. First, a silicon wafer 10 is coated with a Si
An N film 11 having a thickness of about 1 μm is formed by the CVD method (FIG. 2(a)). Next, as a window 12 type for the X-ray transparent area,
The Sin film 11 on the back surface is removed by etching (second
Figure (b)). Next, low stress heavy metal Ta is used as an X-ray absorber.
13 is formed on the entire surface (FIG. 2(C)). Next, 5iOa 14, which is used as an intermediate layer in the two-layer resist process, is formed on the entire surface (FIG. 2(d)). Next, after applying an electron beam resist, the circuit pattern is exposed to light by electron beam drawing 15 (FIG. 2(e)). Next, using the resist pattern 16 as a mask, the intermediate layer is etched and the pattern is transferred onto 5i (h14) (Fig. 2(f)).
. Next, Ta13 is etched using 5iO214 as a mask to transfer the pattern (FIG. 2(g)). Finally, after removing the resist 16, the silicon substrate IC is etched from the back side to form an X-ray transparent window, completing the X-ray mask (FIG. 2(h)).
発明が解決しようとする課題
X線マスクに+;L0,5μm以下の微細な回路パター
ンが必要なた取 パターン線幅及び位置の精度としては
0.1μm以下のオーダが要求される。ところが上記方
法で(よ 回路パターンの形成に電子ビーム痛画法を用
いるため以下の問題点があったその1つ(よ 電子ビー
ムの散乱と照射電子の電荷によって春画パターンが変形
する近接効果の問題である。特にX線マスクの場合、吸
収体としてTaAu等の重金属を用いるためこの効果が
顕著となり、多層レジストプロセスの使用や近接効果補
正を行っても十分な精度を得ることは困難であった も
う1つ(よ 電子ビーム描画装置の持つ固有の描画誤差
の問題である。電子レンズ収差によるビーム偏光誤差や
フィールド継ぎ時のステージ停止精度等の誤差があり、
描画パターン全域において高精度な描画を行うことが困
難であるという欠点を有してい九 本発明(よ 上述の
課題を解決するために 回路パターンをX線マスク上に
直接電子ビームにより描画し形成するのではなく、レチ
クル上に形成された回路パターンを十分な解像性能を有
する縮小投影露光装置により縮小転写してX線マスクパ
ターンを形成するもので、従来方式の欠点であったパタ
ーン精度を改善し 且つ生産性にも優れたX線露光用マ
スクを製造する方法を提供することを目的とする。Problems to be Solved by the Invention The X-ray mask requires a fine circuit pattern of 5 .mu.m or less.The accuracy of pattern line width and position is required to be on the order of 0.1 .mu.m or less. However, with the above method (1) Since the electron beam pain drawing method was used to form the circuit pattern, there were the following problems (1) The problem of proximity effect where the Shunga pattern is deformed due to the scattering of the electron beam and the charge of the irradiated electrons. Especially in the case of X-ray masks, this effect is noticeable because heavy metals such as TaAu are used as absorbers, and it has been difficult to obtain sufficient accuracy even when using a multilayer resist process or correcting the proximity effect. Another problem is the inherent drawing errors of electron beam drawing equipment.
This invention has the disadvantage that it is difficult to perform highly accurate drawing over the entire area of the drawing pattern.In order to solve the above-mentioned problems, a circuit pattern is drawn and formed directly on an X-ray mask using an electron beam. Instead, the circuit pattern formed on the reticle is reduced and transferred using a reduction projection exposure device with sufficient resolution performance to form an X-ray mask pattern, improving the pattern accuracy that was a drawback of the conventional method. It is an object of the present invention to provide a method for manufacturing an X-ray exposure mask which is also excellent in productivity.
課題を解決するための手段
本発明ば レチクル上に電子ビーム露光装置を用いて所
望する回路パターンのN倍のマスクを形成し その後フ
ッカアルゴンレーザを光源とし開口数が0.45以上を
有する投影レンズを搭載した縮小投影露光装置を用いて
、前記レチクル上の回路パターンをX線マスク材料の上
に一括してN分の1に縮小投影し転写を行なうというX
線露光用マスクの製造方法であも
作用
一般に縮小投影光学系の解像性能は以下の式で表される
。Means for Solving the Problems According to the present invention, a mask of N times the desired circuit pattern is formed on a reticle using an electron beam exposure device, and then a projection lens having a numerical aperture of 0.45 or more using a Hooker argon laser as a light source Using a reduction projection exposure device equipped with a
In general, the resolution performance of a reduction projection optical system is expressed by the following equation.
