JPS62213801A - Liquid concentration device - Google Patents

Liquid concentration device

Info

Publication number
JPS62213801A
JPS62213801A JP5657386A JP5657386A JPS62213801A JP S62213801 A JPS62213801 A JP S62213801A JP 5657386 A JP5657386 A JP 5657386A JP 5657386 A JP5657386 A JP 5657386A JP S62213801 A JPS62213801 A JP S62213801A
Authority
JP
Japan
Prior art keywords
evaporator
tube
evaporators
liquid
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5657386A
Other languages
Japanese (ja)
Other versions
JPH0344802B2 (en
Inventor
Tsutomu Nishide
勉 西出
Hiroshi Ito
博 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP5657386A priority Critical patent/JPS62213801A/en
Publication of JPS62213801A publication Critical patent/JPS62213801A/en
Publication of JPH0344802B2 publication Critical patent/JPH0344802B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce heating cost by installing a self-flashing evaporator halfway on a raw liquid supply tube as the supply source of heating source vapor in a concentration device of multiple effect evaporation method equipped with more than two evaporators for concentrating white liquor and the like used for manufacturing pulp. CONSTITUTION:Raw liquid is guided from a supply tube 30 into a flashing evaporator 58 for flashing evaporation. On the other hand, a concentration device is equipped with evaporation tubes 1-5, and a supply tube 36 and a removing tube 32 of concentrated liquid are installed in a first evaporator. Part of raw liquid is turned into vapor by a flash evaporator 58, flows through a tube 126 and joins vapor flowing through a tube 42 and sent to an evaporation tube 4. Raw liquid remaining unevaporated is guided from a tube 30 into evaporation tube 5 to be self-evaporated. Concentrated liquid in an evaporator 5 is sent through evaporators 4 3 2 1 and recovered out of the removing tube 32. As explained above, flashing vapor is utilized as the heat source for the evaporators 4 and 5, which reduces heating quantity of evaporators 1-3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液体の濃縮装置に関するものであり、特にパル
プ製造原材料の一つである白液など希薄溶液ことに希薄
アルカリ溶液の濃縮に主として用いられる濃縮装置に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a liquid concentrating device, and is mainly used for concentrating dilute solutions such as white liquor, which is one of the raw materials for pulp production, and dilute alkaline solutions. The present invention relates to a concentrating device.

[従来の技術] 周知の如く、パルプの製造に際しては白液が大量に用い
られている。この白液は、約10〜12%程度の濃度の
希薄アルカリ溶液であり、例えばNaOHとして約10
%前後、N a 2 S、Na2 CO3、Na2 S
O4、NaC!;L等を約2%程度含む。
[Prior Art] As is well known, a large amount of white liquor is used in pulp production. This white liquor is a dilute alkaline solution with a concentration of about 10 to 12%, for example, about 10% as NaOH.
Around %, Na2S, Na2CO3, Na2S
O4, NaC! ; Contains about 2% of L, etc.

ところで、近年、パルプ製造コストの低減のために、こ
の白液の濃度を若干高めることが要求されつつある。こ
の技術的背景についてまず説明する。
Incidentally, in recent years, in order to reduce pulp production costs, it has been required to slightly increase the concentration of this white liquor. First, the technical background will be explained.

第3図はクラフトパルプの製造工程を示す系統図である
。符号14は蒸解釜であって、原料チップと白液とが導
入され、恭気加熱により、約160℃、9 k g /
 c m″の加熱加圧雰囲気に維持してチップの蒸解が
行なわれる。なお白液は白液タンク10中に約85℃に
加熱された状態におかれており、蒸気を熱源とする加熱
装置12で約120°Cまで加熱された後蒸解釜14に
供給される。
FIG. 3 is a system diagram showing the manufacturing process of kraft pulp. Reference numeral 14 denotes a digester, into which raw material chips and white liquor are introduced, and heated to about 160°C and 9 kg /
The chips are cooked in a heated and pressurized atmosphere maintained at 10 cm. After being heated to about 120° C. at 12, it is fed to a digester 14.

