JPH0344717B2 - - Google Patents

Info

Publication number
JPH0344717B2
JPH0344717B2 JP1576685A JP1576685A JPH0344717B2 JP H0344717 B2 JPH0344717 B2 JP H0344717B2 JP 1576685 A JP1576685 A JP 1576685A JP 1576685 A JP1576685 A JP 1576685A JP H0344717 B2 JPH0344717 B2 JP H0344717B2
Authority
JP
Japan
Prior art keywords
signal
color
horizontal scanning
sampling point
color signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1576685A
Other languages
Japanese (ja)
Other versions
JPS61174894A (en
Inventor
Shigehiro Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP1576685A priority Critical patent/JPS61174894A/en
Publication of JPS61174894A publication Critical patent/JPS61174894A/en
Publication of JPH0344717B2 publication Critical patent/JPH0344717B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing Of Color Television Signals (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は信号分離装置に係り、特に、NTSC方
式のテレビジヨン受像機に用いられ、カラー映像
信号から色信号と輝度信号とを夫々分離して取出
す装置に関する。 従来の技術 カラー映像信号から色信号と輝度信号とを分離
するに際し、いわゆるくし形フイルタが用いられ
ている。この場合、第14図に模式的に示す如
く、色信号の周波数帯域において輝度信号(同図
A)と色信号(同図B)とが水平周波数毎に等分
に分離されるくし形特性を示し、これが現在の普
及形以上のクラスのテレビジヨン受像機において
主流とされている信号分離方式である。 一方、NTSC方式のカラー映像信号中の色副搬
送波(周波数Sc=3.579545MHz)は、第15図
に模式的に示す如く、第nライン及び第(n+
1)ラインのように各ライン間で位相が反転して
おり、NTSC方式の特徴となつている。図中のΓ
印及び●印は標本化周波数Sを色副搬送波周波数
Scの4倍とした時の標本点を示す。以下、ライ
ン間で対応する●印の標本点について考えること
にする。 第16図は従来の信号分離装置の一例のブロツ
ク系統図を示す。端子1に入来した例えば5ライ
ン分の色信号a(第17図A、図の横軸は画面垂
直方向である)は1H遅延回路2にて1H遅延され
て信号b(同図B)とされ、加算器3にて信号a,
bが加算されしかもそのレベルを1/2にされて信
号c(同図C)とされ、一方、減算器4にて信号
aから信号bが減算されしかもそのレベルを1/2
にされて信号d(同図D)とされる。信号dは中
心周波数がScで±500kHzの帯域信号を通過させ
る帯域フイルタ5を介して色信号dとして取出さ
れ、出力端子6より取出される。 信号cは遅延回路7にて帯域フイルタ5にて生
じる遅延時間分補正されて加算器8に供給され、
一方、信号dは遅延回路9にて上記遅延時間分補
正されて減算器10にて帯域フイルタ5の出力を
減算され、加算器8にて減算器10の出力と遅延
回路7の出力とが加算され、歪成分e′として出力
端子11より取出される。 一方、端子1に入来した例えば5ライン分の輝
度信号a(第18図A、変調周波数Sc)は1H遅
延回路2にて信号b(同図B)とされ、加算器3
にて信号a,bが加算されてそのレベルを1/2に
されて信号c(同図C)とされ、一方、減算器4
にて信号aから信号bが減算されてそのレベルを
1/2にされて信号d′(同図D)とされ、帯域フイル
タ5を介して歪成分d′として出力端子6より取出
される。 信号cは遅延回路7にて時間補正され、信号
d′は遅延回路9にて時間補正されて減算器10に
て帯域フイルタ5の出力を減算され、加算器8に
て減算器10の出力と遅延回路7の出力とが加算
され、輝度信号e(同図E)として出力端子11
より取出される。 発明が解決しようとする問題点 上記従来装置では、色信号に対しては第17図
Dより明らかな如く、エツジ部分つまり信号d1
d2が入力色信号のレベルの1/2になるので歪を生
じ、又、同図Eより明らかな如く、本来ないはず
の輝度信号成分e1,e2がエツジ部分において生
じ、更に、出力色信号のライン数が入力色信号の
それに比して1ライン分多くなる。一方、輝度信
号に対しては第18図Eより明らかな如く、エツ
ジ部分つまり信号e3,e4が入力輝度信号のレベル
の1/2になるので歪を生じ、又、同図Dより明ら
かな如く、本来ないはずの色信号成分d3,d4がエ
ツジ部分において生じ、更に、出力輝度信号のラ
イン数が入力輝度信号のそれに比して1ライン分
多くなる。 このように従来装置は、垂直方向のエツジ部分
においてクロスカラー等の妨害を生じ、画質を著
しく低下させる問題点があつた。 本発明は、特に垂直方向のエツジ部分において
クロスカラー等の妨害をなくし得、画質を向上し
得る信号分離装置を提供することを目的とする。 問題点を解決するための手段 第1図中、帯域フイルタ12,1H遅延回路1
3,14,16,261H遅延回路15,減算器1
7〜19は、色信号及び輝度信号のある標本点を
x1,標本点x1の1水平走査期間前の標本点をx0
標本点x1の1水平走査期間後の標本点をx2,標本
点x1の262水平走査期間前の標本点をy1,標本点
x1の263水平走査期間前の標本点をy0とした時、 差分信号D0=(x1−x0)/2, D1=(y1−y0)/2, D2=(x1−x2)/2を得る手段、 色信号判定回路20は1<β1<3,β2≧2の条件
下で {D0+D2−β1(D0−D2)}・ {D0+D2+β1(D0−D2)}>0, (β2D1−D0)(β2D1+D0)≧0, (β2D1−D2)(β2D1+D2)≧0が同時に成立する
ことを検出して色信号判定信号を発生する手段、
色信号設定回路21,スイツチ回路38,帯域フ
イルタ51は色信号判定信号発生時差分信号D0
D1,D2から出力色信号を得る手段、1H遅延回路
52,遅延回路53,減算器54は入力カラー映
像信号を1水平走査期間遅延された信号から出力
色信号を減算して出力輝度信号を得る手段であ
る。 作 用 入力カラー映像信号を帯域フイルタ12,遅延
回路13〜16にて夫々得た信号から減算器1
7,18,19により夫々差分信号D2,D0,D1
を得、色信号判定回路20により色信号の存在を
判定し、色信号設定回路21,スイツチ回路38
により出力色信号を得、1H遅延回路52,遅延
回路53,減算器54により出力輝度信号を得
る。 実施例 先ず、本発明に関するカラー映像信号の性質に
ついて考えてみる。第4図はNTSC方式における
画面の走査状態を示す図を示す。実線は現フイー
ルドの走査線,破線は前フイールドの走査線であ
り、これらは互いにインタリビングの関係にあ
る。同図の上部を画面上部,縦方向を走査が上方
から下方へ向う垂直方向,横方向を走査が左から
右へ向う水平方向とする。 いま、画面垂直方向に現フイールドにおける第
(n−1)ライン,第nライン,第(n+1)ラ
インの標本点を夫々x0,x1,x2とし、それらの中
間に位置する前フイールドにおける第(n−263)
ライン,第(n−262)ラインの標本点を夫々y0
y1とする。ここで、画面上に静止画の状態で色情
報が存在するものとすれば、各標本点x0,x1
x2,y0,y1は夫々第5図A〜Eに示す如く、周波
数がScの正弦波で表わされた各ラインの色信号
波形中の●印で示される位置になる。なお、●印
及びΓ印は色信号を周波数4Scで標本化した時
の標本点の位置である。 第6図は色信号の各フイールド,各ライン毎の
位相関係を垂直方向軸と時間軸とで構成される座
標に表わしたものである。,は夫々位相が反
転していることを示しており、第4図,第5図の
各標本点x0,x1,x2,y0,y1と第6図のそれとは
一致する。本発明はこの5つの標本点を用いて色
信号と輝度信号とを判別し、分離する。 第7図Aは第6図示の標本点x0,x1,x2,y0
y1のレベルを時間軸の左から右へ透してみた場合
の図、同図Bは第5図における次の標本点x0′,
x1′,x2′,y0′,y1′のレベルを時間軸の左から右へ
透してみた場合の図を示し、同図A,Bの各レベ
ルの極性は互いに反転している。いま、第7図A
において次の差分信号D0,D1,D2を考える。 D0=(x1−x0)/2 D1=(y1−y0)/2 D2=(x1−x2)/2 第7図Bについても同様の差分信号D0′,D1′,
D2′を考える。 D0′=(x1′−x0′)/2 D1′=(y1′−y0′)/2 D2′=(x1′−x2′)/2 これらの差分信号が、全て同一の極性にあること
がNTSC方式の色信号の特徴である。 第8図Aは第7図Aそのものの色信号の信号列
であり、一定のレベルの色信号の一部を示す。同
図B,Cは色信号の切れ目を表わしている2つの
例であり、同図Cの方が同図Bのものよりもシヤ
ープに変化している。第8図A〜Cにおける標本
点x0,x1,x2,y0,y1について差分信号D0,D1
D2を求めると第1表のようになる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal separation device, and more particularly to a device used in an NTSC television receiver to separate and extract a color signal and a luminance signal from a color video signal. 2. Description of the Related Art A so-called comb filter is used to separate a color signal and a luminance signal from a color video signal. In this case, as schematically shown in Fig. 14, a comb-shaped characteristic is created in which the luminance signal (A in the figure) and the color signal (B in the figure) are equally divided for each horizontal frequency in the frequency band of the color signal. This is the signal separation method that is the mainstream in television receivers of the current popular type and above. On the other hand, the color subcarrier (frequency S c = 3.579545MHz) in the color video signal of the NTSC system is the
1) The phase is reversed between each line, which is a characteristic of the NTSC system. Γ in the diagram
The marks and ● marks indicate the sampling frequency S and the color subcarrier frequency.
The sample points are shown when S is set to 4 times c. Below, we will consider sample points marked with ● that correspond between lines. FIG. 16 shows a block system diagram of an example of a conventional signal separation device. For example, the color signal a for 5 lines (A in Fig. 17, the horizontal axis in the figure is the vertical direction of the screen) that enters the terminal 1 is delayed by 1H in the 1H delay circuit 2 and becomes the signal b (B in the figure). The adder 3 outputs the signals a,
b is added and its level is halved to obtain signal c (C in the same figure).Meanwhile, signal b is subtracted from signal a in subtracter 4 and its level is halved.
The signal d (D in the same figure) is obtained. The signal d is taken out as a color signal d through a band filter 5 having a center frequency S c and passing a band signal of ±500 kHz, and is taken out from an output terminal 6. The signal c is corrected by the delay time generated by the bandpass filter 5 in the delay circuit 7 and is supplied to the adder 8.
On the other hand, the signal d is corrected by the delay time in the delay circuit 9, the output of the bandpass filter 5 is subtracted in the subtracter 10, and the output of the subtracter 10 and the output of the delay circuit 7 are added in the adder 8. and is taken out from the output terminal 11 as a distortion component e'. On the other hand, for example, the luminance signal a for 5 lines (A in FIG. 18, modulation frequency S c) inputted to the terminal 1 is converted into the signal b (B in the same figure) by the 1H delay circuit 2, and the adder 3
