JPH0344802B2 - - Google Patents

Info

Publication number
JPH0344802B2
JPH0344802B2 JP61056573A JP5657386A JPH0344802B2 JP H0344802 B2 JPH0344802 B2 JP H0344802B2 JP 61056573 A JP61056573 A JP 61056573A JP 5657386 A JP5657386 A JP 5657386A JP H0344802 B2 JPH0344802 B2 JP H0344802B2
Authority
JP
Japan
Prior art keywords
evaporator
steam
liquid
pipe
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61056573A
Other languages
Japanese (ja)
Other versions
JPS62213801A (en
Inventor
Tsutomu Nishide
Hiroshi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP5657386A priority Critical patent/JPS62213801A/en
Publication of JPS62213801A publication Critical patent/JPS62213801A/en
Publication of JPH0344802B2 publication Critical patent/JPH0344802B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は液体の濃縮装置に関するものであり、
特にパルプ製造原材料の一つである白液など希薄
溶液ことに希薄アルカリ溶液の濃縮に主として用
いられる濃縮装置に関するものである。 [従来の技術] 周知の如く、パルプの製造に際しては白液が大
量に用いられている。この白液は、約10〜12%程
度の濃度の希薄アルカリ溶液であり、例えば
NaOHとして約10%前後、Na2S、Na2CO3
Na2SO4、NaCl等を約2%程度含む。 ところで、近年、パルプ製造コストの低減のた
めに、この白液の濃度を若干高めることが要求さ
れつつある。この技術的背景についてまず説明す
る。 第3図はクラフトパルプの製造工程を示す系統
図である。符号14は蒸解釜であつて、原料チツ
プと白液とが導入され、蒸気加熱により、約160
℃、9Kg/cm2の加熱加圧雰囲気に維持してチツプ
の蒸解が行なわれる。なお白液は白液タンク10
中に約85℃に加熱された状態におかれており、蒸
気を熱源とする加熱装置12で約120℃まで加熱
された後蒸解釜14に供給される。 蒸解釜14からの反応液は、一旦フラツシユド
ラム16に導入され、大気圧で解放され、フラツ
シユ蒸気は熱回収に利用される。フラツシユドラ
ム16にて大気圧に戻された反応液は、洗浄機1
8に導入され、セルロースと弱黒液とに分離され
る。弱黒液はエバポレータ20に導入されて濃縮
され強黒液となり、ボイラ22に燃料として導入
され、重油と共に燃焼され、蒸気を発生させる。
この蒸気は加熱装置12や蒸解釜14の熱源蒸気
として供給される。 また、この黒液中に含まれていたアルカリ成分
は主としてNa2CO3となり、苛性化反応装置24
に導入され、CaOと反応してNaOHに戻され、
白液タンク10に返送される。なお苛性化反応装
置24では、CaOはCaO3に変わるのであるが、
このCaCO3はキルン26に導入され加熱分解処
理を受けてCaOとなり、再度苛性化反応に供され
る。 ところで、従来このクラフトパルプ製造に用い
られる白液は、濃度が約10〜12%と比較的低いも
のであるので、フラツシユドラム16で大気放出
される蒸気量が大量になること、蒸解釜14での
加熱用蒸気の消費量が増大すること等の理由か
ら、ボイラ22での重油消費量が増大し、パルプ
製造コストを増大させる原因となつている。 このようなことから、白液の濃度を高めること
が望まれるようになつてきているのである。 ところで、一般に溶液の効率的な濃縮を行なう
装置として多重効用蒸発装置が知られている。こ
の多重効用蒸発装置は、複数の蒸発缶を直列に配
置し、第1の蒸発缶で発生した蒸気を操作圧力の
より低い第2蒸発缶に導入して該第2蒸発缶の液
体を蒸発させる熱エネルギーとして使用し、該第
2蒸発缶以下順次にこれを繰り返し多重蒸発を行
なうものである。 そこで、この多重効用蒸発装置を白液の濃縮装
置に適用することが考えられる。第2図はそのよ
うな一例を示すものであり、第1ないし第5の蒸
発缶1〜5を備えている。原液は、原液ポンプ2
8、原液供給管30を介して第5の蒸発缶5に導
入され、順次に第4、第3、第2、第1の蒸発缶
4〜1に送り込まれる。そして、該第1の蒸発缶
1から濃縮液として配管32、濃縮液取出ポンプ
34を介して取り出される。 一方、加熱用の蒸気は、配管36から第1の蒸
発缶1に導入され、該第1の蒸発缶1で生じた蒸
気は第2の蒸発缶2に配管38を介して送り込ま
れ、順次下段側の蒸発缶に同様にして供給され
る。第5の蒸発缶からの蒸気は配管46でエジエ
クタシステム48を備えた凝縮器50に導入さ
れ、復水される。 なお、第2図の濃縮装置のその他の構成は後述
の実施例装置と大略同様であり、同一部材に同一
符号を付してその説明を省略する。 [発明が解決しようとする問題点] 第2図の如く構成された多重効用蒸発方式の濃
縮装置では、それなりに効率のよい濃縮はできる
ものの、更に効率がよく熱コストの低い濃縮装置
が期待される。 また、第2図の濃縮装置においては、第1又は
第2の蒸発缶1,2では濃縮液が高温、高濃度で
あるところから、高耐食性の材料例えばNiや
SUS316Lを用いるのであるが、該第1、第2の
蒸発缶1,2での蒸発量が多いので、これら第
1、第2の蒸発缶の蒸発チユーブの表面積を大き
くとる必要があり、高耐食性材料の使用量も増大
し、装置構成コストを増大させる一因となる。 [問題点を解決するための手段] 本発明の液体の濃縮装置は、第1ないし第n
(nは2以上)の蒸発缶を直列に配置した多重効
用蒸発による濃縮装置であつて、第1の蒸発缶に
熱源蒸気を供給し、最高順位の第nの蒸発缶に原
液供給管から原液を供給し、低順位側の蒸発缶の
蒸気を順次に高順位側の蒸発缶に導入すると共
に、高順位側の蒸発缶内の被蒸発液を順次に低順
位側の蒸発缶に導入し、第1の蒸発缶から濃縮液
を取り出す濃縮装置において、原液供給管の途中
に自己フラツシユ蒸発缶を設け、この自己フラツ
シユ蒸気をそれよりも操作圧力の低いいずれかの
蒸発缶に熱源蒸気として導入するよう構成したも
のである。 [作用] 本発明の濃縮装置では、原液を中間の真空度域
で一旦自己フラツシユ蒸発させ、この蒸発蒸気を
より操作圧力の低い蒸発缶の熱源蒸気として使用
するものである。そのため、本発明によれば、熱
源たる蒸気の使用量が減少し、加熱コストの低減
が図れる。 また、自己フラツシユ蒸気が導入された蒸発缶
では、蒸発量が増大するので、低温低濃度の下段
側での蒸発量が増大し、高温高濃度の上段側での
蒸発量が減少することになる。そのため、上段側
の蒸発缶の蒸発チユーブ表面積の減少が図れ、高
耐食性材料の使用量が少量で足り、装置構成コス
トの低減が図れる。 [実施例] 以下図面を参照して本発明の実施例について説
明する。 第1図は本発明の実施例に係る液体の濃縮装置
を白液の濃縮装置として適用した実施例を示す系
統図である。 第1図において、この濃縮装置は第1ないし第
5の蒸発缶1〜5を備えており、最も上段側の第
1の蒸発缶1には加熱源たる蒸気の供給管36と
濃縮液の取出管32及び濃縮液取出用ポンプ34
が接続されている。 第1ないし第5の蒸発缶1〜5は直立長管型の
蒸発チユーブ群52を備えており、濃縮される液
体は該チユーブ群52の頂部から流し込まれ、各
チユーブ内を薄膜状に流下する間に蒸発濃縮され
る。生じた蒸気はチユーブ群52の下端から下部
容器54内に入り、次いでワイヤメツシユ型等の
飛沫捕集器56を経て蒸気取出用の配管38〜4
6に至る。 また、濃縮された液体は、蒸発チユーブ群52
の下端から容器54内に落下する。蒸気取出用の
配管38ないし44は、それぞれ下段側の蒸発缶
2〜5の蒸発導入側に接続されており、各蒸発缶
の蒸発チユーブ群52の間を通つてチユーブ内の
液体の加熱を行なう。 原液は、ポンプ28及び供給管30を介してフ
ラツシユ蒸発缶58に導入され、フラツシユ蒸発
し、残りの液体は配管30から第5の蒸発缶5内
に導入され、自己蒸発を行なう。 第5の蒸発缶5には、容器54の底部と蒸発チ
ユーブ群52の上部に形成された液導入室60と
を接続するポンプ62付の配管64が迂回して設
けられており、容器54内の液体を蒸発チユーブ
群52の頂部に押し上げ、該蒸発チユーブ群の各
チユーブの間に流し込んでいる。この第5の蒸発
缶5で生じた蒸気は配管46から凝縮器50に送
られ復水される。また凝縮液は配管66からタン
ク68、ポンプ70を介して系外に排出される。 蒸発缶5の濃縮液は、配管72、ポンプ74、
熱交換器76を介して配管78に送り込まれ、蒸
発缶4の頂部の液導入室60に送り込まれ、蒸発
チユーブ群52内を流下して一部が蒸発する。蒸
気は配管44から第5の蒸発缶5に送られ、凝縮
