JPH03446B2 - - Google Patents

Info

Publication number
JPH03446B2
JPH03446B2 JP59153549A JP15354984A JPH03446B2 JP H03446 B2 JPH03446 B2 JP H03446B2 JP 59153549 A JP59153549 A JP 59153549A JP 15354984 A JP15354984 A JP 15354984A JP H03446 B2 JPH03446 B2 JP H03446B2
Authority
JP
Japan
Prior art keywords
soil
lime
water
emulsion
asphalt emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59153549A
Other languages
Japanese (ja)
Other versions
JPS6131518A (en
Inventor
Moritsugu Yamada
Kaoru Ookawa
Minoru Nukada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HYOGO KENSETSU KK
Original Assignee
HYOGO KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HYOGO KENSETSU KK filed Critical HYOGO KENSETSU KK
Priority to JP15354984A priority Critical patent/JPS6131518A/en
Publication of JPS6131518A publication Critical patent/JPS6131518A/en
Publication of JPH03446B2 publication Critical patent/JPH03446B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • E02D3/123Consolidating by placing solidifying or pore-filling substances in the soil and compacting the soil

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本願発明は土壌の透水性改良法に係るものであ
る。さらに詳しくは、無機系固結剤と中性もしく
は塩基性のカチオン系アスフアルト乳剤を併用す
ることにより、不透水性又は難透水性の土壌を団
粒固化した後、これを機械等により破砕し、粒状
化することによつて透水性の良い土壌に再生する
ための土壌改良法に関するものである。 <従来の技術> 土壌の排水を向上させ降水等による軟弱化を防
止するための土壌改良剤としては、従来アニオン
系乳剤や酸性カチオン系乳剤等を使用したものが
ある。しかしながらアニオン系乳剤は、土壌粒子
表面が負電荷に帯電しているため、土壌粒子との
親和性が小さく結合力が弱い。又酸性カチオン系
乳剤では石灰等のアルカリ性固結剤の働きを弱め
る性質がある。このため該両乳剤には、処理する
土壌の種類に制約があると共に、特に粘土質土壌
に対してはその効果は十分でなく、透水性の良好
な砂質土と置換するのが最良策であるとされてい
るのが現状である。そのため作業能率も悪く又土
壌改良費等も高くつく欠点があつた。 <発明が解決しようとする問題点> 土中に浸透した水の種類には土粒子の間隙を流
れる自由水(重力水)、土中の細間隙における付
着力と表面張力に起因する毛管水、及び土壌粒子
とイオン的に結合することにより土壌の粘着性を
増加させる吸着水等がある。透水性の良い土壌を
得るためにはこれらの水を化学的もしくは土質力
学的に制禦する必要がある。本願発明は叙上の事
情に鑑みて、不透水性もしくは難透水性の土壌を
無機系固結剤と中性もしくは塩基性のカチオン系
アスフアルト乳剤を並用することによつて、短時
間に該土壌を固化させた後、固化した土壌を機械
的に一定粒度に破砕して透水性の良い土質に改良
する方法を提供することを目的とする。 <問題を解決するための手段> 石灰、セメント等の無機系固結剤と中性もしく
は塩基性のカチオン系アスフアルト乳剤を併用す
ることにより団粒固化した土壌を機械的に破砕す
ることによつて、該土壌の組成間隙を増大させて
透水性を支配する最大要因である自由水の流下を
促すと共に、該乳剤により土壌粒子の疎水性を増
加させることにより毛管水及び吸着水を減少させ
る。 無機系固結剤には、標準法としては石灰1に対
してフライアツシユ1〜2の割合で混合したもの
を使用する。石灰は消石灰(Ca(OH)2)が多用
されるが、粘性土等のように処理土壌の含水比が
大きい場合には生石灰(CaO)を用いる。又石灰
の一部をセメントに置き代えてもよい。 フライアツシユは石灰の助剤として働き、消石
灰または生石灰と結合して安定な不溶解性物質を
つくる性質があり、火力発電において粉炭燃焼の
際得られる粉塵等のものを用いる。 これら石灰及びフライアツシユの混合による無
機系固結剤によつて永続性のある土壌固化物の形
成が可能である。土壌を団粒固化する際には該無
機系固結剤の他に、中性もしくは塩基性のカチオ
ン系アスフアルト乳剤を併用する。一般に市販さ
れている酸性カチオン系乳剤は塩酸及び酢酸等が
乳化液中に添加されPHが調整されているので、塩
基性の石灰やセメントと混和した際にはその中和
作用により、該乳剤の電荷バランスが急激に崩れ
て乳剤粒子が破壊し均一な混和ができない。この
ため、石灰、セメント等の塩基性無機物とも親和
性が良好であり、又塑性指数の大きい土壌に対し
ても混合することができる中性もしくは塩基性の
カチオン系アスフアルト乳剤を使用する。しかし
ながら、乳剤の添加量が多過ぎると土壌の含液化
が増大しその安定性を低下させるので必要な量だ
けを添加することとする。特に含水量の高い粘性
土に対しては乳剤添加は土壌粒子間の潤滑作用を
生じさせるため不安定となり塑性流動が生じ易い
結果となる。そのため添加量は数%以下であるこ
とを標準とする。 次に、叙上の方法により固化処理された土壌
を、一軸圧縮強度が約6Kg/cm2以上となるように
転圧養生した後、これを移動走行式破砕混合機で
粗粒成分(φ5mm以上)が約50%以上、最大粒径
約50mm以下となるように破砕して、再び転圧し仕
上げとする。短時間で所定の粒径に破砕するため
には破砕性能の良い破砕混合機の選定を行なう必
要があり、一般には路床混合用のパルバタイザー
やデープスタビライザーを使用する。 <作用> 石灰等に含まれるCaイオンには土壌中のH、
Na、Kイオン等と置換し粒子間吸着力を増加さ
せる働きがあり、更にはケイ酸カルシウムやケイ
酸アルミニウム等と複合化合物(CaSi2O3
Al2O3nH2O)を形成し土壌を固化させる作用が
ある。又フライアツシユには石灰等の該作用を助
剤として補強する働きがある。これらの作用によ
つて、より強固な土壌の団粒固化物をつくること
ができる。 中性もしくは塩基性のカチオン系アスフアルト
乳剤は石灰、セメント等の塩基性無機物との親和
性が良いため塑性指数の大きい土壌に対しても混
和することができ、且つJISK−2207に規定する
土壌混合用乳剤MK−3の規格をも満足できる。
このため、該アスフアルト乳剤は粒子径が小さく
液性限界の大きい粘性土ともよく作用し土壌粒子
と複合体を作ることができ、該土壌に一定の化学
的構造を付与することができる。即ち、該アスフ
アルト乳剤中のアスフアルト分子には土壌粒子の
周りに被膜を形成することにより該土壌粒子を界