解像限界: R=k・λ/NA−(1)ここでλは光
源波長、NAは投影レンズの解像性能の目安として用い
られる開口数、kはリソグラフィ工程における総合的な
性能を表わすプロセス係数である。高解像性能が得られ
るレジスト材料及びプロセスを採用することによりに−
0,5程度まで値を小さくすることは可能である。ここ
で、光源波長としてフッカアルゴン(ArF)レーザを
用いれ(′L λ=0.193μへ また投影レンズの
NAとして0.45以上を用いれば(1)式より
R=k・λ/NA≦0.214.umとなり、X線マス
に必要とされる0、25μmレベルの解像性能が得られ
ることにな翫 従って、N倍のレチクル上に形成された
回路パターンをフッカアルゴンを光源とした前記縮小投
影露光装置を用いてX線マスクを形成するマスク材料上
にN分の1に縮小転写することによって、パターン精度
に優れた等倍のX線マスクを得ることができも まt、
N倍のレチクル時のパターン位置精度は フォトマ
スク材料として用いるCr等の材料上に電子ビーム露光
によりパターン形成を行った△ 電子ビームの散乱の影
響も小さし〜 更に 縮小投影を行いX線マスク上へパ
ターン転写するたム 投影レンズの歪を無視すればレチ
クル上のパターン位置精度はN分の1に低減できも
実施例
第1図は本発明の一実施例におけるX線露光用マスクの
製造方法を示す工程図である。以下第1図を参照しなが
ら実施例を詳細に説明する。まず、適当な倍率(例えば
5倍)のレチクル1上に 電子ビーム露光2により直接
描画を行なって回路パターンを形成する(第1図(a)
)。この時の描画精度(よ 電子レンズ詩法 ステージ
精度及びプロセス要因を含めた総合的な精度となり、最
適化を行うことにより0.1μm以下の精度が実現され
ている。Resolution limit: R=k・λ/NA−(1) where λ is the light source wavelength, NA is the numerical aperture used as a measure of the resolution performance of the projection lens, and k is the process representing the overall performance in the lithography process. It is a coefficient. By adopting resist materials and processes that provide high resolution performance,
It is possible to reduce the value to about 0.5. Here, if a Hooker argon (ArF) laser is used as the light source wavelength ('L λ = 0.193μ) and if the NA of the projection lens is 0.45 or more, R = k・λ/NA≦0 from equation (1). .214.um, and it is possible to obtain resolution performance at the 0.25 μm level required for X-ray mass. It is possible to obtain a same-size X-ray mask with excellent pattern accuracy by reducing and transferring the image to 1/N on the mask material forming the X-ray mask using a reduction projection exposure device.
The pattern position accuracy when using a reticle of N times is as follows: The pattern is formed by electron beam exposure on a material such as Cr used as a photomask material.The influence of electron beam scattering is also small. If the distortion of the projection lens is ignored, the pattern position accuracy on the reticle can be reduced to 1/N.Embodiment FIG. 1 shows a method of manufacturing an X-ray exposure mask according to an embodiment of the present invention. FIG. The embodiment will be described in detail below with reference to FIG. First, a circuit pattern is formed by directly drawing on a reticle 1 at an appropriate magnification (for example, 5x) using electron beam exposure 2 (see Fig. 1(a)).
). The drawing accuracy at this time (electronic lens poetry) is a comprehensive accuracy that includes stage accuracy and process factors, and by optimization, an accuracy of 0.1 μm or less has been achieved.
次にシリコンウェーハ3上にX線透過膜のSiN膜4を
CVD法により埋積して形成する(第1図(b))。Next, an SiN film 4, which is an X-ray transparent film, is buried and formed on the silicon wafer 3 by the CVD method (FIG. 1(b)).
