JPH0344899B2 - - Google Patents

Info

Publication number
JPH0344899B2
JPH0344899B2 JP58030876A JP3087683A JPH0344899B2 JP H0344899 B2 JPH0344899 B2 JP H0344899B2 JP 58030876 A JP58030876 A JP 58030876A JP 3087683 A JP3087683 A JP 3087683A JP H0344899 B2 JPH0344899 B2 JP H0344899B2
Authority
JP
Japan
Prior art keywords
nut
cut
sheet
mandrel
nuts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58030876A
Other languages
Japanese (ja)
Other versions
JPS59156718A (en
Inventor
Kenji Kikuzawa
Yukio Ootaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AI ENU TEI KK
Original Assignee
AI ENU TEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AI ENU TEI KK filed Critical AI ENU TEI KK
Priority to JP58030876A priority Critical patent/JPS59156718A/en
Priority to US06/584,404 priority patent/US4568582A/en
Priority to FR8403017A priority patent/FR2541620B1/en
Priority to DE19843407229 priority patent/DE3407229A1/en
Priority to AU25123/84A priority patent/AU579813B2/en
Publication of JPS59156718A publication Critical patent/JPS59156718A/en
Publication of JPH0344899B2 publication Critical patent/JPH0344899B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/60Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
    • B29C53/62Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels rotatable about the winding axis
    • B29C53/66Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels rotatable about the winding axis with axially movable winding feed member, e.g. lathe type winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/583Winding and joining, e.g. winding spirally helically for making tubular articles with particular features
    • B29C53/585Winding and joining, e.g. winding spirally helically for making tubular articles with particular features the cross-section varying along their axis, e.g. tapered, with ribs, or threads, with socket-ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • B29C69/001Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore a shaping technique combined with cutting, e.g. in parts or slices combined with rearranging and joining the cut parts
    • B29C69/002Winding
    • B29C69/003Winding and cutting longitudinally, e.g. for making O-rings; chain links, insulation tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/202Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres arranged in parallel planes or structures of fibres crossing at substantial angles, e.g. cross-moulding compound [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D1/00Producing articles with screw-threads
    • B29D1/005Producing articles with screw-threads fibre reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B33/00Features common to bolt and nut
    • F16B33/006Non-metallic fasteners using screw-thread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、FRPナツトの製造方法に関する。
更に詳しくは、これまでの金属製のナツトに代わ
る強化プラスチツクス製〔以下FRP(FIBER
REINFORCED PLASTICSの略)と略する〕ナ
ツトの製造方法に関するもので、プラスチツクナ
ツトの強度不足をガラス繊維、炭素繊維等の長繊
維の補強繊維を用い、これに熱硬化製樹脂を含浸
させ、高強度のFRPナツトを製造する方法に関
するものである。 〔従来の技術および課題〕 金属製ボルト・ナツトは、種々の製品のフアス
ナーとして、大は鉄骨構造体の組立てから、小は
おもちやの組立てまで幅広く使用されて来た。 しかしながら金属製ナツト・ボルトの最大の欠
点は腐蝕及び場合によつては電気伝導製及び熱伝
導性にある。特に海水、汚水が常時接触するよう
な人工魚礁用のしめつけボルト・ナツト、海洋構
築物のしめつけボルト・ナツト、又、鉄道の電車
等における絶縁ボルト・ナツトには欠点があつ
た。海水等の腐蝕に耐える金属としては、従来か
らチタンが知られており、比重が軽いこと等から
航空機分野で使われて来たが、高価なことと加工
性の悪さがその用途拡大に体するネツクとなつて
きた。又、腐蝕に体する対策としてプラスチツク
ス製のボルト・ナツトが登場したが、これらはす
べて強度的に金属製のボルト・ナツトに遠く及ば
ず、構造体のフアスナーとはなり得なかつた。 電気絶縁製を必要とする重電の分野では、
FRP製のナツトがガラス繊維のヤーンクロスを
使つたプリプレグ(樹脂を含浸し、半硬化状態に
したもの)を使用し、これをプレス成形し、板を
作製し、これより穴加工、ネジ加工を施して作ら