液は配管80、タンク82、ポンプ84を通り系
外に排出される。なお、この凝縮液は途中で熱交
換器76に導入され、第5の蒸発缶15から第4
の蒸発缶4に送られる液の加熱を行なう。 第4の蒸発缶4の濃縮液は、配管86、ポンプ
88、熱交換器90を経て配管92に送り込ま
れ、第3の蒸発缶3の頂部の液導入室60内に導
入され、蒸発チユーブ群52内を流下される。蒸
発チユーブ群52内をする間に蒸発した蒸気は、
配管126から送り込まれる蒸気と共に配管42
を介して第4の蒸発缶4に送られる。凝縮液は配
管94、タンク96、ポンプ98を経て前記タン
ク82に送り込まれ、その途中にて熱交換器90
を通り第3の蒸発缶3に導入される液の加熱を行
なう。 第3の蒸発缶3の濃縮液は、配管100、ポン
プ102、熱交換器104を介して配管106に
送り込まれ、第2の蒸発缶2の頂部の液導入室6
0に送り込まれ、蒸発チユーブ群52の各チユー
ブの間に導入される。生じた蒸気は、配管40を
介して第3の蒸発缶3に送り込まれる。また配管
38から導入された蒸気の凝縮液は、配管10
8、タンク110、ポンプ112を介してタンク
96に送り込まれ、その途中にて熱交換器104
を通り、第2の蒸発缶2に導入される液の加熱を
行なう。 第2の蒸発缶2の濃縮液は、配管114、ポン
プ116、熱交換器118を介して配管120に
送り込まれ、第1の蒸発缶1の液導入室60に供
給される。そして蒸発チユーブ群52のパイプ内
を流下し、その間に一部が蒸発し、生じた蒸気は
配管38から第2の蒸発缶2に送り込まれる。配
管36からの蒸気の凝縮液は配管122、タンク
124を経てタンク110に送り込まれ、その途
中にて熱交換器118を通り第1の蒸発缶1に送
られる液の加熱を行なう。 しかして、フラツシユ蒸発缶58は蒸気取出用
の配管126が接続されており、この配管126
は、第3と第4の蒸発缶4とを接続する配管42
に合流されている。従つて、フラツシユ蒸発缶5
8の蒸気は配管126,42を通り、第3の蒸発
缶からの蒸気と共に第4の蒸発缶4の蒸気導入側
に導入され、第4及び第5の蒸発缶における熱源
として利用される。 かかる構成の濃縮装置においては、第2図に示
す濃縮装置に比べ、第4及び第5の蒸発缶4,5
に加えられる熱源としての蒸気量が増大するか
ら、それだけ多量の蒸発が第4及び第5の蒸発缶
においてなされる。そして、その分だけ第1ない
し第3の蒸発缶における蒸発量の減少が図れる。
従つて、高温高濃度の上段側での蒸発チユーブ表
面積を小さくし、低温濃度の下段側での蒸発チユ
ーブ表面積を増大することができ、Niや
SUS316L等の高耐食性材料の使用量が減少され、
SUS304L等のより安価な材料の使用量を増大さ
せることができる。 また、フラツシユ蒸発缶58において、中間の
真空度域で自己蒸発させ、その蒸気を第4及び第
5の蒸発缶で加熱用の蒸気として使用しているか
ら、原液が保有する顕熱を蒸発熱源として有効に
利用することができ、第1の蒸発缶へ配管36か
ら導入される熱源蒸気の導入量も減少される。 なお、濃度12.46%の白液を16.6%にまで高め
る場合の各蒸発缶1〜5における濃度及び温度、
配管36〜46の蒸気通過量並びにフラツシユ蒸
発缶58の温度等を第1図、第2図中に記入す
る。この例からも明らかな通り、第1図の実施例
装置によれば、装置に配管36から導入される蒸
気の流量が約20%減少され、それだけ低熱コスト
で蒸発処理できることが明らかである。また、各
蒸発缶1〜5の蒸発チユーブの表面積を次の第1
表に示す。第1表より明らかな通り、第1ないし
第3の蒸発缶は、蒸発チユーブの表面積が約15%
減少され、それだけNiやSUS316Lの使用量が減
少され、高価な材料の使用量を減少することによ
る装置構成コストの低廉化が図れる。
[Industrial Application Field] The present invention relates to a liquid concentrating device,
In particular, the present invention relates to a concentrating device mainly used for concentrating dilute solutions such as white liquor, which is one of the raw materials for pulp production, and dilute alkaline solutions. [Prior Art] As is well known, a large amount of white liquor is used in pulp production. This white liquor is a dilute alkaline solution with a concentration of about 10-12%, for example
Approximately 10% as NaOH, Na 2 S, Na 2 CO 3 ,
Contains about 2% Na 2 SO 4 , NaCl, etc. Incidentally, in recent years, in order to reduce pulp production costs, it has been required to slightly increase the concentration of this white liquor. First, the technical background will be explained. FIG. 3 is a system diagram showing the manufacturing process of kraft pulp. Reference numeral 14 is a digester, into which raw material chips and white liquor are introduced, and by steam heating, about 160
The chips are cooked in a heated and pressurized atmosphere at 9 Kg/cm 2 at a temperature of 9 Kg/cm 2 . The white liquor is in the white liquor tank 10.
It is heated to about 85° C. inside the tank, and after being heated to about 120° C. by a heating device 12 using steam as a heat source, it is supplied to the digester 14. The reaction liquid from the digester 14 is once introduced into the flash drum 16 and released at atmospheric pressure, and flash steam is used for heat recovery. The reaction liquid returned to atmospheric pressure in the flash drum 16 is transferred to the washer 1.
8 and separated into cellulose and weak black liquor. The weak black liquor is introduced into the evaporator 20 and concentrated to become strong black liquor, which is then introduced as fuel into the boiler 22 where it is combusted together with heavy oil to generate steam.
This steam is supplied as heat source steam to the heating device 12 and the digester 14. In addition, the alkaline components contained in this black liquor mainly become Na 2 CO 3 and are removed from the causticizing reactor 24.
is introduced into NaOH, reacts with CaO, and is converted back to NaOH.
The white liquor is returned to the white liquor tank 10. In addition, in the causticizing reactor 24, CaO is changed to CaO 3 ,