At , signals a and b are added and their level is halved to form signal c (C in the same figure), while subtracter 4
The signal b is subtracted from the signal a and its level is halved to form a signal d' (D in the figure), which is taken out from the output terminal 6 as a distortion component d' via a bandpass filter 5. The signal c is time-corrected in the delay circuit 7, and the signal
d' is time-corrected in the delay circuit 9, the output of the bandpass filter 5 is subtracted in the subtracter 10, and the output of the subtracter 10 and the output of the delay circuit 7 are added in the adder 8, and the luminance signal e is (E in the same figure) output terminal 11
taken out from Problems to be Solved by the Invention In the above-mentioned conventional device, for color signals, as is clear from FIG.
Since d 2 is 1/2 of the level of the input color signal, distortion occurs, and as is clear from E in the same figure, luminance signal components e 1 and e 2 that should not exist occur at the edge portions, and furthermore, the output The number of lines of the color signal increases by one line compared to that of the input color signal. On the other hand, for the luminance signal, as is clear from FIG. As shown, color signal components d 3 and d 4 which should not exist in the first place occur in the edge portion, and furthermore, the number of lines of the output luminance signal increases by one line compared to that of the input luminance signal. As described above, the conventional apparatus has a problem in that interference such as cross color occurs at the edge portion in the vertical direction, resulting in a significant deterioration in image quality. SUMMARY OF THE INVENTION It is an object of the present invention to provide a signal separation device that can eliminate interference such as cross color particularly at vertical edge portions and improve image quality. Means to solve the problem In Fig. 1, band filter 12, 1H delay circuit 1
3, 14, 16, 261H delay circuit 15, subtracter 1
7 to 19 are sample points with color signals and luminance signals.
x 1 , the sampling point one horizontal scanning period before the sampling point x 1 is x 0 ,
The sampling point after 1 horizontal scanning period of sampling point x 1 is x 2 , the sampling point 262 horizontal scanning periods before sampling point x 1 is y 1 , the sampling point
When the sample point 263 horizontal scanning periods before x 1 is y 0 , the difference signal D 0 = (x 1 − x 0 )/2, D 1 = (y 1 − y 0 )/2, D 2 = ( x 1 −x 2 )/2, the color signal determination circuit 20 calculates {D 0 +D 2 −β 1 (D 0 −D 2 )} under the conditions of 1<β 1 <3, β 2 ≧2. {D 0 +D 21 (D 0 −D 2 )}>0, (β 2 D 1 −D 0 )(β 2 D 1 +D 0 )≧0, (β 2 D 1 −D 2 )(β 2 means for generating a color signal determination signal by detecting that D 1 +D 2 )≧0 is established at the same time;
The color signal setting circuit 21, the switch circuit 38, and the band filter 51 output the color signal determination signal generation time difference signal D 0 ,
Means for obtaining output color signals from D 1 and D 2 , 1H delay circuit 52, delay circuit 53, and subtracter 54, subtract the output color signal from the input color video signal delayed by one horizontal scanning period to obtain the output luminance signal. It is a means to obtain Function Subtractor 1 subtracts the input color video signal from the signals obtained from band filter 12 and delay circuits 13 to 16, respectively.
7, 18, and 19, the difference signals D 2 , D 0 , D 1 respectively
The color signal determination circuit 20 determines the presence of a color signal, and the color signal setting circuit 21 and switch circuit 38
An output color signal is obtained by using the 1H delay circuit 52, a delay circuit 53, and a subtracter 54 to obtain an output luminance signal. Embodiment First, let us consider the properties of a color video signal related to the present invention. FIG. 4 shows a diagram showing the scanning state of the screen in the NTSC system. The solid line is the scanning line of the current field, and the broken line is the scanning line of the previous field, and these are in an interleaving relationship with each other. The upper part of the figure is the top of the screen, the vertical direction is the vertical direction in which scanning goes from top to bottom, and the horizontal direction is the horizontal direction in which scanning goes from left to right. Now, let the sampling points of the (n-1)th line, nth line, and (n+1)th line in the current field in the vertical direction of the screen be x 0 , x 1 , and x 2 , respectively, and the sample points in the previous field located in the middle thereof. No. (n-263)
The sample points of the line and the (n-262)th line are respectively y 0 ,
Let y be 1 . Here, if color information exists on the screen as a still image, each sample point x 0 , x 1 ,
As shown in FIGS. 5A to 5E, x 2 , y 0 , and y 1 are located at the positions indicated by black circles in the color signal waveform of each line represented by a sine wave having a frequency of Sc . Note that the ● mark and the Γ mark are the positions of sampling points when the color signal is sampled at a frequency of 4 S c. FIG. 6 shows the phase relationship of each field and each line of the color signal in coordinates consisting of a vertical axis and a time axis. , indicates that the phases are inverted, and the sample points x 0 , x 1 , x 2 , y 0 , y 1 in FIGS. 4 and 5 match those in FIG. 6. The present invention uses these five sample points to discriminate and separate the color signal and the luminance signal. FIG. 7A shows the sample points x 0 , x 1 , x 2 , y 0 ,
A diagram showing the level of y 1 seen from left to right on the time axis. Figure B is the next sample point x 0 ' in Figure 5,
This figure shows the levels of x 1 ′, x 2 ′, y 0 ′, and y 1 ′ when viewed from left to right on the time axis, and the polarity of each level in A and B in the figure is reversed. There is. Now, Figure 7A
Consider the following difference signals D 0 , D 1 , and D 2 . D 0 = (x 1 - x 0 )/2 D 1 = (y 1 - y 0 )/2 D 2 = (x 1 - x 2 )/2 Similar differential signals D 0 ', D 1 ′,
Consider D 2 ′. D 0 ′=(x 1 ′−x 0 ′)/2 D 1 ′=(y 1 ′−y 0 ′)/2 D 2 ′=(x 1 ′−x 2 ′)/2 These difference signals are A characteristic of the color signals of the NTSC system is that they all have the same polarity. FIG. 8A is a signal sequence of the color signal of FIG. 7A itself, and shows a part of the color signal at a certain level. B and C in the same figure are two examples showing breaks in the color signal, and the change in C in the same figure is sharper than that in B in the same figure. Difference signals D 0 , D 1 ,
When calculating D 2 , the results are as shown in Table 1.