れてきた。 すなわち、ガラス繊維のヤーンクロスを樹脂層
を通して含浸した後、絞りローラーを通しガラス
繊維の含量ガラス60%前後になるように調整し、
この樹脂含浸ガラスのクロスを半硬化させ、これ
を加熱プレス上で数十枚積み重ね、プレスし加熱
硬化させる方法である。この方法によればクロス
の厚みは0.1mm〜0.25mm程度であるので、ナツト
のネジ山のピツチが1mm〜2mmであるボルトサイ
ズがM10〜M25又はそれ以上のボルト用ナツトと
しては、ネジ山にクロスが入り込み非常に強度の
あるナツトを作る事が出来る。しかしながら、欠
点としては高価なヤーンクロスを使う必要のある
事と、プレス成形の際、樹脂を含浸させたクロス
(以下、プリプレグと称する)を数十枚積み重ね
る(通常30〜80枚)必要があり、非常に手間のか
かることがその短所であつた。 本発明者らは鋭意研究の結果、上記のプリプレ
グによるプレス法に対し、強度的にもコスト的に
も、はるかに優れたFRPナツトの製造方法を完
成するに至つたのである。 〔課題を解決するための手段〕 本発明は熱硬化性樹脂を含浸した引張弾性率
6000Kg/mm2以上、引張強度100Kg/mm2以上の長繊
維からなる強化プラスチツクス用強化繊維を、フ
イラメントワインデイングマシーンにより、円筒
状又は多角形のマンドレルに、綾角度をマンドレ
ルの回転軸に対して45°から87.5°の角度に巻つけ、
ついで、これを軸方向にカツトしてシート状に切
り開いて成形材料を作成し、このシート状の成形
材料の複数枚を方向を変えて重ね、プレス成形す
る事により板状の成形物を作成し、この板状成形
物を切削してナツトの外形体を作り、孔をあけて
ネジを切りナツトにする。ナツトの外形体を作る
まえ板状成形物に孔をあけてもよい。 〔実施例〕 以下本発明の実施例を図面に基づいて説明す
る。 第1図、第2図および第4図は、本発明におけ
るナツトの成形材料であるシート状成形材料の作
製方法の説明のためのものである。 第4図は、本発明においてシート状成形材料を
作製するための装置の概要を示す。図中7がマン
ドレル、8が綾をふるためのトラバース、9が樹
脂含浸槽、10がロービングである。 本発明は従来のガラスヤーンクロス(製織工程
を必要とする)の代わりにガラス繊維ロービング
(600〜10000Tex)又は必要に応じてカーボン繊
維、アラミド繊維を使用し、これを製織するかわ
りにフイラメントワインデイングマシーンによ
り、樹脂含浸槽9を通過させて樹脂を含浸しなが
ら、トラバース8で綾ふりをし、円筒、楕円又は
多角形からなるマンドレル7の上に一定の綾感度
(回転軸に対し45°〜87.5°)で巻き取る。 第1図はマンドレル7上に一定の綾角度でテー
プ状ロービング10を巻かれたパターンの途中状
態を示す。3本のロービング10よりなる行き2
と3本の状ロービング10よりなる帰り1が逆方
向に綾を形成し、しかも互いに重なり合うように
巻き取る。巻き厚みは、マンドレルの直径により
異なるが、この巻き取つた成形材料を軸方向に切
り開いてシート状にした時、しわが発生しない厚
みとして通常3〜10mmが望ましい。 この一定の綾角度で巻き取る事は非常に重要で
あり、たとえば、回転軸に対し90°に巻き取つた
いわゆる平行巻きの成形用シートでは、一方向に
並べてプレスした場合、繊維方向と直角方向に対
しては樹脂の強度しかなく、力がかかつた場合、
簡単に繊維方向に沿つてひび割れを生じる結果と
なる。又この場合、積層がヤーンクロスの場合の
ように数十層の層になつていないため、ナツトの
ネジ山にせん断力がかかつた場合、容易にガラス
繊維同士を接着している樹脂層で層間剥離を起こ
す結果となる。又軸方向に対し、45°以下の綾角
度はシートにした場合、綾角度を回転軸に対しθ
=90°−45°の綾角度で巻いたものと同じになり、
意味を持たない。 シート状成形材料を作るための補強用繊維とし
ては、ガラス繊維が最も安価であるが、必要に応
じてカーボン繊維、アラミド繊維、又は弾性率が
6000Kg/mm2以上、引張強度が100Kg/mm2をこえる
プラスチツク強化用繊維ならば何れを用いてもよ
い。 ロービング10の綾角度がマンドレル7の軸に
対し鋭角になつた場合には、ロービング10の滑
り止めのためには第2図に示すようにマンドレル
7上にピンPを設けるのが好ましい。 上記の工程でロービング10をマンドレル7に
所定の厚みに巻き終わつたら、ロービング10の
巻き取りにより形成された筒をマンドレル7の軸
に平行の1本の直線で切断し拡げるとシート状の
成形材料が得られる。 このようにして形成されたシート状成形材料を
複数枚方向を変えて重ね、プレス加熱成形して板
状の成形物とし、その板状成形物を切削して所望
のナツトの外形体を作り、それに穴をあけネジ切
りしてナツトを作製する。ナツトの外形体を作る
前に板状成形物にネジのための穴をあけてもよ
い。 フイラメントワインデイングで作られるシート
の特長は、軸方向の行きと帰りでマンドレル上に
巻かれるローング10の方向が第1図のように互
いに逆方向になり、しかも、マンドレル表面が1
回完全に覆われた時点では、この逆方向の層が1
対ではじめて全面が覆われるため、2層の逆方向
のロービングの層ではじめて最低単位のシート
が、作り得るわけである。 この時、綾角度としては45°〜87.5°が望ましい
が、実施例に見られるごとく、積層したシートを
直角に積み重ねても強度アツプの利点は見られな
い事から、75°〜85°が最適である。 すなわち、45°〜60°の綾角度ではフイラメント
ワインデイングの際、マンドレル両端部での滑り
のため、ピンPを打つてこれにワインデイング中
のロービング10を引つ掛ける(第2図参照)等
の工夫が必要となり、又87.5°より大きい角度で
は平行巻きに近くなり、先に述べた、各層が互い
の層を押さえ付ける効果がうすれてしまう。加え
るに、75°〜85°の綾角度に巻かれた成形シート
は、プレスの際、繊維方向へのチヤージを100%
行う必要があるが、繊維と直角方向には金型での
チヤージ量が80%〜90%であつても均一に広が
り、全面が覆われるという利点がある。 シート状成形材料を重ねて加熱成形した板状成
形板となすため樹脂含浸槽9の樹脂として熱硬化
性樹脂を用いる。それにはエポキシ樹脂が最も手
軽であるが、不飽和ポリエステル樹脂、ビニルエ
ステル樹脂、その他必要に応じて他の熱硬化性樹
脂使用も可能である。 〔作用および効果〕 このような、フイラメントワインデイングでシ
ート状成形材料を製造する方法は、特公昭54−
30422号公報、特公昭54−35232号公報及び特開昭
55−103925号公報、特開昭55−103926号公報に開
示されているが、本発明では、ヤーンクロスやロ
ービングクロスを用いて積層プレスするよりも、
一定の綾角度でもつて層状に巻かれ、しかも綾角
度が軸方向と90度の面に対し左右対称なしかも互
いに上下する長繊維の2層の層の、積み重ねから
形成されているシート状の成形材料を複数枚重ね
てプレス成形によりなる板状成形物を用い、
FRPナツトを製作する事により、従来ヤーンク
ロス又はロービングクロスの積層より作られて来
たナツトを凌駕する強度を持つFRPナツトを製
造することができる。 この高強度の要因は、ネジ山にガラス繊維ロー
ビングが入り込み、しかもこの入り込んだロービ
ングの層を次の綾角度が逆方向のロービングの層
がおさえており、その層を又逆な綾角度の層がお
さえるという、層状に綾角度が逆方向である層が
交互に各層をおさえつける事にあり、ネジ山が破
壊する際に生じる層間剥離強度のアツプに、効果
をあげている。 又、従来のヤーンクロスプリプレグ法では繊機
でヤーンクロスを作製するため、製織工程を必要
とし、又ヤーン自身も本発明によるロービングに
比べ倍近い原材料コストを必要とする。 しかるに、本発明によれば、製織工程が省略出
来、又強化繊維としても撚糸等を必要とせず
TEXとして2000TEXという太い糸が使用出来る
ため、コスト的にも非常に安価にFRP製ナツト
が作製可能である。 〔実施例〕 2000Texからなるガラス繊維ロービングを24本