蒸解釜14からの反応液は、一旦フラッシュドラム16
に導入され、大気圧で解放され、フラッシュ蒸気は熱回
収に利用される。フラッシュドラム16にて大気圧に戻
された反応液は、洗浄機18に導入され、セルロースと
弱黒液とに分離される0弱黒液はエバポレータ20に導
入されて濃縮され強熱液となり、ボイラ22に燃料とし
て導入され、重油と共に燃焼され、蒸気を発生させる。
The reaction liquid from the digester 14 is once transferred to the flash drum 16.
The flash steam is used for heat recovery. The reaction liquid returned to atmospheric pressure in the flash drum 16 is introduced into the washer 18, and the 0-weak black liquor, which is separated into cellulose and weak black liquor, is introduced into the evaporator 20 where it is concentrated and becomes a strong liquid. It is introduced as fuel into the boiler 22 and burned together with heavy oil to generate steam.

この蒸気は加熱装置12や蒸解釜14の熱源蒸気として
供給される。
This steam is supplied as heat source steam to the heating device 12 and the digester 14.

また、この黒液中に含まれていたアルカリ成分は主とし
てN a 2 COaとなり、苛性化反応装置24に導
入され、CaOと反応してNaOHに戻され、白液タン
ク10に返送される。なお苛性化反応装置24では、C
aOはCa CO3に変わるのであるが、このCaCO
3はキルン26に導入され加熱分解処理を受けてCaO
となり、再度苛性化反応に供される。
Further, the alkaline component contained in this black liquor becomes mainly Na 2 COa, which is introduced into the causticizing reactor 24, reacts with CaO, is returned to NaOH, and is returned to the white liquor tank 10. Note that in the causticizing reactor 24, C
aO changes to CaCO3, but this CaCO
3 is introduced into the kiln 26 and subjected to thermal decomposition treatment to become CaO
It is then subjected to a causticizing reaction again.

ところで、従来このクラフトパルプ製造に用いられる白
液は、濃度が約10−12%と比較的低いものであるの
で2 フラッシュドラム16で大気放出される蒸気量が
大量になること、蒸解釜14での加熱用蒸気の消費量が
増大すること等の理由から、ボイラ22での重油消費量
が増大し、バルブ製造コストを増大させる原因となって
いる。
By the way, the white liquor conventionally used in the production of kraft pulp has a relatively low concentration of about 10-12%. For reasons such as an increase in the consumption of heating steam in the boiler 22, the consumption of heavy oil in the boiler 22 increases, causing an increase in valve manufacturing costs.

このようなことから、白液の濃度を高めることが望まれ
るようになってきているのである。
For these reasons, it has become desirable to increase the concentration of white liquor.

ところで、一般に溶液の効率的な濃縮を行なう装置とし
て多重効用蒸発装置が知られている。この多重効用蒸発
装置は、複数の蒸発缶を直列に配置し、第1の蒸発缶で
発生した蒸気を操作圧力のより低い第2蒸発缶に導入し
て該第2蒸発缶の液体を蒸発させる熱エネルギーとして
使用し、該第2蒸発缶以下順次にこれを繰り返し多重蒸
発を行なうものである。
Incidentally, a multi-effect evaporator is generally known as an apparatus for efficiently concentrating a solution. This multiple effect evaporator has a plurality of evaporators arranged in series, and vapor generated in the first evaporator is introduced into a second evaporator with a lower operating pressure to evaporate the liquid in the second evaporator. This is used as thermal energy and is repeated sequentially from the second evaporator onwards to perform multiple evaporations.

そこで、この多重効用蒸発装置を白液の濃縮装置に適用
することが考えられる。第2図はそのような一例を示す
ものであり、第1ないし第5の蒸発缶1〜5を備えてい
る。原液は、原液ポンプ28、原液供給管30を介して
第5の蒸発缶5に導入され、順次に第4、第3、第2、
第1の蒸発缶4〜lに送り込まれる。そして、該第1の
蒸発缶lから濃縮液として配管32、濃縮液取出ポンプ
34を介して取り出される。
Therefore, it is conceivable to apply this multi-effect evaporator to a white liquor concentrator. FIG. 2 shows one such example, which includes first to fifth evaporators 1 to 5. The stock solution is introduced into the fifth evaporator 5 via the stock solution pump 28 and the stock solution supply pipe 30, and is sequentially supplied to the fourth, third, second, and third evaporators.
It is fed into the first evaporators 4 to 1. Then, the concentrated liquid is taken out from the first evaporator l via the piping 32 and the concentrated liquid extraction pump 34.