【表】 一方、輝度信号は第6図示のような各フイール
ド,各ライン毎の極性配列になることは稀であ
り、本発明は上記色信号及び輝度信号の各性質を
用いている。第9図A〜Dは輝度信号の信号列で
あり、同図Aは一定レベル,同図B〜Dは信号の
エツジ部分を表わしている。同図A〜Dにおける
標本点x0,x1,x2,y0,y1について差分信号D0
D1,D2を求めると第2表のようになる。
[Table] On the other hand, it is rare for a luminance signal to have a polarity arrangement for each field and each line as shown in FIG. 6, and the present invention uses each of the properties of the color signal and luminance signal described above. 9A to 9D are signal sequences of luminance signals, in which A shows a constant level and B to D show edge portions of the signal. Difference signals D 0 , _
Calculating D 1 and D 2 results in the results shown in Table 2.

【表】 第1表及び第2表より明らかな如く、色信号の
場合の各差分信号はいずれも正の値になるが、輝
度信号の場合の差分信号は零のものもあり、同時
に正の値になるものは一つもない。 ところで、現フイールド内における3つの標本
点x0,x1,x2を用いる信号分離に関し、本出願人
は先に特願昭59−66441号,同59−66442号,同59
−66443号の特許願「信号分離装置」において色
信号の存在を判定する方法として、結果として次
の条件式 Q={D0+D2+β1(D0−D2)}・ {D0+D2−β1(D0−D2)}>0 但し、1<β1≦3 を用いることを提案した。本発明ではこれに加
え、前記第1表及び第2表から、 P1=(β2D1+D0)・ (β2D1−D0)≧0 P2=(β2D1+D2)・ (β2D1−D2)≧0 但し、β2≧2,D1=(y1−y0)/2なる2つの
条件式を色信号の存在判定に用いる。 上記条件式Q,P1,P2におけるβ1,β2は第1表
及び第2表から求められる。色信号の条件Q>0
が成立するためのβ1の条件は、第1表より、第8
図Aでは特に定まつた値はなく、同図B,Cでは
β1<3である。又、輝度信号の条件Q≦0が成立
するためのβ1の条件は、第2表より、第9図Aで
は特に定まつた値はなく、同図B〜Dではβ1≧1
である。これらにより、β1は1≦β1<3に設定さ
れなければならない。しかし、β1=1は輝度信号
と色信号との境界に関連するものであるため、両
者の分離度を良好にするためにβ1の範囲を1<β1
<3にする。 一方、P1≧0,P2≧0が同時に成立するため
のβ2の条件は、第1表より、β2≧2である。又、
第2表からはP1≧0,P2≧0を同時に満たすβ2
の条件は得られない。 従つて、Q,P1,P2の条件及びそれらのパラ
メータβ1,β2の設定によつて色信号と輝度信号と
を判定し得る。本発明ではQ,P1,P2の条件を
色信号判定条件として用いるもので、以下、その
動作について説明する。 第1図は本発明装置の一実施例のブロツク系統
図を示す。端子1に第10図Aに示す色信号s及
び第12図Aに示す輝度信号sが入来した場合に
ついて考える。各信号の表現は第17図及び第1
8図と同様に垂直方向の標本点列とし、現フイー
ルド及び前フイールドに例えば夫々5ラインずつ
に亘つて信号が存在するものについて説明する。 色信号s(第10図A)は帯域フイルタ12
(中心周波数がScで帯域が±500kHz)にて現フ
イールドの標本点(●印)を一定処理時間(第1
0図の尺度では無視し得るオーダ)内にフイルタ
処理されて信号x2(同図B)とされ、以下、順次、
1H遅延回路13にて信号x1(同図C),1H遅延回
路14にて信号x0(同図D),261H遅延回路15
にて信号y1(同図E),1H遅延回路16にて信号
y0(同図F)とされる。ここで、y1,y0は前フイ
ールドつまりy1はx1に対して262H前,y0はx1
対して263H前の標本点であり、第10画Aの前フ
イールドの標本点(Γ印)に対応している。 信号x1,x2は減算器17にて{(x1−x2)/2}
を演算されて前記D2(同図G)とされ、信号x1
x0は減算器18にて{(x1−x0)/2}を演算さ
れて信号D0(同図H)とされ、信号y1,y0は減算
器19にて{(y1−y0)/2}を演算されて信号
D1(同図I)とされ、夫々色信号判定回路20及
び色信号設定回路21に供給される。 第2図は色信号判定回路の具体的回路図を示
す。同図において、信号D0,D2は減算器22に
て信号(D0−D2)(同図J)とされ、信号D0
D2は加算器23にて信号(D0+D2)(同図K)と
される。信号(D0−D2)は増幅器24にてβ1
重み付けをなされて信号β1(D0−D2)とされ、信
号β1(D0−D2)は加算器25にて前記(D0+D2
に加算されて信号(D0+D2)+β1(D0−D2)(同図
L)とされる一方、減算器26にて信号(D0
D2)から減算されて信号(D0+D2)−β1(D0
D2)(同図M)とされる。信号(D0+D2)+β1(D0
−D2),(D0+D2)−β1(D0−D2)は乗算器27に
て乗算されて信号 Q={D0+D2+β1(D0−D2)}・ {D0+D2−β1(D0−D2)} (同図N)とされる。 信号Qは比較器28に供給されて基準値零と比
較され、Q>0ならば0,Q≦0ならば1の1ビ
ツト信号Q(同図W)が取出される。 信号D1は増幅器29にてβ2(β2≧2の条件よ
り、例えば2.5)の重み付けをなされて前記β2D1
(同図O)とされ、信号β2D1は加算器30にて信
号D0に加算されて信号(β2D1+D0)(同図P)と
される一方、減算器31にて信号D0を減算され
て信号(β2D1−D0)(同図Q)とされる。信号
(β2D1+D0),(β2D1−D0)は乗算器32にて乗算
されて信号 P1=(β2D1+D0)(β2D1−D0)(同図R)とされ
る。これと同様に、信号D1は増幅器33にてβ2
の重み付けをなされて信号β2D1(同図S)とさ
れ、信号β2D1は加算器34にて信号D2に加算さ
れて信号(β2D1+D2)(同図T)とされる一方、
減算器35にて信号D2を減算されて信号(β2D1
−D2)(同図U)とされる。信号(β2D1+D2),
(β2D1−D2)は乗算器36にて乗算されて信号 P2=(β2D1+D2)(β2D1−D2)(同図V)とされ
る。 なお、後段の回路ではP1,P2の極性情報のみ
を用いるので、0及び正のデータを0,負のデー
タを1とすると、P1,P2は夫々同図X,Yに示
す信号P1,P2とされる。 信号Q,P1,P2は例えば2入力のオアゲート
2個及びノアゲート1個にて構成される3入力ノ
アゲート37にて信号Z(同図Z)とされ、第1
図中スイツチ回路38に切換制御信号として供給
される。つまり、色信号判定信号20は信号D0
D1,D2が同符号の時1を出力するもので、第1
0図Z中、1の部分が色信号,0の部分が輝度信
号又は無信号である。 一方、第3図は色信号設定回路21の具体的回
路図を示す。同図において、信号D1,D0は加算
器39にて信号(D1+D0)(第11図A)とさ
れ、減算器40にて信号(D1−D0)(同図B)と
され、これらは乗算器41にて信号(D1+D0
(D1−D0)(同図C)とされてデータセレクタ4
5に供給される。信号D0,D2は加算器42にて
信号(D0+D2)(同図D)とされ、減算器43に
て信号(D0−D2)(同図E)とされ、これらは乗
算器44にて信号(D0+D2)(D0−D2)(同図
F)とされてデータセレクタ46に供給される。 信号D1,D0はデータセレクタ45に供給され
て乗算器41の出力信号(D1+D0)(D1−D0
が0及び正の時(即ち、MSB=0)信号D1が選
択され、負の時(即ち、MSB=1)信号D0が選
択される。つまり、信号D1,D0のうちの絶対値
の大なる方が選択されて信号W1(同図G)として
取出される。一方、信号D0,D2はデータセレク
タ46に供給されて乗算器44の出力信号(D0
+D2)(D0−D2)が0及び正の時(すなわち、
MSB=0)信号D0が選択され、負の時(即ち、
MSB=1)信号D2が選択される。つまり、信号
D0,D2のうちの絶対値の大なる方が選択されて
信号W2(同図H)として取出される。 信号W1,W2は加算器47にて信号(W1
W2)(同図I)とされ、減算器48にて信号
(W1−W2)(同図J)とされ、これらは乗算器4
9にて信号(W1+W2)(W1−W2)(同図K)と
されてデータセレクタ50に供給される。信号
W1,W2はデータセレクタ50に供給されて乗算
器49の出力信号(W1+W2)(W1−W2)が0
及び正の時(即ち、MSB=0)信号W1が選択さ
れ、負の時(即ち、MSB=1)信号W2が選択さ
れ、信号W3(同図L)として第1図中スイツチ回
路W3に供給される。つまり、色信号設定回路2
1は信号D0,D1,D2の中で絶対値が最大のもの
を出力するものである。 スイツチ回路38において、色信号判定回路2
0の出力信号z(第10図Z)が1の時色信号設
定回路21の出力信号W3が選択され、信号zが
0の時零電位が選択され、信号m(第11図M)
として取出される。信号mは帯域フイルタ12と
同様の帯域フイルタ51にて色信号設定回路2
1,スイツチ回路38において発生されたスイツ
チングノイズを軽減され、再生色信号C(同図N)
として出力端子6より取出される。一方、端子1
に入来した色信号s(第10図A)は1H遅延回路
52にて1H遅延され、遅延回路53にて帯域フ
イルタ12,51における演算処理時間等を補正
されて信号o(第11図O)とされ、減算器54
にて帯域フイルタ51からの信号Cを減算されて
信号Y(同図P)とされ、出力端子11より取出
される。 同図Nに示す色信号C,同図Pに示す信号Yよ
り明らかな如く、端子6からは色信号のみ取出さ
れ、端子11からは歪成分は取出されず、従来装
置のものに比して色信号,輝度信号を完全に分離
して取出し得る。第11図Q,Rに示す色信号
C,信号Yはこれまで説明してきた現フイールド
に対する次のフイールドの標本点におけるもので
あり、このものも色信号のみで、歪成分は取出さ
れないことがわかる。 次に、端子1に入来した輝度信号s(第12図
A)は上記色信号の場合と同じ経路を経て信号処
理される。第12図A〜Zに示す各信号は第10
図A〜Zに示す各信号に対応するものであり、第
13図A〜Rに示す各信号は第11図A〜Rに示
す各信号に対応する。 第13図Pに示す輝度信号Y,同図Nに示す信
号Cより明らかな如く、端子11からは輝度信号
のみ取出され、端子6からは歪成分は取出され
ず、従来装置のものに比して色信号,輝度信号を
完全に分離して取出し得る。第13図Q,Rに示
す輝度信号Y,信号Cは現フイールドに対する次
のフイールドの標本点におけるものであり、この
ものも輝度信号のみで、歪成分は取出されないこ