引き揃え、エポキシ樹脂(AER354…旭化成工業
株式会社製品番)100部、メチルテトラヒドロ無
水フタル酸75部、N−(4′−メトロキシベンジリ
デン)−4−アルキル(C4-7のアルキル基)アニ
リン2部、からなる樹脂層を通して樹脂を含浸せ
しめ、絞り口を通す事により、樹脂りうを23±1
重量%に絞り、これを幅6.4cmに引き揃え、直径
92cmのマンドレル上に綾角度85度でもつて均一に
巻きつけ、重量12Kg/m2の成形用シートを作成し
た。 このシートを30cm角に裁断し、同一方向に3枚
を積み重ね、プレス金型でプレス成形により板を
作製した(これをA板と名づける)。成形条件は
125℃、1時間、プレス圧は50Kg/cm2であつた。 一方、シート3枚のうち中央の1枚を繊維方向
に対し直角になるように積み重ね、プレス成形を
上記と同一条件で行つて、板を作成した(これを
B板と名づける)。 成形板の厚みは、それぞれ15mm、15.5mmであつ
た。この板より22cm角のナツトを切り出し、ボル
トM10(ピツチ1.5mm)用のネジ山をタツプ加工に
より、作製した。 同様に、市販のヤーンクロス積層板(厚み15
mm、ヤーンクロス64枚積層、プリプレグをプレス
したもの)より、上と同一条件でナツトを作製し
た(これをC板と名づける)。 これらの強度を測定するため、ヤーンクロスか
らプリプレグプレス法により作られた丸棒(直径
10φ)にダイスによりM10(ピツチ1.5mm)のネジ
山を加工し、FRPナツトを作成した(長さ120
mm)。 これらを用いて、引張強度テストを行つた。第
3図は強度試験の方法を示す概略図で、3はボル
ト、4は試験のためのナツト、5は試験治具、6
はナツトを止めるためのスペーサーであり、試験
治具5,5を互いに反対方向に引き試験する。 その結果は第1表のとおりであつた。
[Industrial Application Field] The present invention relates to a method for manufacturing an FRP nut.
For more details, please refer to nuts made of reinforced plastic [hereinafter referred to as FRP (FIBER)], which replaces conventional metal nuts.
REINFORCED PLASTICS (abbreviated as REINFORCED PLASTICS)] relates to the method of manufacturing nuts.The lack of strength of plastic nuts is overcome by using long reinforcing fibers such as glass fibers and carbon fibers, which are then impregnated with thermosetting resin to achieve high strength. The present invention relates to a method for manufacturing an FRP nut. [Prior Art and Problems] Metal bolts and nuts have been widely used as fasteners for various products, from assembling steel structures to assembling toys. However, the major drawbacks of metal nuts and bolts are corrosion and, in some cases, electrical and thermal conductivity. In particular, there have been drawbacks to tightening bolts and nuts for artificial reefs that are in constant contact with seawater and sewage, tightening bolts and nuts for marine structures, and insulating bolts and nuts for railroad cars and the like. Titanium has long been known as a metal that can withstand corrosion from seawater, etc., and has been used in the aircraft field due to its light specific gravity, but its high price and poor workability have prevented its use from expanding. I've become accustomed to it. In addition, plastic bolts and nuts have appeared as a countermeasure against corrosion, but these are far from being as strong as metal bolts and nuts, and cannot be used as fasteners for structures. In the field of heavy electrical equipment that requires electrical insulation,
The FRP nut uses prepreg (impregnated with resin and semi-hardened) made of glass fiber yarn cloth, press-forms this to make a plate, and then drills holes and screws. It has been made using That is, after impregnating glass fiber yarn cloth through a resin layer, it is passed through a squeezing roller and adjusted so that the glass fiber content is around 60% glass.
This method involves semi-curing this resin-impregnated glass cloth, stacking dozens of sheets on a heated press, pressing them, and heat-curing them. According to this method, the thickness of the cross is about 0.1 mm to 0.25 mm, so it is suitable for nuts for bolts with a pitch of 1 mm to 2 mm and a bolt size of M10 to M25 or larger. It is possible to make a very strong nut with the cross inserted. However, the disadvantages are that it is necessary to use expensive yarn cloth, and during press molding, it is necessary to stack dozens of resin-impregnated cloths (hereinafter referred to as prepreg) (usually 30 to 80 sheets). Its disadvantage was that it was very time-consuming. As a result of intensive research, the present inventors have completed a method for manufacturing FRP nuts that is far superior in both strength and cost to the above-mentioned pressing method using prepreg. [Means for Solving the Problem] The present invention provides a tensile modulus material impregnated with a thermosetting resin.