一方、加熱用の蒸気は、配管36から第1の蒸発缶lに
導入され、該第1の蒸発缶lで生じた蒸気は第2の蒸発
缶2に配管38を介して送り込まれ、順次下段側の蒸発
缶に同様にして供給される。第5の蒸発缶からの蒸気は
配管46でエジェクタシステム48を備えた凝縮器50
に導入され、復水される。
On the other hand, the steam for heating is introduced into the first evaporator l from the piping 36, and the steam generated in the first evaporator l is sent to the second evaporator 2 via the piping 38, and is sequentially sent to the lower stage. The side evaporator is fed in the same way. The steam from the fifth evaporator is transferred in line 46 to a condenser 50 with an ejector system 48.
and condensed water.

なお、第2図の濃縮装置のその他の構成は後述の実施例
装置と大略同様であり、同一部材に同一符号を付してそ
の説明を省略する。
The rest of the configuration of the concentrating device shown in FIG. 2 is almost the same as that of the embodiment device described later, and the same members are given the same reference numerals and the explanation thereof will be omitted.

[発明が解決しようとする問題点] 第2図の如く構成された多重効用蒸発方式の濃縮装置で
は、それなりに効率のよい濃縮はできるものの、更に効
率がよく熱コストの低い濃縮装置が期待される。
[Problems to be Solved by the Invention] Although the multi-effect evaporation type concentrator configured as shown in Figure 2 is capable of reasonably efficient concentration, a concentrator with even higher efficiency and lower heat costs is expected. Ru.

また、第2図の濃縮装置においては、第1又は第2の蒸
発缶l、2では濃縮液が高温、高濃度であるところから
、高耐食性の材料例えばNiや5US3161.を用い
るのであるが、該第1.第2の蒸発缶1.2での蒸発量
が多いので、これら第1、第2の蒸発缶の蒸発チューブ
の表面積を大きくとる必要があり、高耐食性材料の使用
量も増大し、装置構成コストを増大させる一因となる。
In addition, in the concentrator shown in FIG. 2, since the concentrated liquid in the first or second evaporators 1 and 2 is at a high temperature and high concentration, a highly corrosion-resistant material such as Ni or 5US3161 is used. However, the first. Since the amount of evaporation in the second evaporator 1.2 is large, it is necessary to increase the surface area of the evaporator tubes of the first and second evaporators, which increases the amount of highly corrosion-resistant material used, and increases the equipment configuration cost. This contributes to an increase in

c問題点を解決するための手段] 本発明の液体の濃縮装置は、2以上の蒸発缶を備えた多
重効用蒸発方式の濃縮装置において、原液供給管の途中
に自己フラッシュ蒸発缶を設け、この自己フラッシュ蒸
気をそれよりも操作圧力の低いいずれかの蒸発缶に熱源
蒸気として導入するよう構成したものである。
C. Means for Solving the Problem] The liquid concentrating device of the present invention is a multi-effect evaporating type concentrating device equipped with two or more evaporators, in which a self-flushing evaporator is provided in the middle of the stock solution supply pipe. The self-flashing steam is introduced as heat source steam into any evaporator having a lower operating pressure than the self-flashing steam.

[作用] 本発明の濃縮装置では、原液を中間の真空度域で−H自
己フラッシュ蒸発させ、この蒸発蒸気をより操作圧力の
低い蒸発缶の熱源蒸気として使用するものである。その
ため、本発明によれば、熱源たる蒸気の使用量が減少し
、加熱コストの低減が図れる。
[Operation] In the concentrator of the present invention, the stock solution is subjected to -H self-flash evaporation in an intermediate degree of vacuum, and the evaporated vapor is used as a heat source vapor for an evaporator with a lower operating pressure. Therefore, according to the present invention, the amount of steam used as a heat source is reduced, and heating costs can be reduced.

また、自己フラッシュ蒸気が導入された蒸発缶では、蒸
発量が増大するので、低温低濃度の下段側での蒸発量が
増大し、高温高濃度の上段側での蒸発缶が減少すること
になる。そのため、上段側の蒸発缶の蒸発チューブ表面
積の減少が図れ、高耐食性材料の使用量が少量で足り、
装置構成コストの低減が図れる。
In addition, in the evaporator in which self-flashing steam is introduced, the amount of evaporation increases, so the amount of evaporation in the lower stage of low temperature and low concentration increases, and the amount of evaporation in the upper stage of high temperature and high concentration decreases. . Therefore, the surface area of the evaporator tube of the upper evaporator can be reduced, and only a small amount of highly corrosion-resistant material is needed.
The device configuration cost can be reduced.

[実施例] 以下図面を参照して本発明の実施例について説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例に係る液体の濃縮装置を白液の
濃縮装置として適用した実施例を示す系統図である。
FIG. 1 is a system diagram showing an embodiment in which a liquid concentrating device according to an embodiment of the present invention is applied as a white liquor concentrating device.

第1図において、この濃縮装置は第1ないし第5の蒸発
缶1〜5を備えており、最も上段側の第1の蒸発缶1に
は加熱源たる蒸気の供給管36と濃縮液の取出管32及
び濃縮液取出用ポンプ34が接続されている。
In FIG. 1, this concentrator is equipped with first to fifth evaporators 1 to 5, and the first evaporator 1 on the uppermost side has a steam supply pipe 36 as a heating source and a condensate extraction pipe 36. A pipe 32 and a pump 34 for extracting concentrated liquid are connected.

第1ないし第5の蒸発缶1〜5は直立長管型の蒸発チュ
ーブ群52を備えており、濃縮される液体は該チューブ
群52の頂部から流し込まれ、各チューブ内を薄膜状に
流下する間に蒸発濃縮される。生じた蒸気はチューブ群
52の下端から下部容器54内に入り、次いでワイヤメ
ツシュ型等の飛沫捕集器56を経て蒸気取出用の配管3
8〜46に至る。
The first to fifth evaporators 1 to 5 are equipped with a group of upright long tube evaporation tubes 52, and the liquid to be concentrated is poured from the top of the tube group 52 and flows down inside each tube in the form of a thin film. During this period, it is evaporated and concentrated. The generated steam enters the lower container 54 from the lower end of the tube group 52, and then passes through a droplet collector 56, such as a wire mesh type, to the steam extraction piping 3.
8 to 46.

また、濃縮された液体は、蒸発チューブ群52の下端か
ら容器54内に落下する。蒸気取出用の配管38ないし
44は、それぞれ下段側の蒸発缶2〜5の蒸気導入側に
接続されており、各蒸発缶の蒸発チューブ群52の間を
通ってチューブ内の液体の加熱を行なう。
Further, the concentrated liquid falls into the container 54 from the lower end of the evaporation tube group 52. The steam extraction pipes 38 to 44 are connected to the steam introduction sides of the lower evaporators 2 to 5, respectively, and pass between the evaporator tube groups 52 of each evaporator to heat the liquid in the tubes. .

原液は、ポンプ28及び供給管30を介してフラッシュ
蒸発缶58に導入され、フラッシュ蒸発し、残りの液体
は配管30から第5の蒸発缶5内に導入され、自己蒸発
を行なう。
The stock liquid is introduced into the flash evaporator 58 via the pump 28 and the supply pipe 30 and flash-evaporated, and the remaining liquid is introduced into the fifth evaporator 5 through the pipe 30 and self-evaporates.

第5の蒸発缶5には、容器54の底部と蒸発チューブ群
52の上部に形成された液導入室60とを接続するポン
プ62付の配管64が迂回して設けられており、容器5
4内の液体を蒸発チューブ群52の頂部に押し上げ、該
蒸発チューブ群の各チューブの間に流し込んでいる。こ
の第5の蒸発缶5で生じた蒸気は配管46から凝縮器5
0に送られ復水される。また凝縮液は配管66からタン
ク68、ポンプ70を介して系外に排出される。
The fifth evaporator 5 is provided with a piping 64 equipped with a pump 62 that connects the bottom of the container 54 and a liquid introduction chamber 60 formed at the top of the evaporator tube group 52 in a detour manner.
The liquid in the evaporator tube group 52 is pushed up to the top of the evaporator tube group 52 and flows between the tubes of the evaporator tube group 52. The steam generated in this fifth evaporator 5 is transferred from the pipe 46 to the condenser 5.
0 and condensed. Further, the condensed liquid is discharged from the pipe 66 to the outside of the system via a tank 68 and a pump 70.