次にX線透過領域の窓5を形成するために シリコンウ
ェーハ3裏面のSiN膜4の一部をエツチングにより除
去する(第1図(C))。この時の窓5形状LL、
SLとSiN界面での局所的応力を緩和するために正方
形よりは円に近い多角形の方が望まし賎 次に X線吸
収体として低応力な重金風 例えばTa6をスパッタ法
により全面に形成する(第1図(d))。次?Q A
rFエキシマレーザ光に対し 十分な感度と高い解像性
を持つフォトレジスト7を全面に塗布する(第1図(e
))。次に 前記レチクル1上の回路パターンを波長1
93nmのArFレーザを光源とL NA=0.45
以上の縮小投影レンズ8を搭載したステッパーを用いて
、前記X線マスク形成用のシリコンウェーハ3上に一括
して縮小投影を行り\転写を行う(第1図(f))。X
線マスクに必要とされる解像性能は この投影露光法に
より、前述したように満足されることになん まな 最
も重要なパターン位置精度(σA)についても今回の方
法によれば一般に以下の式で表わせも
ム露光装置の描画精度、 σL(よ 投影レンズの収差
の影響によるレンズデイスト−ジョン、Nはレチクルの
縮小比である。ここで、通常用いられているN−5,t
y EB=0.1、ty L−0,05p m程度の値
を持つとすれic a A−0,054μm程度とな
り、0.25.umルールのX線マスクに必要とされる
パターン位置精度0゜05μmをほぼ満足することにな
る。よって5倍のレチクル上に 電子線描画を行うこと
により、電子線描画の誤差を数分の−に低減できる。無
収差レンズ等投影レンズの改良や電子ビーム露光装置の
描画精度を向上させることによって更に精度の改善が可
能である。次にレジストパターン7をマスクとIATa
6をエツチングすることによって吸収体として作用する
回路パターンを形成する(第1図(g))。最後にレジ
スト7を除去した後、シリコン基板3を裏面よりエツチ
ング除去してX線透過窓を形成してX線露光用マスクが
完成する(第1図(h))。な抵 本実施例では投影レ
ンズ開口数Nの値を5とした力丈 この値に限るもので
はなく NAの値が増せば 従来方法に比べて電子線描
画の誤差をより低減できる。Next, a part of the SiN film 4 on the back surface of the silicon wafer 3 is removed by etching to form a window 5 in the X-ray transparent region (FIG. 1(C)). Window 5 shape LL at this time,
In order to alleviate the local stress at the interface between SL and SiN, a polygon close to a circle is preferable to a square.Next, as an X-ray absorber, a low-stress heavy metal, such as Ta6, is formed on the entire surface by sputtering. (Figure 1(d)). Next? Q A
A photoresist 7 with sufficient sensitivity and high resolution for rF excimer laser light is applied to the entire surface (see Figure 1 (e).
)). Next, the circuit pattern on the reticle 1 is
93nm ArF laser as light source and LNA=0.45
Using a stepper equipped with the above reduction projection lens 8, reduction projection is performed all at once onto the silicon wafer 3 for forming the X-ray mask, and transfer is performed (FIG. 1(f)). X
The resolution performance required for a line mask is satisfied by this projection exposure method as mentioned above.The most important pattern position accuracy (σA) is also generally expressed by the following formula according to this method. The drawing accuracy of the exposure system, σL (Lens distortion due to the aberration of the projection lens, N is the reduction ratio of the reticle. Here, the commonly used N-5, t
If y EB=0.1, ty L-0.05pm, then ic a A-0.054μm, and 0.25. This almost satisfies the pattern position accuracy of 0°05 μm required for an X-ray mask according to the um rule. Therefore, by performing electron beam lithography on a reticle that is 5 times larger, the error in electron beam lithography can be reduced to a few fractions of a second. The accuracy can be further improved by improving the projection lens such as an aberration-free lens and by improving the drawing accuracy of the electron beam exposure device. Next, resist pattern 7 is used as a mask and IATa
By etching 6, a circuit pattern that acts as an absorber is formed (FIG. 1(g)). Finally, after removing the resist 7, the silicon substrate 3 is etched away from the back surface to form an X-ray transparent window, thereby completing an X-ray exposure mask (FIG. 1(h)). In this embodiment, the numerical aperture N of the projection lens is set to 5. The power is not limited to this value, but as the NA value increases, the error in electron beam lithography can be further reduced compared to the conventional method.
発明の効果
以上の説明から明らかなように 本発明によれば適当な
倍率のフォトマスクを電子線描画により形成し その後
高解像性を有する縮小投影露光装置によりX線マスク材
料へパターン転写する方法を用いているたム 電子線描
画の誤差を数分の−に低減でき、パターン位置精度に優
れた高解像度X線露光用マスクの製造方法を提供するこ
とができる。また −度フオドマスクを作製すれば マ
スターマスクとして、繰り返し露光転写が可能となり、
工業生産性の点でも効果がある。Effects of the Invention As is clear from the above explanation, according to the present invention, a photomask with an appropriate magnification is formed by electron beam lithography, and then a pattern is transferred to an X-ray mask material using a reduction projection exposure device having high resolution. It is possible to provide a method for manufacturing a high-resolution X-ray exposure mask that can reduce errors in electron beam lithography to a few fractions of a second and has excellent pattern position accuracy. In addition, if a -degree food mask is made, it will be possible to perform repeated exposure transfers as a master mask.