This CaCO 3 is introduced into the kiln 26 and subjected to thermal decomposition treatment to become CaO, which is again subjected to a causticizing reaction. By the way, since the white liquor conventionally used for producing kraft pulp has a relatively low concentration of about 10 to 12%, a large amount of steam is released into the atmosphere from the flash drum 16, and the white liquor from the digester 14 is relatively low. For reasons such as an increase in the consumption of heating steam in the boiler 22, the consumption of heavy oil in the boiler 22 increases, causing an increase in pulp production costs. For these reasons, it has become desirable to increase the concentration of white liquor. Incidentally, a multi-effect evaporator is generally known as an apparatus for efficiently concentrating a solution. This multiple effect evaporator has a plurality of evaporators arranged in series, and vapor generated in the first evaporator is introduced into a second evaporator with a lower operating pressure to evaporate the liquid in the second evaporator. This is used as thermal energy and is repeated sequentially from the second evaporator onwards to perform multiple evaporations. Therefore, it is conceivable to apply this multi-effect evaporator to a white liquor concentrator. FIG. 2 shows one such example, which includes first to fifth evaporators 1 to 5. The stock solution is delivered to the stock solution pump 2.
8. The stock solution is introduced into the fifth evaporator 5 via the stock solution supply pipe 30, and is sequentially sent to the fourth, third, second, and first evaporators 4 to 1. Then, the concentrated liquid is taken out from the first evaporator 1 via the piping 32 and the concentrated liquid extraction pump 34. On the other hand, the steam for heating is introduced into the first evaporator 1 from the piping 36, and the steam generated in the first evaporator 1 is sent to the second evaporator 2 via the piping 38, and is sequentially sent to the lower stage. The side evaporator is fed in the same way. The vapor from the fifth evaporator is introduced via line 46 into a condenser 50 with an ejector system 48 and condensed. The rest of the configuration of the concentrating device shown in FIG. 2 is almost the same as that of the embodiment device described later, and the same members are given the same reference numerals and the explanation thereof will be omitted. [Problems to be Solved by the Invention] Although the multi-effect evaporation type concentrator configured as shown in Figure 2 is capable of reasonably efficient concentration, a concentrator with even higher efficiency and lower heat costs is expected. Ru. In addition, in the concentrating device shown in Fig. 2, since the concentrated liquid is at high temperature and high concentration in the first or second evaporator 1, 2, highly corrosion-resistant materials such as Ni or
SUS316L is used, but since the amount of evaporation in the first and second evaporators 1 and 2 is large, it is necessary to have a large surface area of the evaporation tubes of these first and second evaporators, resulting in high corrosion resistance. The amount of materials used also increases, which becomes a factor in increasing the device configuration cost. [Means for Solving the Problems] The liquid concentrating device of the present invention has the following features:
This is a multi-effect evaporation concentrator in which evaporators (n is 2 or more) are arranged in series, in which heat source steam is supplied to the first evaporator, and undiluted solution is supplied from the undiluted solution supply pipe to the n-th evaporator, which is the highest ranked evaporator. and sequentially introduce the vapor from the lower rank side evaporator into the higher rank side evaporator, and sequentially introduce the liquid to be evaporated in the higher rank side evaporator into the lower rank side evaporator, In a concentrator that extracts concentrated liquid from a first evaporator, a self-flashing evaporator is provided in the middle of the raw solution supply pipe, and this self-flashing vapor is introduced as heat source steam into any evaporator having a lower operating pressure than the self-flashing evaporator. It is structured as follows. [Function] In