とがわかる。 各回路の動作については上記色信号の説明より
容易に理解し得るので、その説明を省略する。 発明の効果 本発明装置は、差分信号 D0=(x1−x0)/2, D1=(y1−y0)/2, D2=(x1−x2)/2を得る手段と、 1<β1<3,β2≧2の条件下で {D0+D2−β1(D0−D2)}・ {D0+D2+β1(D0−D2)}>0, (β2D1−D0)(β2D1+D0)≧0, (β2D1−D2)(β2D1+D2)≧0が同時に成立する
ことを検出して色信号判定信号を発生する手段
と、色信号判定信号発生時上記差分信号D0,D1
D2から出力色信号を得る手段と、入力カラー映
像信号を1水平走査期間遅延された信号から該出
力色信号を減算して出力輝度信号を得る手段とに
て構成したため、色信号及び輝度信号ともに夫々
歪成分を含むことはなく、夫々を完全に独立に分
離して取出し得、垂直方向のエツジ部分において
クロスカラー等の妨害を生じることはなく、従来
のものに比して画質を向上し得る等の特長を有す
る。
[Table] As is clear from Tables 1 and 2, each difference signal in the case of color signals is a positive value, but in the case of luminance signals, some of the difference signals are zero, and at the same time they are positive. There is nothing of value. By the way, regarding signal separation using three sample points x 0 , x 1 , and x 2 in the current field, the present applicant previously proposed Japanese Patent Application Nos. 1986-66441, 1983-66442, and 1982
As a method for determining the presence of a color signal in patent application No. 66443 for "Signal Separation Device", the following conditional expression Q={D 0 +D 21 (D 0 −D 2 )}・{D 0 +D 2 −β 1 (D 0 −D 2 )}>0 However, it was proposed to use 1<β 1 ≦3. In addition to this, in the present invention, from Tables 1 and 2, P 1 = (β 2 D 1 +D 0 )・(β 2 D 1 −D 0 )≧0 P 2 =(β 2 D 1 +D 2 )・(β 2 D 1 −D 2 )≧0 However, two conditional expressions, β 2 ≧2 and D 1 =(y 1 −y 0 )/2, are used to determine the presence of a color signal. β 1 and β 2 in the above conditional expressions Q, P 1 and P 2 are obtained from Tables 1 and 2. Color signal condition Q>0
From Table 1, the condition for β 1 for
In Figure A, there is no particular fixed value, and in Figures B and C, β 1 <3. Furthermore, as shown in Table 2, the condition for β 1 for the brightness signal condition Q≦0 to hold is that there is no fixed value in FIG. 9A, and β 1 ≧1 in FIG.
It is. Accordingly, β 1 must be set to 1≦β 1 <3. However, since β 1 = 1 is related to the boundary between the luminance signal and the color signal, the range of β 1 is set to 1<β 1 in order to improve the degree of separation between the two.
Make it <3. On the other hand, from Table 1, the condition for β 2 for P 1 ≧0 and P 2 ≧0 to simultaneously hold is β 2 ≧2. or,
From Table 2, β 2 satisfies P 1 ≧0 and P 2 ≧0 at the same time.
conditions cannot be obtained. Therefore, the color signal and the luminance signal can be determined by the conditions of Q, P 1 and P 2 and the settings of their parameters β 1 and β 2 . In the present invention, the conditions Q, P 1 , and P 2 are used as color signal determination conditions, and the operation thereof will be explained below. FIG. 1 shows a block system diagram of an embodiment of the apparatus of the present invention. Consider the case where the color signal s shown in FIG. 10A and the luminance signal s shown in FIG. 12A are input to the terminal 1. The representation of each signal is shown in Figure 17 and 1.
As in FIG. 8, a vertical sample point array is used, and a signal exists in, for example, five lines in each of the current field and the previous field. The color signal s (FIG. 10A) is passed through the bandpass filter 12.
(The center frequency is S c and the band is ±500kHz), and the sample points (● marks) of the current field are
The signal x 2 is filtered to an order of magnitude that can be ignored (according to the scale of the figure) and becomes the signal x 2 (B in the same figure).
Signal x 1 in 1H delay circuit 13 (C in the same figure), signal x 0 in 1H delay circuit 14 (D in the same figure), 261H delay circuit 15
Signal y 1 (E in the same figure), signal at 1H delay circuit 16
y 0 (F in the same figure). Here, y 1 and y 0 are the previous fields, that is, y 1 is the sample point 262H before x 1 , y 0 is the sample point 263H before x 1 , and the sample point in the previous field of the 10th stroke A ( Γ mark). The signals x 1 and x 2 are processed by the subtracter 17 as {(x 1 −x 2 )/2}
is calculated and becomes the above-mentioned D 2 (G in the same figure), and the signals x 1 ,
The subtracter 18 calculates x 0 as {(x 1 - x 0 )/2} to obtain the signal D 0 (H in the figure), and the subtracter 19 calculates the signals y 1 and y 0 as {(y 1 −y 0 )/2} is calculated and the signal is
D 1 (I in the figure) and are supplied to the color signal determination circuit 20 and color signal setting circuit 21, respectively. FIG. 2 shows a specific circuit diagram of the color signal determination circuit. In the figure, the signals D 0 and D 2 are converted into a signal (D 0 −D 2 ) (J in the figure) by the subtracter 22, and the signals D 0 and
D 2 is converted into a signal (D 0 +D 2 ) (K in the figure) by the adder 23. The signal (D 0 −D 2 ) is weighted by β 1 in the amplifier 24 to become the signal β 1 (D 0 −D 2 ), and the signal β 1 (D 0 −D 2 ) is weighted by the adder 25 as described above. ( D0 + D2 )
is added to the signal (D 0 + D 2 ) + β 1 (D 0 - D 2 ) (L in the figure), while the subtracter 26 adds the signal (D 0 +