It is also effective in terms of industrial productivity.
第1図(よ 本発明のX線露光用マスクの形成法を示す
工程は 第2図は従来例のX線露光用マスクの形成法を
示す工程図である。
1・・・・レチクノk 2・・・・電子ビーム露光 3
・・・・シリコンウェーノ\ 4・・・・SiN風 5
・・・・X線透過式 6・・・・Ta吸収依 7・・・
・レジスト、 8・・・・縮小投影レン乙Figure 1 shows the process of forming the X-ray exposure mask of the present invention. Figure 2 is a process diagram showing the conventional method of forming the X-ray exposure mask. ...Electron beam exposure 3
...Silicone waeno\ 4...SiN style 5
...X-ray transmission type 6...Ta absorption dependent 7...
・Resist, 8... Reduced projection lens B
Claims (1)
パターンのN倍のマスクを形成し、その後フッカアルゴ
ンレーザを光源とし開口数が0.45以上を有する投影
レンズを搭載した縮小投影露光装置を用いて前記レチク
ル上のパターンをX線マスク上に一括してN分の1に縮
小投影し転写を行うことを特徴とするX線露光用マスク
の製造方法A mask N times the desired circuit pattern is formed on the reticle using an electron beam exposure device, and then a reduction projection exposure device equipped with a projection lens having a numerical aperture of 0.45 or more and using a Hooker argon laser as a light source is used. A method for manufacturing an X-ray exposure mask, characterized in that the pattern on the reticle is projected onto an X-ray mask in a reduced size of 1/N and transferred.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18108889A JPH0770467B2 (en) | 1989-07-12 | 1989-07-12 | Method for manufacturing mask for X-ray exposure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18108889A JPH0770467B2 (en) | 1989-07-12 | 1989-07-12 | Method for manufacturing mask for X-ray exposure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0344915A true JPH0344915A (en) | 1991-02-26 |
JPH0770467B2 JPH0770467B2 (en) | 1995-07-31 |
Family
ID=16094613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18108889A Expired - Fee Related JPH0770467B2 (en) | 1989-07-12 | 1989-07-12 | Method for manufacturing mask for X-ray exposure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0770467B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5593800A (en) * | 1994-01-06 | 1997-01-14 | Canon Kabushiki Kaisha | Mask manufacturing method and apparatus and device manufacturing method using a mask manufactured by the method or apparatus |
-
1989
- 1989-07-12 JP JP18108889A patent/JPH0770467B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5593800A (en) * | 1994-01-06 | 1997-01-14 | Canon Kabushiki Kaisha | Mask manufacturing method and apparatus and device manufacturing method using a mask manufactured by the method or apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0770467B2 (en) | 1995-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3105234B2 (en) | Method for manufacturing semiconductor device | |
US7305651B2 (en) | Mask CD correction based on global pattern density | |
JP2566048B2 (en) | Light exposure mask and method of manufacturing the same | |
US7479365B2 (en) | Semiconductor device manufacturing method | |
JP3894550B2 (en) | Manufacturing method of near-field exposure mask | |
JPH03228053A (en) | Optical exposing reticule | |
JPH075675A (en) | Mask and preparation thereof | |
JP3160332B2 (en) | Halftone phase shift photomask | |
EP0475694A2 (en) | Optical mask using phase shift and method of producing the same | |
KR101319311B1 (en) | Photomask blank and method for manufacturing photomask | |
JP3292909B2 (en) | Calculation method of pattern position distortion | |
TWI232495B (en) | Manufacturing method of transfer mask substrate and transfer mask | |
JPH10254122A (en) | Photomask for exposure | |
US5798192A (en) | Structure of a mask for use in a lithography process of a semiconductor fabrication | |
JPH0344915A (en) | Manufacture of x-ray exposure mask | |
JP2001296646A (en) | Photomask, method for producing the same, exposure method and aligner | |
JP3110801B2 (en) | Photomask manufacturing method and photomask | |
JP3301557B2 (en) | Method for manufacturing phase shift photomask | |
JPH0566554A (en) | Photomask | |
JPH04368947A (en) | Formation of phase shift mask | |
JP2002333702A (en) | Method for plasma etching and method for manufacturing photomask | |
JPH06333804A (en) | X-ray exposure method and manufacture of x-ray mask | |
JP3173314B2 (en) | Method for manufacturing phase shift mask | |
JP3529967B2 (en) | Manufacturing method of photomask blanks with alignment marks | |
JP2892753B2 (en) | Photomask and method of manufacturing photomask |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |