JPH0344854B2 - - Google Patents

Info

Publication number
JPH0344854B2
JPH0344854B2 JP22084682A JP22084682A JPH0344854B2 JP H0344854 B2 JPH0344854 B2 JP H0344854B2 JP 22084682 A JP22084682 A JP 22084682A JP 22084682 A JP22084682 A JP 22084682A JP H0344854 B2 JPH0344854 B2 JP H0344854B2
Authority
JP
Japan
Prior art keywords
pinion tool
pinion
tool
cut
rough
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22084682A
Other languages
Japanese (ja)
Other versions
JPS59110444A (en
Inventor
Yoshisada Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP22084682A priority Critical patent/JPS59110444A/en
Publication of JPS59110444A publication Critical patent/JPS59110444A/en
Publication of JPH0344854B2 publication Critical patent/JPH0344854B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H5/00Making gear wheels, racks, spline shafts or worms
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Description

【発明の詳細な説明】 この発明は温間鍛造もしくは切削加工等によつ
て予め形成したラツク歯を所期の寸法精度に仕上
げる仕上転造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a finish rolling method for finishing rack teeth preformed by warm forging or cutting to desired dimensional accuracy.

この種の方法は、ピニオン工具1を第1図に示
すようにラツク粗材2に噛合わせて圧接し、その
状態でピニオン工具1とラツク粗材2とをラツク
歯3のピツチ線4方向に相対的に移動させつつピ
ニオン工具1を回転させる方法であるが、仕上精
度がピニオン工具1とラツク粗材2の相対運動の
バラつきに大きく影響されるため、従来から仕上
精度を向上させる方式として、ピニオン工具1と
ラツク粗材2との相対移動およびピニオン工具1
の回転を強制的に行なう強制駆動方式と、ピニオ
ン工具1とラツク粗材2との相対移動もしくはピ
ニオン工具1の回転のいずれか一方を強制的に行
なう自由駆動方式とが知られている。強制駆動方
式によれば、ピニオン工具1とラツク粗材2との
相対運動、特にピニオン工具1の回転速度のバラ
つきを減じ、歯形を理想状態に近づけることがで
き、また自由駆動方式によれば、仕上精度が若干
落ちるものの、歯形をいわば準理想状態にまでは
近づけることができる。
In this type of method, a pinion tool 1 is meshed and pressed against a rack material 2 as shown in FIG. This is a method of rotating the pinion tool 1 while moving it relatively, but since the finishing accuracy is greatly affected by variations in the relative movement between the pinion tool 1 and the rough material 2, this method has traditionally been used to improve finishing accuracy. Relative movement between pinion tool 1 and easy rough material 2 and pinion tool 1
A forced drive system in which the rotation of the pinion tool 1 is forcibly performed, and a free drive system in which either the relative movement of the pinion tool 1 and the rough material 2 or the rotation of the pinion tool 1 are forcibly performed are known. According to the forced drive method, it is possible to reduce the relative movement between the pinion tool 1 and the rough material 2, especially the variation in the rotational speed of the pinion tool 1, and to bring the tooth profile closer to the ideal state, and according to the free drive method, Although the finishing accuracy is slightly degraded, the tooth profile can be brought close to a quasi-ideal state.

しかるに従来のこれらいずれの方式による転造
法でも、歯面内における噛合ピツチ線前後のすべ
り速度差、噛合い点数の変動による接触荷重の変
化、ピニオン歯先のラツク歯底への接触の有無あ
るいはその程度の変動などによつて仕上げ誤差が
生じ、例えば第2図に鎖線で示す得るべき歯形に
対し、ラツク歯3の形状が実線で示すように、歯
元がくびれるとともに歯先が脹らんだ形状になる
場合があつた。
However, in conventional rolling methods using any of these methods, there is a difference in sliding speed before and after the meshing pitch line within the tooth surface, changes in contact load due to changes in the number of meshing points, presence or absence of contact between the pinion tooth tip and the rack tooth bottom, or Due to such fluctuations, finishing errors occur, and for example, compared to the desired tooth profile shown by the chain line in Figure 2, the shape of the rack tooth 3 becomes constricted at the root and swells at the tip, as shown by the solid line. There were cases where the shape became