D 2 ) and the signal (D 0 + D 2 ) − β 1 (D 0
D 2 ) (M in the same figure). Signal (D 0 + D 2 ) + β 1 (D 0
−D 2 ), (D 0 +D 2 )−β 1 (D 0 −D 2 ) are multiplied by the multiplier 27 to produce a signal Q={D 0 +D 21 (D 0 −D 2 )}・{ D 0 +D 2 −β 1 (D 0 −D 2 )} (N in the same figure). The signal Q is supplied to a comparator 28 and compared with a reference value of zero, and a 1-bit signal Q (W in the figure) is taken out, which is 0 if Q>0 and 1 if Q≦0. The signal D 1 is weighted by β 2 (for example, 2.5 from the condition of β 2 ≧2) in the amplifier 29, and the signal D 1 is
(O in the figure), and the signal β 2 D 1 is added to the signal D 0 in the adder 30 to obtain the signal (β 2 D 1 +D 0 ) (P in the figure), The signal D 0 is subtracted to obtain a signal (β 2 D 1 −D 0 ) (Q in the same figure). The signals (β 2 D 1 +D 0 ) and (β 2 D 1 −D 0 ) are multiplied by the multiplier 32 and the signal P 1 =(β 2 D 1 +D 0 )(β 2 D 1 −D 0 )( R) in the same figure. Similarly, the signal D 1 is converted to β 2 by the amplifier 33.
The signal β 2 D 1 is weighted to form a signal β 2 D 1 (S in the same figure), and the signal β 2 D 1 is added to the signal D 2 in an adder 34 to produce a signal (β 2 D 1 +D 2 ) (T in the same figure). On the other hand,
The subtracter 35 subtracts the signal D 2 to obtain the signal (β 2 D 1
−D 2 ) (U in the same figure). Signal (β 2 D 1 + D 2 ),
2 D 1 −D 2 ) is multiplied by the multiplier 36 to obtain a signal P 2 =(β 2 D 1 +D 2 )(β 2 D 1 −D 2 ) (V in the figure). Note that since only the polarity information of P 1 and P 2 is used in the subsequent circuit, assuming that 0 and positive data are 0 and negative data is 1, P 1 and P 2 are the signals shown in X and Y in the same figure, respectively. They are assumed to be P 1 and P 2 . Signals Q, P 1 and P 2 are converted into signal Z (Z in the figure) by a 3-input NOR gate 37 composed of, for example, two 2-input OR gates and one NOR gate, and the first
The signal is supplied to a switch circuit 38 in the figure as a switching control signal. In other words, the color signal determination signal 20 is the signal D 0 ,
It outputs 1 when D 1 and D 2 have the same sign, and the first
In FIG. 0 Z, the 1 part is a color signal, and the 0 part is a luminance signal or no signal. On the other hand, FIG. 3 shows a specific circuit diagram of the color signal setting circuit 21. As shown in FIG. In the same figure, the signals D 1 and D 0 are converted into a signal (D 1 +D 0 ) (FIG. 11A) by an adder 39, and are converted into a signal (D 1 −D 0 ) (FIG. 11B) by a subtracter 40. These are converted into a signal (D 1 +D 0 ) by the multiplier 41.
(D 1 −D 0 ) (C in the same figure) and data selector 4
5. The signals D 0 and D 2 are converted into a signal (D 0 +D 2 ) (D in the same figure) by the adder 42, and converted into a signal (D 0 −D 2 ) (E in the same figure) by the subtracter 43, and these are The multiplier 44 converts the signal into a signal (D 0 +D 2 ) (D 0 −D 2 ) (FIG. F) and supplies it to the data selector 46 . The signals D 1 and D 0 are supplied to the data selector 45 and the output signal of the multiplier 41 (D 1 +D 0 ) (D 1 −D 0 )
When is 0 and positive (ie, MSB=0), the signal D 1 is selected, and when it is negative (ie, MSB=1), the signal D 0 is selected. That is, the one with the larger absolute value of the signals D 1 and D 0 is selected and taken out as the signal W 1 (G in the figure). On the other hand, the signals D 0 and D 2 are supplied to the data selector 46 and the output signal (D 0
+D 2 ) (D 0 −D 2 ) is 0 and positive (i.e.
MSB=0) signal D 0 is selected and when negative (i.e.
MSB=1) Signal D2 is selected. That is, the signal
The one with the larger absolute value of D 0 and D 2 is selected and taken out as the signal W 2 (H in the figure). Signals W 1 and W 2 are converted into signals (W 1 +
W 2 ) (I in the same figure), and the subtracter 48 outputs a signal (W 1 - W 2 ) (J in the same figure), which is sent to the multiplier 4.
At step 9, the signal (W 1 +W 2 ) (W 1 -W 2 ) (K in the same figure) is converted into a signal and supplied to the data selector 50 . signal
W 1 and W 2 are supplied to the data selector 50 and the output signal (W 1 +W 2 ) (W 1 −W 2 ) of the multiplier 49 is 0.
When it is positive (i.e., MSB=0), the signal W 1 is selected, and when it is negative (i.e., MSB=1), the signal W 2 is selected, and the switch circuit in FIG. Supplied to W 3 . In other words, the color signal setting circuit 2
1 outputs the signal with the largest absolute value among the signals D 0 , D 1 , and D 2 . In the switch circuit 38, the color signal determination circuit 2
When the output signal z of 0 (Z in FIG. 10) is 1, the output signal W 3 of the color signal setting circuit 21 is selected, and when the signal z is 0, the zero potential is selected, and the signal m (M in FIG. 11) is selected.
is extracted as The signal m is passed through a band filter 51 similar to the band filter 12 to the color signal setting circuit 2.