面化学的に疎水性とする働きがある。 このようなアスフアルト粒子の特性により、従
来、凍結融解作用により細粒化され易いとされて
いた無機系固結剤の欠点を補い、処理土壌に対し
て良好な透水能の保持を長期的に付与することが
できる。 叙上のように、無機系固結剤及び中性もしくは
塩基性アスフアルト乳剤を併用することによつて
化学的に団粒固化され又疎水性をも付与された土
壌は、破砕混合機によつて更に機械的に破砕され
てその粗粒率が増加する。これらのことにより化
学的にも土質力学的にも安定な透水性を有する土
壌が得られることになる。 <実施例> 以下に本願発明の実施例について説明する。 実施例 1 統一分類法によるCH土壌(不透水性土壌)に
対して、消石灰及びフライアツシユと表3に示し
たアスフアルト乳剤を表1に示した配合割合で混
合し、40cmの深さにして処理固化を施す。 先ず該CH土壌に消石灰とアライアツシユの所
定量を散布して混合し、次いでアスフアルト乳剤
を混合する。混合には路上走行式破砕混合機小松
GS−360ロードスタビライザー((株)小松製作所
製)を使用し、一軸圧縮強度が7.5Kg/cm2(養生
日数5日)の土壌固化体を得た。次に該破砕混合
機を3m/分の速度で1回走行させることにより
該土壌固化体を破砕して粒状化し、粗粒度率60
%、最大粒径40mmの破砕体を得た。これをタイヤ
ローラ(荷重10t以上)で数回転圧し少し締め固
めた後、砂を0.006m3/m2の割で散布して仕上げ
た。 本実施例1の透水性効果試験は、JIS A1218に
よる変水位試験法に基づいて行い、その結果を表
4に示す。 実施例 2
<Industrial Application Field> The present invention relates to a method for improving soil water permeability. More specifically, by using an inorganic solidifying agent and a neutral or basic cationic asphalt emulsion in combination, impervious or poorly permeable soil is solidified into aggregates, which is then crushed by a machine or the like. This invention relates to a soil improvement method for regenerating soil with good water permeability by granulating it. <Prior Art> As soil conditioners for improving soil drainage and preventing softening due to precipitation, etc., there have been conventionally used anionic emulsions, acidic cationic emulsions, and the like. However, anionic emulsions have a negatively charged soil particle surface and therefore have a low affinity with soil particles and a weak binding force. Furthermore, acidic cationic emulsions have the property of weakening the action of alkaline solidifying agents such as lime. For this reason, both of these emulsions have restrictions on the type of soil that can be treated, and their effects are particularly insufficient on clay soils, so the best solution is to replace them with sandy soils that have good water permeability. The current situation is that there is. As a result, work efficiency was poor and soil improvement costs were high. <Problems to be solved by the invention> Types of water that permeates into the soil include free water (gravity water) flowing through the gaps between soil particles, capillary water caused by adhesion and surface tension in small gaps in the soil, and adsorbed water, which increases the stickiness of soil by ionically bonding with soil particles. In order to obtain soil with good permeability, it is necessary to control this water chemically or soil mechanics. In view of the above-mentioned circumstances, the present invention has been developed by using an inorganic solidifying agent and a neutral or basic cationic asphalt emulsion to improve water-impermeable or poorly permeable soil in a short time. The purpose of the present invention is to provide a method for improving the soil quality by mechanically crushing the solidified soil to a certain particle size after solidifying the soil to improve water permeability. <Means for solving the problem> By mechanically crushing the soil that has solidified into aggregates by using an inorganic solidifying agent such as lime or cement together with a neutral or basic cationic asphalt emulsion. , by increasing the compositional pores of the soil to promote the flow of free water, which is the most important factor governing water permeability, and by increasing the hydrophobicity of