A reinforcing fiber for reinforced plastics consisting of long fibers with a tensile strength of 6000 Kg/mm 2 or more and a tensile strength of 100 Kg/mm 2 or more is placed on a cylindrical or polygonal mandrel using a filament winding machine, and the winding angle is set relative to the rotation axis of the mandrel. and wrap it at an angle of 45° to 87.5°.
Next, this is cut in the axial direction and cut open into a sheet shape to create a molding material, and multiple sheets of this sheet-like molding material are stacked in different directions and press-molded to create a plate-shaped molded product. The outer shape of the nut is made by cutting this plate-shaped molded product, and a hole is drilled and a screw is cut to form the nut. A hole may be made in the plate-shaped molded product before making the outer shape of the nut. [Example] Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1, FIG. 2, and FIG. 4 are for explaining a method for producing a sheet-like molding material, which is a molding material for a nut in the present invention. FIG. 4 shows an outline of an apparatus for producing a sheet-like molding material in the present invention. In the figure, 7 is a mandrel, 8 is a traverse for shaking the twill, 9 is a resin impregnation tank, and 10 is a roving. The present invention uses glass fiber roving (600~10000Tex) or carbon fiber or aramid fiber as needed instead of conventional glass yarn cloth (which requires a weaving process), and instead of weaving it, filament winding is used. The machine impregnates the resin by passing it through the resin impregnation tank 9, while traversing it with the traverse 8, and placing it on the mandrel 7, which is made of a cylinder, ellipse, or polygon, with a constant twill sensitivity (45° to the rotation axis). 87.5°). FIG. 1 shows an intermediate state of a pattern in which a tape-like roving 10 is wound on a mandrel 7 at a constant winding angle. Line 2 consisting of 3 rovings 10
and a return 1 consisting of three rovings 10 form a twill in the opposite direction and are wound so as to overlap each other. The thickness of the roll varies depending on the diameter of the mandrel, but it is usually desirable to have a thickness of 3 to 10 mm so that wrinkles do not occur when the rolled molding material is cut open in the axial direction to form a sheet. It is very important to wind at this constant winding angle. For example, in a so-called parallel-wound molding sheet that is wound at 90 degrees to the rotation axis, if the sheets are lined up in one direction and pressed, the direction perpendicular to the fiber direction is It has only the strength of resin, and when force is applied to it,
This easily results in cracking along the fiber direction. Also, in this case, the lamination is not made up of dozens of layers like in the case of yarn cloth, so when shearing force is applied to the threads of the nut, the resin layer that adheres the glass fibers to each other easily breaks down. This results in delamination. In addition, if the twill angle is 45° or less with respect to the axial direction, when the sheet is used, the twill angle should be θ with respect to the rotation axis.