蒸発缶5の濃縮液は、配管72.ポンプ74、熱交換器
76を介して配管78に送り込まれ、蒸発缶4の頂部の
液導入室60に送り込まれ、蒸発チューブ群52内を流
下して一部が蒸発する。蒸気は配管44から第5の蒸発
缶5に送られ、凝縮液は配管80、タンク82、ポンプ
84を通り系外に排出される。なお、この凝縮液は途中
で熱交換器76に導入され、第5の蒸発缶5から第4の
蒸発缶4に送られる液の加熱を行なう。
The concentrated liquid in the evaporator 5 is transferred to the pipe 72. The liquid is fed into a pipe 78 via a pump 74 and a heat exchanger 76, into a liquid introduction chamber 60 at the top of the evaporator 4, flows down inside the evaporator tube group 52, and partially evaporates. The steam is sent from the pipe 44 to the fifth evaporator 5, and the condensate passes through the pipe 80, tank 82, and pump 84 and is discharged outside the system. Note that this condensed liquid is introduced into the heat exchanger 76 midway, and heats the liquid sent from the fifth evaporator 5 to the fourth evaporator 4.

第4の蒸発缶4の濃縮液は、配管86、ポンプ88、熱
交換器90を経て配管92に送り込まれ、第3の蒸発缶
3の頂部の液導入室60内に導入され、蒸発チューブ群
52内を流下される。蒸発チューブ群52内を流下する
間に蒸発した蒸気は、配管126から送り込まれるX気
と共に配管42を介して第4の蒸発缶4に送られる。凝
縮液は配管94、タンク96.ポンプ98を経て前記タ
ンク82に送り込まれ、その途中にて熱交換器90を通
り第3の蒸発缶3に導入される液の加熱を行なう。
The concentrated liquid in the fourth evaporator 4 is sent to the pipe 92 via the pipe 86, the pump 88, and the heat exchanger 90, and is introduced into the liquid introduction chamber 60 at the top of the third evaporator 3, where it is introduced into the evaporator tube group. 52. The steam evaporated while flowing down in the evaporator tube group 52 is sent to the fourth evaporator 4 via the pipe 42 together with the X gas sent from the pipe 126. The condensate is transferred to piping 94 and tank 96. The liquid is pumped into the tank 82 via the pump 98, passes through a heat exchanger 90 on the way, and is introduced into the third evaporator 3 to heat the liquid.

第3の蒸発缶3の濃縮液は、配管100、ポンプ102
、熱交換器104を介して配管106に送り込まれ、第
2の蒸発缶2の頂部の液導入室60に送り込まれ、蒸発
チ、ユーブ群52の各チューブの間に導入される。生じ
た蒸気は、配管40を介して第3の蒸発缶3に送り込ま
れる。
The concentrated liquid in the third evaporator 3 is connected to a pipe 100 and a pump 102.
The liquid is fed into the pipe 106 via the heat exchanger 104, into the liquid introduction chamber 60 at the top of the second evaporator 2, and introduced between the tubes of the evaporator tube group 52. The generated steam is sent to the third evaporator 3 via the pipe 40.

また配管38から導入された蒸気の凝縮液は、配管10
8、タンク110、ポンプ112を介してタンク96に
送り込まれ、その途中にて熱交換器104を通り、第2
の蒸発缶2に導入される液の加熱を行なう。
Further, the condensate of the steam introduced from the pipe 38 is transferred to the pipe 10.
8, is sent to the tank 96 via the tank 110 and the pump 112, and passes through the heat exchanger 104 on the way, and the second
The liquid introduced into the evaporator 2 is heated.

第2の蒸発缶2の濃縮液は、配管114、ポンプ116
.熱交換器118を介して配管120に送り込まれ、第
1の蒸発缶lの液導入室60に供給される。そして蒸発
チューブ群52のパイプ内を流下し、その間に一部が蒸
発し、生じた蒸気は配管38から第2の蒸発缶2に送り
込まれる。配管36からの蒸気の凝縮液は配管122、
タンク124を経てタンク110に送り込まれ、その途
中にて熱交換器118を通り第1の蒸発缶1に送られる
液の加熱を行なう。
The concentrated liquid in the second evaporator 2 is transferred to the pipe 114 and the pump 116.
.. The liquid is fed into the pipe 120 via the heat exchanger 118 and supplied to the liquid introduction chamber 60 of the first evaporator l. The vapor then flows down inside the pipes of the evaporator tube group 52, during which time a portion of the vapor evaporates, and the generated vapor is sent from the piping 38 to the second evaporator 2. The steam condensate from the pipe 36 is transferred to the pipe 122,
The liquid is sent to the tank 110 via the tank 124, passes through a heat exchanger 118 on the way, and is sent to the first evaporator 1 to heat the liquid.