the concentrator of the present invention, the stock solution is once self-flash evaporated in an intermediate degree of vacuum, and the evaporated vapor is used as heat source vapor for an evaporator with a lower operating pressure. Therefore, according to the present invention, the amount of steam used as a heat source is reduced, and heating costs can be reduced. In addition, in an evaporator in which self-flashing steam is introduced, the amount of evaporation increases, so the amount of evaporation at the lower stage of low temperature and low concentration increases, and the amount of evaporation at the upper stage of high temperature and high concentration decreases. . Therefore, the surface area of the evaporation tube of the upper stage side evaporator can be reduced, the amount of highly corrosion resistant material used can be reduced, and the cost of the device configuration can be reduced. [Examples] Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram showing an embodiment in which a liquid concentrating device according to an embodiment of the present invention is applied as a white liquor concentrating device. In FIG. 1, this concentrator is equipped with first to fifth evaporators 1 to 5, and the first evaporator 1 on the uppermost side has a steam supply pipe 36 as a heating source and a condensate extraction pipe 36. Pipe 32 and concentrate extraction pump 34
is connected. The first to fifth evaporators 1 to 5 are equipped with a group of upright long-tube evaporation tubes 52, and the liquid to be concentrated is poured from the top of the tube group 52 and flows down in a thin film inside each tube. During this period, it is evaporated and concentrated. The generated steam enters the lower container 54 from the lower end of the tube group 52, and then passes through a droplet collector 56, such as a wire mesh type, to the steam extraction pipes 38 to 4.
It reaches 6. Further, the concentrated liquid is transferred to the evaporation tube group 52
falls into the container 54 from the lower end. The steam extraction pipes 38 to 44 are connected to the evaporation introduction sides of the lower evaporators 2 to 5, respectively, and heat the liquid in the tubes by passing between the evaporation tube group 52 of each evaporator. . The stock liquid is introduced into the flash evaporator 58 via the pump 28 and the supply pipe 30, where it flash evaporates, and the remaining liquid is introduced into the fifth evaporator 5 through the pipe 30, where it self-evaporates. The fifth evaporator 5 is provided with a piping 64 equipped with a pump 62 that connects the bottom of the container 54 and a liquid introduction chamber 60 formed at the top of the evaporation tube group 52 in a detour manner. The liquid is pushed up to the top of the evaporation tube group 52 and poured between the tubes of the evaporation tube group. The steam generated in the fifth evaporator 5 is sent from the pipe 46 to the condenser 50 and condensed. Further, the condensed liquid is discharged from the pipe 66 to the outside of the system via a tank 68 and a pump 70. The concentrated liquid in the evaporator 5 is transferred to a pipe 72, a pump 74,
The liquid is fed into the pipe 78 via the heat exchanger 76, into the liquid introduction chamber 60 at the top of the evaporator 4, flows down inside the evaporator tube group 52, and partially evaporates. The steam is sent from the pipe 44 to the fifth evaporator 5, and the condensate passes through the pipe 80, tank 82, and pump 84 and is discharged outside the system. Note that this condensed liquid is introduced into the heat exchanger 76 on the way, and is transferred from the fifth evaporator 15 to the fourth evaporator 76.
The liquid sent to the evaporator 4 is heated. The concentrated liquid in the fourth evaporator 4 is sent to the pipe 92 via the pipe 86, the pump 88, and the heat exchanger 90, and is introduced into the liquid introduction chamber 60 at the top of the third evaporator 3, and is then introduced into the evaporator tube group. 52. The steam evaporated while inside the evaporation tube group 52 is