= It is the same as winding with a twill angle of 90° - 45°,
It has no meaning. Glass fiber is the cheapest reinforcing fiber for making sheet-shaped molding materials, but carbon fiber, aramid fiber, or other materials with a higher modulus of elasticity may be used as needed.
Any plastic reinforcing fiber with a tensile strength of 6000 Kg/mm 2 or more and a tensile strength of 100 Kg/mm 2 may be used. When the winding angle of the roving 10 becomes an acute angle with respect to the axis of the mandrel 7, it is preferable to provide a pin P on the mandrel 7 as shown in FIG. 2 in order to prevent the roving 10 from slipping. After winding the roving 10 around the mandrel 7 to a predetermined thickness in the above process, the tube formed by winding the roving 10 is cut along a straight line parallel to the axis of the mandrel 7 and expanded to form a sheet. Materials are obtained. A plurality of sheet-shaped molding materials thus formed are stacked in different directions, press-heat-molded to form a plate-shaped product, and the plate-shaped molded product is cut to form the desired external shape of the nut. Drill a hole in it and cut a thread to make a nut. Holes for screws may be made in the plate-shaped molding before making the outer shape of the nut. The feature of the sheet made by filament winding is that the directions of the longs 10 wound on the mandrel in the axial direction and the return direction are opposite to each other as shown in Figure 1, and the mandrel surface is
At the point when it is completely covered, this layer in the opposite direction is 1
Since the entire surface is covered only in pairs, the minimum unit sheet can only be made with two layers of rovings in opposite directions. At this time, a twill angle of 45° to 87.5° is desirable, but as seen in the example, there is no advantage of increased strength even if the laminated sheets are stacked at right angles, so a twill angle of 75° to 85° is optimal. It is. In other words, when winding the filament at a winding angle of 45° to 60°, due to slippage at both ends of the mandrel, it is necessary to hit the pin P and hook the roving 10 being wound onto it (see Figure 2). Further, if the angle is larger than 87.5°, the winding becomes close to parallel, and the effect of pressing each layer against each other as described above is lost. In addition, the formed sheet rolled at a twill angle of 75° to 85° reduces the charge in the fiber direction by 100% during pressing.
However, in the direction perpendicular to the fibers, the advantage is that even if the charge amount in the mold is 80% to 90%, it will spread evenly and cover the entire surface. A thermosetting resin is used as the resin in the resin impregnation tank 9 in order to obtain a plate-shaped molded plate by stacking sheet-shaped molding materials and heat-molding them. Epoxy resin is the easiest to use, but unsaturated polyester resin, vinyl ester resin, and other thermosetting resins can also be used if necessary. [Functions and Effects] This method of producing sheet-shaped molding materials by filament winding was disclosed in
Publication No. 30422, Japanese Patent Publication No. 54-35232, and Japanese Patent Application Publication No. 1988
Although disclosed in Japanese Patent Application Laid-open No. 55-103925 and Japanese Patent Application Laid-open No. 55-103926, the present invention uses a method that uses yarn cloth or roving cloth to perform lamination pressing.