すなわち、第3図は所定のねじれ角のラツク歯
3を有するラツク粗材2を仕上転造する場合を示
す説明図であつて、ピニオン工具1は取付角を含
めてラツク歯3と同様なねじれ角に設定されてお
り、そのピニオン工具1の中心軸が第3図に符号
で示す位置にあるときは、ピニオン工具1とラ
ツク粗材2との噛合いは点P1,P2,P3の近
傍にあり、噛合い率は2以上となつている。ピニ
オン工具1が符号で示す位置から符号で示す
位置まで微小寸法△L移動すると、前記のP1の
点での噛合いが解除されるとともに、点P4′で
の噛合いが加わり、同時に点P2がP2′に、点
P3がP3′に変化する。このように噛合いの点
が変化することに伴つて接触荷重が変化し、例え
ば点P4′においては第4図に示すように、その
点P4′に掛る力F4は、ラツク歯3における点
P4′の歯端からの寸法lに応じた剛性によつて
変動する。したがつてピニオン工具1に掛る総力
は、点P1,P2,P3に掛る力の総和から、点
P2′,P3′,P4′に掛る力の総和となつたり、
場合によつては点P2,P3のみにおいて噛合う
こともあるので点P2,P3に掛る力の総和にな
つたりし、結局接触荷重はピニオン工具1がラツ
ク粗材2上を転動する間に随時変動する。
That is, FIG. 3 is an explanatory diagram showing the case of finish rolling a rough rough material 2 having a rack tooth 3 with a predetermined helix angle, and the pinion tool 1 has a helix similar to the rack tooth 3 including the mounting angle. When the center axis of the pinion tool 1 is at the position indicated by the symbol in FIG. Yes, and the meshing ratio is 2 or more. When the pinion tool 1 moves by a minute distance ΔL from the position indicated by the symbol to the position indicated by the symbol, the mesh at the point P1 is released, the mesh at the point P4' is added, and at the same time the point P2 is At P2', point P3 changes to P3'. As the point of engagement changes in this way, the contact load changes. For example, at point P4', as shown in FIG. ' The rigidity varies depending on the dimension l from the tooth end. Therefore, the total force applied to the pinion tool 1 changes from the sum of the forces applied to points P1, P2, and P3 to the sum of the forces applied to points P2', P3', and P4',
In some cases, there may be meshing only at points P2 and P3, so the force applied to points P2 and P3 becomes the sum of the forces, and in the end, the contact load is generated while the pinion tool 1 rolls on the rough material 2. Changes from time to time.

このような転造時おける荷重の変動が仕上誤差
を招来するから、仕上精度を高めるためには、荷
重の変動を抑制する必要がある。ここで。荷重の
変動に伴う仕上誤差の発生について説明すると、
第5図は第3図における点P3の噛合点が点P
3′に変化した場合の噛合い部の局部変形を示す
図であり、切込み力F3がF3′に変化すると、
ピニオン中心位置Oは変位量11に誤差発生変位
ベクトル12を加えた位置に変わり、その場合反
作用をab⌒の面で受けていたものが、cde⌒の面に変
化する。したがつて荷重を受ける面の面積の変化
割合すなわちcde⌒/ab⌒は、切込み量tが小さい程
大きくなり、その値が大きい程すなわち切込み量
tが少ない程誤差発生変位ベクトル12が小さく
なる。なお、第5図中Rはピニオン噛合部の特定
断面の曲率半径である。したがつて、仕上精度を
向上させるためには、ラツク粗材2を転動するピ
ニオン工具1の1ストローク当りの切込み量tを
少なくすればよいのであるが、切込み量tを少な
くした場合には、仕上転造に要する時間がながく
かかり、能率が悪くなる問題がある。そこで従来
では作業能率を重視するうえから、1ストローク
当りの切込み量tをある程度大きい一定量に保つ
て仕上転造を行なつているために、仕上精度を向
上するにも限度があつた。
Such variations in load during rolling cause finishing errors, so in order to improve finishing accuracy, it is necessary to suppress variations in load. here. To explain the occurrence of finishing errors due to load fluctuations,
Figure 5 shows that the meshing point of point P3 in Figure 3 is point P.
3' is a diagram showing local deformation of the meshing part when the cutting force F3 changes to F3';
The pinion center position O changes to a position obtained by adding the error generating displacement vector 12 to the displacement amount 11, and in this case, the reaction that was received on the ab⌒ plane changes to the cde⌒ plane. Therefore, the rate of change in the area of the surface receiving the load, ie, cde⌒/ab⌒, increases as the depth of cut t becomes smaller, and the larger the value, that is, the smaller the depth of cut t, the smaller the error-generating displacement vector 12 becomes. Note that R in FIG. 5 is the radius of curvature of a specific cross section of the pinion meshing portion. Therefore, in order to improve finishing accuracy, it is sufficient to reduce the depth of cut t per stroke of the pinion tool 1 that rolls on the rough rough material 2, but if the depth of cut t is reduced, However, there is a problem in that the finish rolling takes a long time and efficiency is reduced. Conventionally, in order to prioritize work efficiency, finish rolling is carried out by keeping the depth of cut t per stroke at a certain large constant amount, which limits the ability to improve finishing accuracy.