しかして、フラッシュ蒸発缶58は蒸気取出用の配管1
26が接続されており、この配管126は、第3と第4
の蒸発缶4とを接続する配管42に合流されている。従
って、フラッシュ蒸発缶58の蒸気は配管126.42
を通り、第3の蒸発缶からの蒸気と共に第4の蒸発缶4
の蒸気導入側に導入され、第4及び第5の蒸発缶におけ
る熱源として利用される。
Therefore, the flash evaporator 58 is connected to the steam extraction pipe 1.
26 is connected, and this piping 126 connects the third and fourth pipes.
The evaporator 4 is joined to a pipe 42 that connects the evaporator 4 to the evaporator 4. Therefore, the vapor in the flash evaporator 58 is transferred to the pipe 126.42.
through the fourth evaporator 4 together with the steam from the third evaporator.
and is used as a heat source in the fourth and fifth evaporators.

かかる構成の濃縮装置においては、第2図に示す濃縮装
置に比べ、第4及び第5の蒸発缶4.5に加えられる熱
源としての蒸気量が増大するから、それだけ多量の蒸発
が第4及び第5の蒸発缶においてなされる。そして、そ
の分だけ第1ないし第3の蒸発缶における蒸発量の減少
が図れる。
In the concentrator having such a configuration, the amount of steam added to the fourth and fifth evaporators 4.5 as a heat source is increased compared to the concentrator shown in FIG. This is done in the fifth evaporator. Then, the amount of evaporation in the first to third evaporators can be reduced by that amount.

従って、高温高濃度の上段側での蒸発チューブ表面積を
小さくし、低温低濃度の下段側での蒸発チューブ表面積
を増大することができ、Niや5US316L等の高耐
食性材料の使用量が減少され、5US304L等のより
安価な材料の使用量を増大させることができる。
Therefore, the surface area of the evaporator tube on the upper stage side of high temperature and high concentration can be reduced, and the surface area of the evaporator tube on the lower stage side of low temperature and low concentration can be increased, and the amount of highly corrosion resistant materials such as Ni and 5US316L used can be reduced. The usage of cheaper materials such as 5US304L can be increased.

また、フラッシュ蒸発缶58において、中間の真空度域
で自己蒸発させ、その蒸気を第4及び第5の蒸発缶で加
熱用の蒸気として使用しているから、原液が保有する顕
熱を蒸発熱源として有効に利用することができ、第1の
蒸発缶へ配管36から導入される熱源蒸気の導入量も減
少される。
In addition, in the flash evaporator 58, the vapor is self-evaporated in an intermediate vacuum range, and the vapor is used as heating steam in the fourth and fifth evaporators, so the sensible heat held by the stock solution is used as the evaporation heat source. The amount of heat source steam introduced into the first evaporator from the pipe 36 is also reduced.

なお、濃度12.46%の白液を16.6%にまで高め
る場合の各蒸発缶1〜5における濃度及び温度、配管3
6〜46の蒸気通過量並びにフラッシュ蒸発缶58の温
度等を第1図、第2図中に記入する。この例からも明ら
かな通り、第1図の実施例装置によれば、装置に配管3
6から導入される蒸気の流量が約20%減少され、それ
だけ低熱コストで蒸発処理できることが明らかである。
In addition, the concentration and temperature in each evaporator 1 to 5, and piping 3 when increasing white liquor with a concentration of 12.46% to 16.6%.
The amount of steam passing through 6 to 46 and the temperature of the flash evaporator 58 are entered in FIGS. 1 and 2. As is clear from this example, according to the apparatus of the embodiment shown in FIG.
It is clear that the flow rate of steam introduced from No. 6 is reduced by about 20%, and the evaporation process can be performed at a correspondingly lower heat cost.