A sheet-like molded product formed by stacking two layers of long fibers that are wound in layers at a constant winding angle, and are symmetrical with respect to a plane where the winding angle is 90 degrees with respect to the axial direction, and are placed above and below each other. Using a plate-shaped molded product made by stacking multiple sheets of material and press forming,
By manufacturing FRP nuts, it is possible to manufacture FRP nuts with strength that exceeds nuts conventionally made by laminating yarn cloth or roving cloth. The reason for this high strength is that the glass fiber roving enters the screw thread, and the next layer of roving with the opposite heel angle holds down the inserted roving layer. This is because layers with opposite winding angles alternately hold down each layer, which is effective in increasing the strength of the delamination that occurs when the screw thread breaks. Furthermore, in the conventional yarn cloth prepreg method, a yarn cloth is produced using a spinning machine, which requires a weaving process, and the yarn itself requires nearly twice the raw material cost as compared to the roving according to the present invention. However, according to the present invention, the weaving process can be omitted, and there is no need for twisting yarn etc. as reinforcing fibers.
Since a thick thread of 2000TEX can be used as TEX, FRP nuts can be manufactured at a very low cost. [Example] 24 glass fiber rovings made of 2000Tex were prepared, 100 parts of epoxy resin (AER354...Asahi Kasei Corporation product number), 75 parts of methyltetrahydrophthalic anhydride, N-(4'-methoxybenzylidene)- By impregnating the resin through a resin layer consisting of 2 parts of 4-alkyl (C 4-7 alkyl group) aniline and passing it through a diaphragm, the resin thickness is 23±1.
Narrow it down to weight%, align it to a width of 6.4cm, and make it a diameter
The material was evenly wound around a 92 cm mandrel at a winding angle of 85 degrees to produce a molding sheet weighing 12 kg/m 2 . This sheet was cut into 30 cm squares, three sheets were stacked in the same direction, and a plate was produced by press molding with a press mold (this was named plate A). The molding conditions are
The temperature was 125° C. for 1 hour, and the pressing pressure was 50 kg/cm 2 . On the other hand, the central one of the three sheets was stacked perpendicularly to the fiber direction and press-formed under the same conditions as above to create a board (this was named board B). The thickness of the molded plates was 15 mm and 15.5 mm, respectively. A 22cm square nut was cut out from this plate, and a thread for an M10 bolt (pitch 1.5mm) was tapped. Similarly, use a commercially available yarn cloth laminate (thickness 15
mm, 64 sheets of yarn cloth were laminated and prepreg was pressed) to produce a nut under the same conditions as above (this was named C plate). In order to measure these strengths, a round bar (diameter
10φ) was machined with an M10 (pitch 1.5mm) screw thread using a die to create an FRP nut (length 120mm).
mm). A tensile strength test was conducted using these. Figure 3 is a schematic diagram showing the strength test method, where 3 is a bolt, 4 is a nut for testing, 5 is a test jig, and 6 is a schematic diagram showing a strength test method.
is a spacer for stopping the nut, and the test jigs 5 and 5 are pulled in opposite directions to perform the test. The results were as shown in Table 1.