The pipe 42 along with the steam sent from the pipe 126
It is sent to the fourth evaporator 4 via. The condensate is sent to the tank 82 via a pipe 94, a tank 96, and a pump 98, and is passed through a heat exchanger 90 along the way.
The liquid introduced into the third evaporator 3 is heated. The concentrated liquid in the third evaporator 3 is sent to the pipe 106 via the pipe 100, the pump 102, and the heat exchanger 104, and is sent to the liquid introduction chamber 6 at the top of the second evaporator 2.
0 and introduced between each tube of the evaporation tube group 52. The generated steam is sent to the third evaporator 3 via the pipe 40. Further, the condensate of the steam introduced from the pipe 38 is transferred to the pipe 10.
8. It is sent to the tank 96 via the tank 110 and the pump 112, and the heat exchanger 104 is sent to the tank 96 on the way.
The liquid introduced into the second evaporator 2 is heated. The concentrated liquid in the second evaporator 2 is sent to the pipe 120 via the pipe 114, the pump 116, and the heat exchanger 118, and is supplied to the liquid introduction chamber 60 of the first evaporator 1. The vapor then flows down inside the pipes of the evaporator tube group 52, during which time a portion of the vapor evaporates, and the generated vapor is sent from the pipe 38 to the second evaporator 2. The vapor condensate from the pipe 36 is sent to the tank 110 via the pipe 122 and the tank 124, and along the way it passes through a heat exchanger 118 to heat the liquid sent to the first evaporator 1. Therefore, the flash evaporator 58 is connected to a pipe 126 for extracting steam, and this pipe 126
is a pipe 42 connecting the third and fourth evaporators 4;
It has been merged with. Therefore, the flash evaporator 5
The steam of No. 8 passes through the pipes 126 and 42 and is introduced into the steam introduction side of the fourth evaporator 4 together with the steam from the third evaporator 4, and is used as a heat source in the fourth and fifth evaporators. In the concentrating device having such a configuration, compared to the concentrating device shown in FIG.
Since the amount of steam added as a heat source increases, a correspondingly larger amount of evaporation is performed in the fourth and fifth evaporators. Then, the amount of evaporation in the first to third evaporators can be reduced by that amount.
Therefore, it is possible to reduce the surface area of the evaporation tube on the upper side of high temperature and high concentration and increase the surface area of the evaporation tube on the lower side of low temperature concentration.
The amount of highly corrosion-resistant materials such as SUS316L is reduced,
It is possible to increase the amount of cheaper materials such as SUS304L. In addition, in the flash evaporator 58, the vapor is self-evaporated in an intermediate vacuum range, and the resulting vapor is used as heating steam in the fourth and fifth evaporators, so the sensible heat held by the stock solution is used as the evaporation heat source. The amount of heat source steam introduced into the first evaporator from the pipe 36 is also reduced. In addition, the concentration and temperature in each evaporator 1 to 5 when increasing white liquor with a concentration of 12.46% to 16.6%,
The amount of steam passing through the pipes 36 to 46, the temperature of the flash evaporator 58, etc. are entered in FIGS. 1 and 2. As is clear from this example, according to the apparatus of the embodiment shown in FIG. 1, the flow rate of steam introduced into the apparatus from the pipe 36 is reduced by about 20%, and it is clear that the evaporation process can be performed at a correspondingly lower heat cost. In addition, the surface area of the evaporation tube of each evaporator 1 to 5 is determined by the following
Shown in the table. As is clear from Table 1, the surface area of the evaporation tube of the first to third evaporators is approximately 15%.
The amount of Ni and SUS316L used is reduced accordingly, and the equipment configuration cost can be lowered by reducing the amount of expensive materials used.