また、各蒸発缶1〜5の蒸発チューブの表面積を次の第
1表に示す、第1表より明らかな通り、第1ないし第3
の蒸発缶は、蒸発チューブの表面積が約15%減少され
、それだけNiや5US316Lの使用量が減少され、
高価な材料の使用量を減少することによる装置構成コス
トの低廉化が図れる。
In addition, the surface area of the evaporator tube of each evaporator 1 to 5 is shown in Table 1 below.
In this evaporator, the surface area of the evaporator tube is reduced by about 15%, and the amount of Ni and 5US316L used is reduced accordingly.
By reducing the amount of expensive materials used, the device configuration cost can be reduced.

第1表 チューブ面積 しかして、第1図の実施例の如き本発明の濃縮装置を第
3図のクラフトパルプ製造工程に適用するには、第3図
のAの箇所に該濃縮装置を組み込めばよい。
Table 1: Tube area However, in order to apply the concentrating device of the present invention such as the embodiment shown in FIG. 1 to the kraft pulp manufacturing process shown in FIG. good.

このように濃縮装置を組み込むと、蒸解釜14に導入さ
れる白液の濃度が高められると共に、白液の温度を高め
ることができる。従って、蒸解釜14における加熱用蒸
気の使用量を減らすことが図れる。更に、フラッシュド
ラム16で大気放出される蒸気量が減少し、エバポレー
タzOの蒸発量も減少し、ボイラ22の蒸気負荷が低減
される。そのため、ボイラ22で消費する重油が減少し
、クラフトパルプの製造原価の低下も図れる。
When the concentrator is incorporated in this way, the concentration of the white liquor introduced into the digester 14 can be increased, and the temperature of the white liquor can be increased. Therefore, the amount of heating steam used in the digester 14 can be reduced. Furthermore, the amount of steam released into the atmosphere by the flash drum 16 is reduced, the amount of evaporation from the evaporator zO is also reduced, and the steam load on the boiler 22 is reduced. Therefore, the amount of heavy oil consumed by the boiler 22 is reduced, and the manufacturing cost of kraft pulp can also be reduced.

なお蒸気実施例装置は自己フラッシュ蒸発缶58を一段
のみ設けているが、直列に2段以上設け、各フラッシュ
蒸気を別々の蒸発缶の加熱用蒸気として用いるように構
成してもよい、また、蒸発缶の設置数nは2以上であれ
ば良く、実施例のものに限定されない。
Although the steam embodiment apparatus is provided with only one stage of self-flash evaporator 58, it may be configured such that two or more stages are provided in series and each flash steam is used as heating steam for a separate evaporator. The number n of evaporators installed may be 2 or more, and is not limited to that of the embodiment.

本発明装置は白液の濃縮のみならず、各種の希薄溶液と
りわけ希薄アルカリ溶液の濃縮に好適に使用することが
できる。
The apparatus of the present invention can be suitably used not only for concentrating white liquor but also for concentrating various dilute solutions, especially dilute alkaline solutions.

なお希薄アルカリ溶液の濃縮に適用する場合には約20
%以下程度の濃度の溶液の濃縮に適用するに好適である
When applied to the concentration of dilute alkaline solutions, approximately 20
It is suitable for application to concentration of solutions with a concentration of about 1.5% or less.

[発明の効果〕 以上の説明から明らかな通り、本発明の濃縮装置によれ
ば、とりわけ希薄アルカリ溶液の濃縮を効率よく行なう
ことができ、濃縮に要する熱コストの低減が図れる。ま
た、高耐食性材料の使用量が減少し、装置構成コストの
低減化も図れる。
[Effects of the Invention] As is clear from the above description, according to the concentrating device of the present invention, a dilute alkaline solution can be concentrated particularly efficiently, and the heat cost required for concentration can be reduced. Furthermore, the amount of highly corrosion-resistant material used is reduced, and the cost of configuring the device can also be reduced.

しかして1本発明の濃縮装置をパルプ製造工程に組み込
むことにより、パルプ製造コストの大幅な低減を図るこ
とができる。
By incorporating the concentrating device of the present invention into the pulp manufacturing process, pulp manufacturing costs can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例装置の系統図、第2図は多重効
用蒸発缶の系統図、第3図はクラフトパルプの製造工程
図である。 1〜5・・・蒸発缶、   30・・・原液供給管、3
6・・・蒸気の供給管、 58・・・自己フラッシュ蒸発缶。
FIG. 1 is a system diagram of an apparatus according to an embodiment of the present invention, FIG. 2 is a system diagram of a multi-effect evaporator, and FIG. 3 is a diagram of a manufacturing process for kraft pulp. 1-5... Evaporator, 30... Stock solution supply pipe, 3
6... Steam supply pipe, 58... Self-flush evaporator.