【表】【table】

【表】 上記試験により、本発明の方法で作成したA板
の場合には、試験片5本のうち3本までがボルト
破断を起こし、ナツト強度としては十分である事
がわかる。 一方、B板より切り出したサンプルでは、一例
以外はすべてネジ山つぶれであつたが、A板のナ
ツト強度の平均値1.54トンとほぼ同じ1.48トンが
得られ、プレスの際のシートの重ね方にはナツト
強度はあまり影響されない。シートの繊維方向に
全シートを重ねてプレスする方が、強度的には少
し優れたものが得られる。 なお、比較として作製したヤーンクロスからの
プリプレグによるプレス成形品(C板)からのナ
ツトの場合は、平均値1.15トンと低く、しかもす
べてネジ山つぶれで、破損を起こしている。 以上により、本発明による方法で作られた
FRP製ナツトの有利性は明らかである。
[Table] As a result of the above test, in the case of the A plate prepared by the method of the present invention, up to three out of five test specimens broke, indicating that the nut strength was sufficient. On the other hand, all but one example of the samples cut from the B board had crushed screw threads, but the average nut strength of 1.48 tons was obtained, which is almost the same as the average nut strength of the A board, 1.54 tons. The nut strength is not affected much. If all the sheets are stacked and pressed in the fiber direction of the sheets, a product with slightly better strength can be obtained. In addition, in the case of nuts made from press-formed products (C plate) using prepreg made from yarn cloth, which were produced as a comparison, the average value was as low as 1.15 tons, and all of the nuts were damaged due to crushed threads. As described above, the product made by the method according to the present invention
The advantages of FRP nuts are obvious.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法で巻かれたマンドレル
上のパターンの途中状態を示す。第2図は綾角度
が軸に対し鋭角になつた場合の概念図である。第
3図は、本法で作られたナツトの強度試験の方法
を示す概略図である。第4図は本発明においてシ
ート状成形材料を作製するための装置の概要を示
す。 1……行き、2……帰り、3……試験のための
ボルト、4……試験のためのナツト、5……試験
治具、6……スペーサー、7……マンドレル、8
……トラバース、9……樹脂含浸槽、10……ロ
ービング。
FIG. 1 shows an intermediate state of a pattern on a mandrel wound by the method of the present invention. FIG. 2 is a conceptual diagram when the winding angle becomes an acute angle with respect to the axis. FIG. 3 is a schematic diagram showing a method for testing the strength of nuts made by this method. FIG. 4 shows an outline of an apparatus for producing a sheet-like molding material in the present invention. 1... Going, 2... Returning, 3... Bolt for testing, 4... Nut for testing, 5... Test jig, 6... Spacer, 7... Mandrel, 8
... Traverse, 9 ... Resin impregnation tank, 10 ... Roving.

Claims (1)

【特許請求の範囲】[Claims] 1 熱硬化性樹脂を含浸した引張弾性率6000Kg/
mm2以上、引張強度100Kg/mm2以上の長繊維からな
る強化プラスチツクス用強化繊維を、フイラメン
トワインデイングマシーンにより、円筒状または
多角形のマンドレルに、綾角度をマンドレルの回
転軸に対して45°から87.5°の角度に巻きつけ、つ
いで、これを軸方向にカツトし、シート状に切り
開いて成形材料を作成し、このシート状の成形材
料の複数枚を方向を変えて重ね、プレス成形して
板状の成形物を作成し、その板状の成形物を切削
し、穴をあけ、ネジを切り、ナツトにすることを
特徴とするFRPナツトの製造方法。
1 Tensile modulus 6000Kg/impregnated with thermosetting resin
A reinforcing fiber for reinforced plastics consisting of long fibers with a length of mm 2 or more and a tensile strength of 100 Kg/mm 2 or more is placed on a cylindrical or polygonal mandrel using a filament winding machine, and the winding angle is 45 with respect to the rotation axis of the mandrel. Wrap it around an angle of 87.5° to 87.5°, then cut it in the axial direction and cut it open into a sheet to create a molding material.Multiple pieces of this sheet-like molding material are stacked in different directions and press-molded. A method for producing an FRP nut, which is characterized in that a plate-shaped molded product is created using a metal mold, and the plate-shaped molded product is cut, holes are drilled, and screws are cut to form a nut.
JP58030876A 1983-02-28 1983-02-28 Preparation of frp nut Granted JPS59156718A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58030876A JPS59156718A (en) 1983-02-28 1983-02-28 Preparation of frp nut
US06/584,404 US4568582A (en) 1983-02-28 1984-02-28 Internally threaded fiber-reinforced plastic member and a method of producing the same
FR8403017A FR2541620B1 (en) 1983-02-28 1984-02-28 PLASTIC ELEMENT REINFORCED WITH FIBERS AND INTERNAL TAP AND MANUFACTURING METHOD THEREOF
DE19843407229 DE3407229A1 (en) 1983-02-28 1984-02-28 FIBER REINFORCED PLASTIC ELEMENT WITH AN INNER THREAD AND METHOD FOR THE PRODUCTION THEREOF
AU25123/84A AU579813B2 (en) 1983-02-28 1984-02-28 An internally threaded fiber-reinforced plastic member and a method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58030876A JPS59156718A (en) 1983-02-28 1983-02-28 Preparation of frp nut