【表】 しかして、第1図の実施例の如き本発明の濃縮
装置を第3図のクラフトパルプ製造工程に適用す
るには、第3図のAの箇所に該濃縮装置を組み込
めばよい。 このように濃縮装置を組み込むと、蒸解釜14
に導入される白液の濃度が高められると共に、白
液の温度を高めることができる。従つて、蒸解釜
14における加熱用蒸気の使用量を減らすことが
図れる。更に、フラツシユドラム16で大気放出
される蒸気量が減少し、エバポレータ20の蒸発
量も減少し、ボイラ22の蒸気負荷が低減され
る。そのため、ボイラ22で消費する重油が減少
し、クラフトパルプの製造原価の低下も図れる。 なお上記実施例装置は自己フラツシユ蒸発缶5
8を一段のみ設けているが、直列に2段以上設
け、各フラツシユ蒸気を別々の蒸発缶の加熱用蒸
気として用いるように構成してもよい。また、蒸
発缶の設置数nは2以上であれば良く、実施例の
ものに限定されない。 本発明装置は白液の濃縮のみならず、各種の希
薄液とりわけ希薄アルカリ溶液の濃縮に好適に使
用することができる。 なお希薄アルカリ溶液の濃度に適用する場合に
は約20%以下程度の溶液の濃縮に適用するに好適
である。 [発明の効果] 以上の説明から明らかな通り、本発明の濃縮装
置によれば、とりわけ希薄アルカリ溶液の濃縮を
効率よく行なうことができ、濃縮に要する熱コス
トの低減が図れる。また、高耐食性材料の使用量
が減少し、装置構成コストの低減化も図れる。 しかして、本発明の濃縮装置をパルプ製造工程
に組み込むことにより、パルプ製造コストの大幅
な低減を図ることができる。
[Table] Therefore, in order to apply the concentrating device of the present invention such as the embodiment shown in FIG. 1 to the kraft pulp manufacturing process shown in FIG. 3, it is sufficient to incorporate the concentrating device at the location A in FIG. 3. When the concentrator is installed in this way, the digester 14
The concentration of the white liquor introduced into the system can be increased and the temperature of the white liquor can be increased. Therefore, the amount of heating steam used in the digester 14 can be reduced. Furthermore, the amount of steam released into the atmosphere by the flash drum 16 is reduced, the amount of evaporation from the evaporator 20 is also reduced, and the steam load on the boiler 22 is reduced. Therefore, the amount of heavy oil consumed by the boiler 22 is reduced, and the manufacturing cost of kraft pulp can also be reduced. The device of the above embodiment is a self-flashing evaporator 5.
Although only one stage of 8 is provided, two or more stages may be provided in series so that each flash steam is used as heating steam for a separate evaporator. Further, the number n of evaporators installed may be 2 or more, and is not limited to that of the embodiment. The apparatus of the present invention can be suitably used not only for concentrating white liquor but also for concentrating various dilute liquids, especially dilute alkaline solutions. In addition, when applied to the concentration of a dilute alkaline solution, it is suitable for application to concentration of the solution to about 20% or less. [Effects of the Invention] As is clear from the above description, according to the concentrating device of the present invention, dilute alkaline solutions can be concentrated particularly efficiently, and the heat cost required for concentration can be reduced. Furthermore, the amount of highly corrosion-resistant material used is reduced, and the cost of configuring the device can also be reduced. Therefore, by incorporating the concentrating device of the present invention into the pulp manufacturing process, pulp manufacturing costs can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例装置の系統図、第2図
は多重効用蒸発缶の系統図、第3図はクラフトパ
ルプの製造工程図である。 1〜5……蒸発缶、30……原液供給管、36
……蒸気の供給管、58……自己フラツシユ蒸発
缶。
FIG. 1 is a system diagram of an apparatus according to an embodiment of the present invention, FIG. 2 is a system diagram of a multi-effect evaporator, and FIG. 3 is a diagram of a manufacturing process for kraft pulp. 1-5... Evaporator, 30... Stock solution supply pipe, 36
...Steam supply pipe, 58...Self-flashing evaporator.