1. The switching noise generated in the switch circuit 38 is reduced, and the reproduced color signal C (N in the same figure)
The signal is taken out from the output terminal 6 as a signal. On the other hand, terminal 1
The incoming color signal s (FIG. 10A) is delayed by 1H in the 1H delay circuit 52, and the delay circuit 53 corrects the arithmetic processing time etc. in the band filters 12 and 51 to produce the signal o (FIG. 11A). ), and the subtractor 54
The signal C from the bandpass filter 51 is subtracted from the signal Y (P in the figure), which is taken out from the output terminal 11. As is clear from the color signal C shown in Figure N and the signal Y shown in Figure P, only the color signal is taken out from terminal 6, and no distortion component is taken out from terminal 11, compared to the conventional device. Color and luminance signals can be completely separated and extracted. The color signals C and Y shown in FIG. 11 Q and R are at the sample points of the next field to the current field that has been explained so far, and it can be seen that these are also only color signals and no distortion components are extracted. . Next, the luminance signal s (FIG. 12A) that has entered the terminal 1 is processed through the same route as in the case of the color signal. Each signal shown in FIGS.
The signals correspond to the signals shown in FIGS. A to Z, and the signals shown in FIGS. 13A to R correspond to the signals shown in FIGS. 11A to R. As is clear from the luminance signal Y shown in FIG. 13P and the signal C shown in FIG. The color signal and luminance signal can be completely separated and extracted. The luminance signal Y and the signal C shown in FIG. 13 Q and R are at the sample points of the next field to the current field, and it can be seen that these are also only luminance signals and no distortion components are extracted. Since the operation of each circuit can be easily understood from the above explanation of the color signal, the explanation thereof will be omitted. Effects of the Invention The device of the present invention obtains differential signals D 0 =(x 1 −x 0 )/2, D 1 =(y 1 −y 0 )/2, D 2 =(x 1 −x 2 )/2. and under the conditions of 1<β 1 <3, β 2 ≧2 {D 0 +D 2 −β 1 (D 0 −D 2 )}・{D 0 +D 21 (D 0 −D 2 )} >0, ( β2D1 - D0 )( β2D1 + D0 )≧0, ( β2D1 - D2 )( β2D1 + D2 ) ≧0 are simultaneously established. a means for generating a color signal judgment signal using the color signal judgment signal;
Since the configuration includes means for obtaining an output color signal from D 2 and means for obtaining an output luminance signal by subtracting the output color signal from a signal in which the input color video signal is delayed by one horizontal scanning period, the color signal and luminance signal are Both do not contain distortion components, and can be extracted completely independently.Therefore, there is no interference such as cross color at vertical edges, and the image quality is improved compared to conventional ones. It has features such as obtaining.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例のブロツク系統
図、第2図及び第3図は本発明装置の要部の具体
的回路図、第4図乃至第7図は信号と標本点,標
本値との関係を説明するための図、第8図及び第
9図は夫々色信号及び輝度信号の図、第10図乃
至第13図は本発明装置の動作説明用の信号図、
第14図及び第15図は夫々信号分離状態を説明
する図及び色副搬送波の図、第16図は従来装置
の一例のブロツク系統図、第17図及び第18図
は従来装置の動作説明用の信号図である。 1……カラー映像信号入力端子、6……色信号
出力端子、11……輝度信号出力端子、12,5
1……帯域フイルタ、13,14,16,52…
…1H遅延回路、15……261H遅延回路、17〜
19,22,26,31,35,40,43,4
8,54……減算器、20……色信号判定回路、
21……色信号設定回路、23,25,30,3
4,39,42,47……加算器、24,29,
33……増幅器、27,32,36,41,4
4,49……乗算器、28……比較器、37……
ノアゲート、38……スイツチ回路、45,4
6,50……データセレクタ、53……遅延回
路。
Fig. 1 is a block system diagram of an embodiment of the device of the present invention, Figs. 2 and 3 are specific circuit diagrams of the main parts of the device of the present invention, and Figs. 4 to 7 show signals, sample points, and samples. Figures 8 and 9 are diagrams for explaining the relationship between values, Figures 8 and 9 are diagrams of color signals and luminance signals, respectively, Figures 10 to 13 are signal diagrams for explaining the operation of the device of the present invention,
Figures 14 and 15 are diagrams for explaining signal separation states and color subcarrier diagrams, Figure 16 is a block system diagram of an example of a conventional device, and Figures 17 and 18 are for explaining the operation of the conventional device. FIG. 1... Color video signal input terminal, 6... Color signal output terminal, 11... Luminance signal output terminal, 12, 5
1...Band filter, 13, 14, 16, 52...
...1H delay circuit, 15...261H delay circuit, 17~
19, 22, 26, 31, 35, 40, 43, 4
8, 54...subtractor, 20...color signal determination circuit,
21...Color signal setting circuit, 23, 25, 30, 3
4, 39, 42, 47... Adder, 24, 29,
33...Amplifier, 27, 32, 36, 41, 4
4, 49... Multiplier, 28... Comparator, 37...
Noah Gate, 38...Switch circuit, 45,4
6, 50...data selector, 53...delay circuit.