Publications (2)

Publication Number Publication Date
JPS59156718A JPS59156718A (en) 1984-09-06
JPH0344899B2 true JPH0344899B2 (en) 1991-07-09

Family

ID=12315930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58030876A Granted JPS59156718A (en) 1983-02-28 1983-02-28 Preparation of frp nut

Country Status (2)

Country Link
JP (1) JPS59156718A (en)
AU (1) AU579813B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134769A1 (en) 2005-06-14 2006-12-21 Matsushita Electric Industrial Co., Ltd. Receiving apparatus, integrated circuit and receiving method
WO2007142313A1 (en) 2006-06-07 2007-12-13 Sharp Kabushiki Kaisha Receiver and frequency information estimation method
WO2014024369A1 (en) 2012-08-08 2014-02-13 三菱電機株式会社 Receiver, method for estimating frequency response of transmission path by receiver

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203426A (en) * 1984-02-28 1985-10-15 Asahi Chem Ind Co Ltd Inside threading component made of fiber-reinforced plastics and manufacture thereof
JPS61211005A (en) * 1985-03-18 1986-09-19 Asahi Chem Ind Co Ltd Resin impregnated fiber reinforced molding material and manufacture thereof
WO2004113058A1 (en) * 2003-06-25 2004-12-29 Joseph Steven Egan Method of construction of moulded products

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3128322A (en) * 1960-10-25 1964-04-07 Hercules Powder Co Ltd Method of molding
US4220497A (en) * 1979-02-01 1980-09-02 Ppg Industries, Inc. High strength composite of resin, helically wound fibers and swirled continuous fibers and method of its formation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134769A1 (en) 2005-06-14 2006-12-21 Matsushita Electric Industrial Co., Ltd. Receiving apparatus, integrated circuit and receiving method
WO2007142313A1 (en) 2006-06-07 2007-12-13 Sharp Kabushiki Kaisha Receiver and frequency information estimation method
WO2014024369A1 (en) 2012-08-08 2014-02-13 三菱電機株式会社 Receiver, method for estimating frequency response of transmission path by receiver

Also Published As

Publication number Publication date
AU579813B2 (en) 1988-12-15
JPS59156718A (en) 1984-09-06
AU2512384A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
KR20100130286A (en) Fiber reinforced plastic bolt and method for producing the same
FR2541621A1 (en) FIBER REINFORCED PLASTIC ELEMENT AND EXTERNALLY THREADED AND METHOD FOR MANUFACTURING THE SAME
JPS6410330B2 (en)
US5552214A (en) Unidirectional prepreg and carbon fiber reinforced composite materials comprising pitch-based carbon fibers and polyacrylonitrile-based carbon fibers
US4568582A (en) Internally threaded fiber-reinforced plastic member and a method of producing the same
US3995092A (en) Threaded rod composed of laminated material
JPH0344899B2 (en)
KR102118285B1 (en) Towpreg for filament winding and manufacturing method thereof
JPH05502286A (en) Composite threading collar
JPH09250247A (en) Composite material reinforced concrete structural body
JPS6069313A (en) Female screw made of frp
EP0474161A2 (en) Honeycomb core
JPS61106634A (en) Unidirectional prepreg and its production
CN111169038A (en) Fiber reinforced composite material nut and preparation method thereof
JPS6011346A (en) Female screw of frp and manufacture thereof
JP2846742B2 (en) Golf club shaft and method of manufacturing the same
DE3401195A1 (en) Composite materials made from polyether-imide and reinforcing fibres
JPH0559817B2 (en)
JPS59158223A (en) Preparation of bolt made of frp
JP3937569B2 (en) Prepreg
JPS61130605A (en) Fiber reinforced plastic bolt
JP2006102832A (en) Cutter roll made of carbon fiber reinforced plastic and its manufacturing method
JPS6367419A (en) Connector member
JPS6011345A (en) Screw of frp
CN116176002A (en) Rapid preparation method for enhancing strength among fibers of unidirectional carbon fiber composite material