Claims (1)

【特許請求の範囲】[Claims] 1 第1ないし第n(nは2以上)の蒸発缶を直
列に配置した多重効用蒸発による濃縮装置であつ
て、第1の蒸発缶に熱源蒸気を供給し、最高順位
側の第nの蒸発缶に原液供給管から原液を供給
し、低順位側の蒸発缶の蒸気を順次に高順位の蒸
発缶に導入すると共に、高順位側の蒸発缶内の被
蒸発液を順次に低順位側の蒸発缶に導入し、第1
の蒸発缶から濃縮液を取り出す濃縮装置におい
て、該原液供給管の途中に自己フラツシユ蒸発缶
を設け、この自己フラツシユ蒸気をそれよりも操
作圧力の低いいずれかの蒸発缶の蒸気導入側に供
給することを特徴とする液体の濃縮装置。
1 A concentrating device using multiple effect evaporation in which first to nth evaporators (n is 2 or more) are arranged in series, in which heat source steam is supplied to the first evaporator, and the nth evaporator on the highest order side The stock solution is supplied to the can from the stock solution supply pipe, and the vapor from the low-rank evaporator is sequentially introduced into the high-rank evaporator, and the liquid to be evaporated in the high-rank evaporator is sequentially introduced into the low-rank evaporator. Introduced into the evaporator, the first
In a concentrating device that extracts concentrated liquid from an evaporator, a self-flashing evaporator is provided in the middle of the raw solution supply pipe, and this self-flashing vapor is supplied to the steam introduction side of any evaporator whose operating pressure is lower than that of the self-flashing evaporator. A liquid concentrating device characterized by:
JP5657386A 1986-03-14 1986-03-14 Liquid concentration device Granted JPS62213801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5657386A JPS62213801A (en) 1986-03-14 1986-03-14 Liquid concentration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5657386A JPS62213801A (en) 1986-03-14 1986-03-14 Liquid concentration device