この発明は上記の事情に鑑みてなされたもの
で、ラツク歯の仕上転造を精度良く、しかも迅速
に行なうことのできる方法を提供することを目的
とし、その特徴とするところは、ピニオン工具の
回転をフライホイールによつて滑かにするととも
に、ピニオン工具の1ストローク当りの切込み量
すなわちピニオン工具を反転移動させる毎の切込
み量を次第に減じる点にある。
This invention was made in view of the above circumstances, and aims to provide a method that can perform finish rolling of rack teeth with high accuracy and speed. The point is that rotation is made smooth by the flywheel, and the amount of cutting per one stroke of the pinion tool, that is, the amount of cutting each time the pinion tool is reversely moved, is gradually reduced.

以下この発明の実施例を説明する。 Examples of the present invention will be described below.

まずこの発明の方法を実施するための装置を説
明すると、第6図はこの発明の方法を実施するた
めの装置の概略図であつて、ピニオン工具10は
バツクアツプラツク11に噛合した状態でラツク
粗材12上を転動するよう、また粗材12はスラ
イド溝20を有する本体19上を矢印21方向に
移動可能にそれぞれ構成されており、そのバツク
アツプラツク11はピニオン工具10をラツク粗
材12に圧接させるためのものであつて、ラツク
粗材12に向けて前後動し得るよう機枠等の固定
部13にネジ等の調整手段14を介して取付けら
れており、したがつてバツクアツプラツク11に
よつてピニオン工具10をラツク粗材12に押し
付けかつピニオン工具10による切込み量tを調
整手段14によつて調整するようになつている。
またピニオン工具10には、その回転を滑らかに
するためのフライホイール15が同軸上に取付け
られ、両者が一体となつて回転するようになつて
いる。さらにピニオン工具10の中心軸がコネク
テイングロツド16を介してクランク17に連結
され、クランク17をモータ18によつて回転さ
せることにより。ピニオン工具10がラツク粗材
12のピツチ線方向に往復動するようになつてい
る。
First, an apparatus for carrying out the method of the present invention will be explained. FIG. The back-up rack 11 is configured to roll on the rough material 12, and the rough material 12 is movable in the direction of the arrow 21 on a main body 19 having a slide groove 20, and the back-up plug 11 easily moves the pinion tool 10 onto the rough material. 12, and is attached to a fixed part 13 such as a machine frame via an adjustment means 14 such as a screw so that it can be moved back and forth toward the rough material 12. The pinion tool 10 is pressed against the rack material 12 by the rack 11, and the cutting depth t by the pinion tool 10 is adjusted by the adjusting means 14.
Further, a flywheel 15 is coaxially attached to the pinion tool 10 to smooth its rotation, so that the two rotate as one. Further, the central shaft of the pinion tool 10 is connected to a crank 17 via a connecting rod 16, and the crank 17 is rotated by a motor 18. A pinion tool 10 is adapted to reciprocate in the pitch line direction of the rough material 12.