Claims (1)

【特許請求の範囲】 1 水平走査期間毎に極性反転する色信号と極性
反転しない輝度信号とを含むNTSC方式の入力カ
ラー映像信号から該水平走査期間毎の標本化によ
り信号処理して該色信号と該輝度信号とを夫々分
離する信号分離装置において、上記色信号及び上
記輝度信号のある標本点をx1,該標本点x1の1水
平走査期間前の標本点をx0,該標本点x1の1水平
走査期間後の標本点をx2,該標本点x1の262水平
走査期間前の標本点をy1,該標本点x1の263水平
走査期間前の標本点をy0とした時、 差分信号D0=(x1−x0)/2, D1=(y1−y0)/2, D2=(x1−x2)/2を得る手段 と、1<β1<3,β2≧2の条件下で {D0+D2−β1(D0−D2)}・ {D0+D2+β1(D0−D2)}>0, (β2D1−D0)(β2D1+D0)≧0, (β2D1−D2)(β2D1+D2)≧0が同時に成立する
ことを検出して色信号判定信号を発生する手段
と、該色信号判定信号発生時上記差分信号D0
D1,D2から出力色信号を得る手段と、上記入力
カラー映像信号を1水平走査期間遅延された信号
から該出力色信号を減算して出力輝度信号を得る
手段とよりなることを特徴とする信号分離装置。 2 水平走査期間毎に極性反転する色信号と極性
反転しない輝度信号とを含むNTSC方式の入力カ
ラー映像信号から該水平走査期間毎の標本化によ
り信号処理して該色信号と該輝度信号とを夫々分
離する信号分離装置において、上記色信号及び上
記輝度信号のある標本点をx1,該標本点x1の1水
平走査期間前の標本点をx0,該標本点x1の1水平
走査期間後の標本点をx2,該標本点x1の262水平
走査期間前の標本点をy1,該標本点x1の263水平
走査期間前の標本点をy0とした時、 差分信号D0=(x1−x0)/2, D1=(y1−y0)/2, D2=(x1−x2)/2を得る手段 と、1<β1<3,β2≧2の条件下で {D0+D2−β1(D0−D2)}・ {D0+D2+β1(D0−D2)}>0, (β2D1−D0)(β2D1+D0)≧0, (β2D1−D2)(β2D1+D2)≧0が同時に成立する
ことを検出して色信号判定信号を発生する手段
と、上記差分信号D0,D1,D2のうち絶対値が最
大のものを選択する色信号設定手段と、該色信号
判定信号発生時上記色信号設定手段から出力色信
号を得る手段と、上記入力カラー映像信号を1水
平走査期間遅延された信号から該出力色信号を減
算して出力輝度信号を得る手段とよりなることを
特徴とする信号分離装置。
[Claims] 1. The color signal is obtained by signal processing by sampling every horizontal scanning period from an input color video signal of the NTSC system, which includes a color signal whose polarity is inverted every horizontal scanning period and a luminance signal whose polarity is not inverted. and the luminance signal, a sampling point at which the color signal and the luminance signal are located is x 1 , a sampling point one horizontal scanning period before the sampling point x 1 is x 0 , and the sampling point The sampling point after 1 horizontal scanning period of x 1 is x 2 , the sampling point 262 horizontal scanning periods before the sampling point x 1 is y 1 , the sampling point 263 horizontal scanning periods before the sampling point x 1 is y 0 , means for obtaining differential signals D 0 =(x 1 −x 0 )/2, D 1 =(y 1 −y 0 )/2, D 2 =(x 1 −x 2 )/2, and 1 <β 1 <3, β 2 ≧2 under the conditions {D 0 +D 2 −β 1 (D 0 −D 2 )}・ {D 0 +D 21 (D 0 −D 2 )}>0, ( The color signal is determined by detecting that β 2 D 1 −D 0 )(β 2 D 1 +D 0 )≧0 and (β 2 D 1 −D 2 )(β 2 D 1 +D 2 )≧0 hold simultaneously. means for generating a signal, and the difference signal D 0 when the color signal determination signal is generated;
It is characterized by comprising means for obtaining an output color signal from D1 and D2 , and means for obtaining an output luminance signal by subtracting the output color signal from a signal obtained by delaying the input color video signal by one horizontal scanning period. signal separation device. 2. From an NTSC input color video signal containing a color signal whose polarity is inverted every horizontal scanning period and a luminance signal whose polarity is not inverted, the color signal and the luminance signal are processed by signal processing by sampling every horizontal scanning period. In the signal separation device that separates the above-mentioned color signal and the above-mentioned luminance signal, x 1 is the sample point, x 0 is the sample point one horizontal scanning period before the sample point x 1 , and 1 horizontal scan of the sample point x 1 is used. When the sampling point after the period is x 2 , the sampling point 262 horizontal scanning periods before the sampling point x 1 is y 1 , and the sampling point 263 horizontal scanning periods before the sampling point x 1 is y 0 , the difference signal is Means for obtaining D 0 =(x 1 −x 0 )/2, D 1 =(y 1 −y 0 )/2, D 2 =(x 1 −x 2 )/2, and 1<β 1 <3, Under the condition of β 2 ≧2, {D 0 +D 2 −β 1 (D 0 −D 2 )}・ {D 0 +D 21 (D 0 −D 2 )}>0, (β 2 D 1 −D 0 ) (β 2 D 1 +D 0 )≧0 and (β 2 D 1 −D 2 )(β 2 D 1 +D 2 )≧0 are established simultaneously, and a means for generating a color signal determination signal; , color signal setting means for selecting the one with the largest absolute value among the difference signals D 0 , D 1 , and D 2 , and means for obtaining an output color signal from the color signal setting means when the color signal determination signal is generated; A signal separation device comprising means for subtracting the output color signal from a signal obtained by delaying the input color video signal by one horizontal scanning period to obtain an output luminance signal.
JP1576685A 1985-01-30 1985-01-30 Signal separating device Granted JPS61174894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1576685A JPS61174894A (en) 1985-01-30 1985-01-30 Signal separating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1576685A JPS61174894A (en) 1985-01-30 1985-01-30 Signal separating device