Publications (2)

Publication Number Publication Date
JPS62213801A JPS62213801A (en) 1987-09-19
JPH0344802B2 true JPH0344802B2 (en) 1991-07-09

Family

ID=13030888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5657386A Granted JPS62213801A (en) 1986-03-14 1986-03-14 Liquid concentration device

Country Status (1)

Country Link
JP (1) JPS62213801A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330373A (en) * 1980-07-25 1982-05-18 Aqua-Chem, Inc. Solar desalting plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330373A (en) * 1980-07-25 1982-05-18 Aqua-Chem, Inc. Solar desalting plant

Also Published As

Publication number Publication date
JPS62213801A (en) 1987-09-19

Similar Documents

Publication Publication Date Title
US3807479A (en) Process for the evaporation of volatile alcohols and sulphur in the course of black liquor evaporation
US8512514B2 (en) Method and system to generate steam in a digester plant of a chemical pulp mill
CA2565358C (en) Fiberline system and method using black liquor flashed steam
SE522182C2 (en) Heat recovery from boiling liquor from a boiler
US4076576A (en) Method and apparatus for the evaporation of liquids
CN101575107B (en) Respective self-evaporation technology of new steam condensate and secondary steam condensate
US3414038A (en) Heat recovery method and apparatus
US2895546A (en) Method and apparatus for recompression evaporation
WO2009053518A2 (en) Arrangement for evaporating liquids
US3425477A (en) Method for heat recovery in evaporating and burning spent liquor
US4137134A (en) Method for the recovery of sulphur compounds, volatile alcohols, turpentine and the like produced in connection with pulping
US2258401A (en) Treatment of waste liquids from pulp production and the like
US3286763A (en) Recovering heat from a blow evaporator for use in a surface evaporator
US3428107A (en) Method in evaporation of waste liquor discharged from continuously operating cellulose digester or boiler
US4789428A (en) Method for evaporation of spent liquor
US5382321A (en) Process for the concentration of spent liquors
US4530737A (en) Method for use in recompression evaporation of a solution
WO2016038247A1 (en) Method of generating steam at a digester plant of a chemical pulp mill
FI116397B (en) Process for final evaporation of black liquor
JPH0344802B2 (en)
US3475281A (en) Recompression evaporator system and method
CN212315608U (en) Novel waste liquid treatment equipment
US2801206A (en) Process of recovering alcohol from waste sulphite liquor
US3463216A (en) Thermal self-sustaining system for spent pulping liquors
US3679549A (en) Separation of ammonia in a thermosyphon evaporator