つぎに上記の装置を用いたこの発明の方法を説
明すると、ラツク粗材12の仕上転造はピニオン
工具10を往復動させつつ切込ませて行なうが、
仕上転造開始当初は切込み量tを例えば0.03mm程
度に大きく設定し、ピニオン工具10の1ストロ
ーク毎すなわちピニオン工具10を反転移動させ
る毎に切込み量tを例えば指数関数的に漸次減じ
る。その状況を第7図に示す。このようにして仕
上転造している間では、使用している装置がわず
かなりとも弾性変形しており、したがつて仕上代
全体に亙つて切込んだ時点、すなわち切込み量t
を零にした時点で、ピニオン工具10をそのまま
静止させると、装置の弾性応力によつてラツク歯
にピニオン工具10の静止跡が付き、あるいは所
期の仕上代以上に切込んでしまうので、切込み量
tが零になつた後は、第7図に示すように装置の
剛性に応じてピニオン工具10を切込み方向とは
逆方向に後退させつつ往復移動さされ。
Next, the method of the present invention using the above-mentioned device will be explained. Finish rolling of the rough rough material 12 is performed by cutting while reciprocating the pinion tool 10.
At the beginning of finish rolling, the depth of cut t is set to a large value, for example, about 0.03 mm, and the depth of cut t is gradually reduced, for example, exponentially, every stroke of the pinion tool 10, that is, every time the pinion tool 10 is reversely moved. The situation is shown in Figure 7. During finish rolling in this way, the equipment used is elastically deformed even slightly, and therefore the cutting depth is t, which is the point at which the entire finishing allowance is cut, that is, the depth of cut t.
If the pinion tool 10 is allowed to stand still once it has been reduced to zero, the elastic stress of the device will leave imprints of the pinion tool 10 on the rack teeth, or the cut will be greater than the intended finishing amount, so the depth of cut may be reduced. After the amount t becomes zero, as shown in FIG. 7, the pinion tool 10 is moved back and forth in a direction opposite to the cutting direction depending on the rigidity of the device.

以上のようにしてピニオン工具10を転動させ
ている間では、ピニオン工具10の形状および質
量に基づく慣性能率(イナーシヤモーメント)
に、フライホイール15およびこれと同期して回
転する運動系の慣性能率が付加されるので、全体
としての慣性能率が大きくなり、その結果、荷重
の変動による回転変動が抑制され、ピニオン工具
10の回転が円滑化される。その場合、切込み終
点近傍すなわち切込み量tが零に極めて近づいた
時点では、転造抵抗力が減少することにより転造
抵抗力に対するフライホイール15の慣性力が相
対的に増大するが、フライホイール15の慣性力
は転造のための荷重として作用することもあるの
で、フライホイール15の慣性力が転造抵抗力に
対して過大であれば、仕上誤差を惹起するおそれ
もあり、またクランク17やコネクテイングロツ
ド16に対し負荷増大にもなる。したがつてフラ
イホイール15による慣性力は、その回転速度の
変化率または慣性能率が大きい程大きいので、フ
ライホイール15の重量や径等は、要求されるラ
ツク歯の仕上精度やクランク17等の機械系に応
じて適宜に設定し、フライホイール15の回転速
度および回転加速度が連続的に変化するように構
成することが好ましい。
While the pinion tool 10 is rolling as described above, the inertia rate (inertia moment) based on the shape and mass of the pinion tool 10
Since the inertia factor of the flywheel 15 and the motion system that rotates in synchronization with the flywheel 15 is added to the inertia factor, the overall inertia factor increases, and as a result, rotational fluctuations due to load fluctuations are suppressed, and the pinion tool 10 Rotation is smoothed out. In that case, near the cutting end point, that is, when the cutting amount t approaches zero, the rolling resistance force decreases and the inertia force of the flywheel 15 relative to the rolling resistance force increases; however, the flywheel 15 Since the inertia force of the flywheel 15 may act as a load for rolling, if the inertia force of the flywheel 15 is excessive compared to the rolling resistance force, there is a risk of causing finishing errors, and the crank 17 and This also increases the load on the connecting rod 16. Therefore, the inertia force exerted by the flywheel 15 increases as the rate of change in rotational speed or inertia rate increases. Therefore, the weight, diameter, etc. of the flywheel 15 are determined depending on the required finish accuracy of the easy teeth and the machine such as the crank 17. It is preferable that the rotational speed and rotational acceleration of the flywheel 15 be configured to be set appropriately depending on the system so that the rotational speed and rotational acceleration of the flywheel 15 change continuously.

しかして上述した方法では、仕上転造の最終過
程で切込み量tを減少し、かつピニオン工具10
の回転をフライホイール15によつて安定化する
から、ラツク歯の仕上精度を向上させることがで
き、同時に切込み量tを当初は大きくし、以降漸
減させるから、仕上精度を低下させることなく作
業時間を短縮化することができる。
However, in the method described above, the depth of cut t is reduced in the final process of finish rolling, and the pinion tool 10 is
Since the rotation of the tooth is stabilized by the flywheel 15, the finishing accuracy of the rack teeth can be improved.At the same time, since the depth of cut t is initially increased and then gradually decreased, the working time can be reduced without reducing the finishing accuracy. can be shortened.