Publications (2)

Publication Number Publication Date
JPS61174894A JPS61174894A (en) 1986-08-06
JPH0344717B2 true JPH0344717B2 (en) 1991-07-08

Family

ID=11897916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1576685A Granted JPS61174894A (en) 1985-01-30 1985-01-30 Signal separating device

Country Status (1)

Country Link
JP (1) JPS61174894A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02252388A (en) * 1989-03-27 1990-10-11 Nec Home Electron Ltd T/c separation circuit
AU2934092A (en) * 1991-11-15 1993-06-15 Snell & Wilcox Limited Colour television signal processing

Also Published As

Publication number Publication date
JPS61174894A (en) 1986-08-06

Similar Documents

Publication Publication Date Title
EP0358453B1 (en) Digital luminance/chrominance separation apparatus
US4639767A (en) Apparatus for detecting movement in a television signal based on taking ratio of signal representing frame difference to signal representing sum of picture element differences
US4939572A (en) Video signal processing apparatus
JPH0646817B2 (en) Video signal processor
JPH07118813B2 (en) Color video signal encoding method
JPH0344717B2 (en)
US20040155983A1 (en) Reduced artifact luminance/chrominance (Y/C) separator for use in an NTSC decoder
JPH04264895A (en) Luminance signal and color signal separator circuit
JP2004128936A (en) Video signal processor
JPH0344172A (en) Contour correction circuit
JP2531096B2 (en) Motion detection circuit
JP2538319B2 (en) Motion detector
JPH062382Y2 (en) Adaptive contour enhancement Y / C separation circuit
JP2548950B2 (en) Video signal processing circuit
JP2596736B2 (en) Image correlation compatible luminance signal color signal separation filter
JPH0787594B2 (en) Correlation detection circuit
KR930011140B1 (en) Chrominance signal and luminance signal separating circuit
KR0141132B1 (en) Apparatus for separating brightness chroma signal
JP2529681B2 (en) Image correlation compatible luminance signal color signal separation filter
JPS63149980A (en) Y/c separation circuit
JPH01108890A (en) Yc separation circuit
JPH0712195B2 (en) Contour correction device
JPS61212185A (en) Signal separating device
JPS63109667A (en) Patrolling type noise reducing device
JPH06165210A (en) Luminance signal/chrominance signal separator circuit