Claims (1)

【特許請求の範囲】[Claims] 第1ないし第n(nは2以上)の蒸発缶を直列に配置し
た多重効用蒸発による濃縮装置であって、第1の蒸発缶
に熱源蒸気を供給し、第nの蒸発缶に原液供給管から原
液を供給する濃縮装置において、該原液供給管の途中に
自己フラッシュ蒸発缶を設け、この自己フラッシュ蒸気
をそれよりも操作圧力の低いいずれかの蒸発缶の蒸気導
入側に供給することを特徴とする液体の濃縮装置。
A concentrating device using multiple effect evaporation in which first to nth (n is 2 or more) evaporators are arranged in series, the first evaporator is supplied with heat source steam, and the nth evaporator is supplied with a stock solution supply pipe. A concentrating device for supplying a stock solution from the stock solution, characterized in that a self-flash evaporator is provided in the middle of the stock solution supply pipe, and the self-flash vapor is supplied to the steam introduction side of any evaporator having a lower operating pressure than the self-flash evaporator. A device for concentrating liquids.
JP5657386A 1986-03-14 1986-03-14 Liquid concentration device Granted JPS62213801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5657386A JPS62213801A (en) 1986-03-14 1986-03-14 Liquid concentration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5657386A JPS62213801A (en) 1986-03-14 1986-03-14 Liquid concentration device

Publications (2)

Publication Number Publication Date
JPS62213801A true JPS62213801A (en) 1987-09-19
JPH0344802B2 JPH0344802B2 (en) 1991-07-09

Family

ID=13030888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5657386A Granted JPS62213801A (en) 1986-03-14 1986-03-14 Liquid concentration device

Country Status (1)

Country Link
JP (1) JPS62213801A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330373A (en) * 1980-07-25 1982-05-18 Aqua-Chem, Inc. Solar desalting plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330373A (en) * 1980-07-25 1982-05-18 Aqua-Chem, Inc. Solar desalting plant

Also Published As

Publication number Publication date
JPH0344802B2 (en) 1991-07-09

Similar Documents

Publication Publication Date Title
RU2519939C2 (en) Steam generation in boiling pot at pulp-and-paper plant
SE522182C2 (en) Heat recovery from boiling liquor from a boiler
RU2006137408A (en) IMPROVED LINE SYSTEMS FOR THE PRODUCTION OF FIBROUS MASS, PROCESSES AND METHODS
US4909899A (en) Method of concentrating sludges
US2524753A (en) Method of recovering heat and suspended chemical particles from gases resulting fromthe combustion of a pulp residual liquor and apparatus therefor
US4076576A (en) Method and apparatus for the evaporation of liquids
US3414038A (en) Heat recovery method and apparatus
US4755258A (en) Method and apparatus for deactivating spent liquor
US3425477A (en) Method for heat recovery in evaporating and burning spent liquor
GB1337517A (en) Multiple effect evaporator
CN201704161U (en) Sewage evaporation treatment device
US2398396A (en) Fluid evaporator
FI116397B (en) Process for final evaporation of black liquor
CN207891096U (en) Photo-thermal method depressurizes the device and system of multiple-effect membrane distillation processing desulfurization wastewater
US3286763A (en) Recovering heat from a blow evaporator for use in a surface evaporator
US4789428A (en) Method for evaporation of spent liquor
JPS62213801A (en) Liquid concentration device
WO2016038247A1 (en) Method of generating steam at a digester plant of a chemical pulp mill
CN210287045U (en) System membrane waste water evaporation concentration system
CN205391766U (en) Evaporative concentration device of cellulose solvent NMMO aqueous solution
CA1097465A (en) Black liquor energy recovery
CN214105842U (en) Tower type multi-effect evaporator
CN212832917U (en) Flue gas desulfurization waste water evaporation equipment
CN212315608U (en) Novel waste liquid treatment equipment
US3475281A (en) Recompression evaporator system and method