なお、上記の実施例は、ピニオン工具10をラ
ツク歯のピツチ線方向に移動させ。それに伴つて
ピニオン工具10を回転させる所謂自由駆動方式
にこの発明を適用した例であるが、この発明は自
由駆動方式に限らず、強制駆動方式にも適用する
ことができる。またこの発明はピニオン工具10
とバツクアツプラツク11との間にアイドル歯車
を介挿した構成の装置を用いる場合にも適用でき
る。仮に第6図のバツクアツプラツク11とピニ
オン工具10との間にアイドル歯車を1個設ける
と、粗材12と本体19との相対移動は零とな
り、矢印21方向の動きが不要となる他は、同等
の説明となるので詳細説明は割愛する。これら強
制駆動方式やアイドル歯車を用いた場合において
は、駆動系の剛性や装置全体の剛性が自由駆動方
式の場合とは相違するが、フライホイール15に
よる慣性力を適宜に設定することにより、前述し
た実施例におけると同様な効果を得ることができ
る。
In the above embodiment, the pinion tool 10 is moved in the direction of the pitch line of the rack teeth. This is an example in which the present invention is applied to a so-called free drive system in which the pinion tool 10 is rotated accordingly, but the present invention is not limited to the free drive system but can also be applied to a forced drive system. This invention also provides a pinion tool 10.
The present invention can also be applied to a device in which an idle gear is inserted between the back-up rack 11 and the back-up rack 11. If one idle gear is provided between the back-up rack 11 and the pinion tool 10 in FIG. 6, the relative movement between the rough material 12 and the main body 19 becomes zero, and the movement in the direction of the arrow 21 becomes unnecessary. , the detailed explanation will be omitted as the explanation is equivalent. When these forced drive systems and idle gears are used, the rigidity of the drive system and the rigidity of the entire device are different from those of the free drive system, but by appropriately setting the inertia force by the flywheel 15, The same effects as in the embodiment described above can be obtained.

以上の説明から明らかなようにこの発明の仕上
転造法は、ピニオン工具の回転をフライホイール
によつて滑かにするとともに、ピニオン工具の1
ストローク当りの切込み量すなわちピニオン工具
を反転移動させる毎の切込み量を次第に減じる方
法であるから、ラツク歯の仕上精度を向上し得る
のみならず、仕上転造に要する作業時間を短縮す
ることができるなど実用上優れた効果を得ること
ができる。
As is clear from the above explanation, the finish rolling method of the present invention allows the rotation of the pinion tool to be smoothed by the flywheel, and
Since this method gradually reduces the amount of cut per stroke, that is, the amount of cut each time the pinion tool is reversed, it not only improves the finishing accuracy of the rack teeth, but also shortens the work time required for finish rolling. Excellent practical effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はラツク歯の仕上転造法の概念図、第2
図は仕上誤差のあるラツク歯の歯形を示す略解
図、第3図は仕上転造時におけるピニオン工具と
ラツク歯との噛合点の変化を示す説明図、第4図
は第3図のおける点P4′における荷重の作用状
態を説明するための説明図、第5図は切込み量に
応じた誤差発生についての説明図、第6図はこの
発明の方法を実施するための装置の概略図、第7
図は1ストローク毎の切込み量の変化を示すグラ
フである。 10……ピニオン工具、12……ラツク粗材、
14……調整手段、15……フライホイール、t
……切込み量。
Figure 1 is a conceptual diagram of the finish rolling method for easy teeth, Figure 2
The figure is a schematic diagram showing the tooth profile of a rack tooth with finishing errors, Figure 3 is an explanatory diagram showing changes in the meshing point between the pinion tool and the rack tooth during finish rolling, and Figure 4 is the point shown in Figure 3. An explanatory diagram for explaining the operating state of the load at P4', FIG. 5 is an explanatory diagram for the occurrence of errors depending on the depth of cut, and FIG. 7
The figure is a graph showing changes in the depth of cut for each stroke. 10... Pinion tool, 12... Easy rough material,
14... Adjustment means, 15... Flywheel, t
...Amount of cut.

Claims (1)

【特許請求の範囲】[Claims] 1 ラツク歯を形成したラツク粗材に対しラツク
歯仕上げ用ピニオン工具を噛合わせて圧接すると
ともに、そのピニオン工具をラツク粗材のピツチ
線方向に往復移動させつつ回転させることにより
ラツク歯の仕上転造を行なうにあたり、前記ピニ
オン工具と一体にフライホイールを回転させ、か
つピニオン工具のラツク素材に対する切込み量
を、ピニオン工具を反転移動させる毎に減じるこ
とを特徴とするラツク歯の仕上転造法。
1. A pinion tool for finishing the easy teeth is engaged and pressed against the rough rough material on which easy teeth have been formed, and the pinion tool is rotated while reciprocating in the direction of the pitch line of the rough rough material to finish the rough teeth. A method for finish rolling rack teeth, which comprises rotating a flywheel together with the pinion tool and reducing the amount of cut into the rack material by the pinion tool each time the pinion tool is reversely moved.
JP22084682A 1982-12-16 1982-12-16 Finish rolling method of rack tooth Granted JPS59110444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22084682A JPS59110444A (en) 1982-12-16 1982-12-16 Finish rolling method of rack tooth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22084682A JPS59110444A (en) 1982-12-16 1982-12-16 Finish rolling method of rack tooth

Publications (2)

Publication Number Publication Date
JPS59110444A JPS59110444A (en) 1984-06-26
JPH0344854B2 true JPH0344854B2 (en) 1991-07-09

Family

ID=16757455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22084682A Granted JPS59110444A (en) 1982-12-16 1982-12-16 Finish rolling method of rack tooth

Country Status (1)

Country Link
JP (1) JPS59110444A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120003777A (en) * 2010-07-05 2012-01-11 엘지이노텍 주식회사 Flexible printed circuit board

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPR20120068A1 (en) * 2012-10-17 2014-04-18 Domotime S R L PROCEDURE FOR THE REALIZATION OF RACKS FOR AUTOMATISMS FOR GATES
JP6273715B2 (en) * 2013-08-05 2018-02-07 株式会社ジェイテクト Processing apparatus and processing method for variable gear ratio rack
DE102015120149A1 (en) * 2015-11-20 2017-05-24 Robert Bosch Automotive Steering Gmbh Apparatus and method for hard machining a toothing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120003777A (en) * 2010-07-05 2012-01-11 엘지이노텍 주식회사 Flexible printed circuit board

Also Published As

Publication number Publication date
JPS59110444A (en) 1984-06-26

Similar Documents

Publication Publication Date Title
SU1530085A3 (en) Method and apparatus for finishing single-start or multistart wormlike or thread-like article
US4869088A (en) Ring shaping apparatus
WO2000003819A1 (en) Full form roll finishing technique
US2906147A (en) Roll for forming toothed elements
EP0064197A2 (en) Method of processing cylindrical surface
JPH0344854B2 (en)
US3688540A (en) Tube rolling mill employing a tapered mandrel and a cluster of rolls that each have specially designed tube contacting grooves
US3705513A (en) Rolling high helix pinions
US5528917A (en) Force controlled rolling of gears
JP2898572B2 (en) Screw rolling machine that prevents bending of the workpiece shaft
US3732780A (en) Apparatus for producing variable ratio gearing
JPS5854935B2 (en) Machine that precisely processes gears
US6279366B1 (en) Item with external teeth and method of forming the same
US6779270B2 (en) Full form roll finishing technique
US3221608A (en) Broaching apparatus
JP2000343328A (en) Lapping method and device
US3877273A (en) Gear rolling method and apparatus
WO1992018279A1 (en) Method for finishing hardened crown wheels
JP2777687B2 (en) Pre-processing method and pre-processing device for wire rod
DE4231021A1 (en) Abrasive finishing of gear-teeth using helical rotor drive - involves pendular motion with radius and angle adjusted to determine relative displacement of edges of tool and machining wheel
US4689980A (en) Method for snap ring forming and grooving
EP0703387A1 (en) Method for forming cam face on structure member of loading cam device for toroidal-type continuously variable transmission
US3590621A (en) Apparatus for reducing the thickness of metal
JPS5813427A (en) Rolling method for gear
JPS6012133B2 (en) Cold pilger mill pipe manufacturing method