soil particles with the emulsion, capillary water and adsorbed water are reduced. As a standard method, the inorganic solidifying agent used is a mixture of 1 part lime and 1 to 2 parts fly ash. Slaked lime (Ca(OH) 2 ) is often used as lime, but quicklime (CaO) is used when the treated soil has a high moisture content, such as clay soil. Also, some of the lime may be replaced with cement. Fly ash acts as an adjuvant for lime and has the property of combining with slaked lime or quicklime to form a stable insoluble substance, and is used in thermal power generation using materials such as dust obtained during combustion of pulverized coal. By mixing these lime and flyash with an inorganic solidifying agent, it is possible to form a permanent soil solidified product. When compacting soil, a neutral or basic cationic asphalt emulsion is used in addition to the inorganic compacting agent. Generally commercially available acidic cationic emulsions have their pH adjusted by adding hydrochloric acid, acetic acid, etc. to the emulsion, so when mixed with basic lime or cement, their neutralizing effect will reduce the emulsion. The charge balance suddenly collapses and the emulsion grains are destroyed, making it impossible to mix uniformly. For this reason, a neutral or basic cationic asphalt emulsion is used, which has good affinity with basic inorganic substances such as lime and cement, and can be mixed with soils having a large plasticity index. However, if too much emulsion is added, the liquefaction of the soil will increase and its stability will be reduced, so only the necessary amount should be added. Particularly for clayey soils with high water content, the addition of emulsions creates a lubricating effect between soil particles, resulting in instability and a tendency to cause plastic flow. Therefore, the standard addition amount is several percent or less. Next, the soil that has been solidified by the above method is compacted and cured so that the unconfined compressive strength is approximately 6 kg/cm2 or more , and then the coarse particles (φ5 mm or more) are ) is crushed to approximately 50% or more and the maximum particle size is approximately 50mm or less, and then rolled again to finish. In order to crush particles to a predetermined particle size in a short time, it is necessary to select a crushing mixer with good crushing performance, and generally a pulvertizer or deep stabilizer for roadbed mixing is used. <Action> Ca ions contained in lime, etc. have the ability to absorb H,
It has the function of replacing Na, K ions, etc. and increasing the interparticle adsorption force, and it also has the function of replacing Na, K ions, etc. with complex compounds (CaSi 2 O 3 /
It has the effect of forming Al 2 O 3 nH 2 O) and solidifying the soil. In addition, fly ash has the function of reinforcing the action of lime and the like as an auxiliary agent. These actions make it possible to create stronger soil aggregates. Neutral or basic cationic asphalt emulsions have good affinity with basic inorganic substances such as lime and cement, so they can be mixed even with soils with a high plasticity index, and can be mixed with soils as specified in JISK-2207. It can also meet the specifications of emulsion MK-3.
Therefore, the asphalt emulsion has a small particle size and works well with clay soil having a large liquidity limit, and can form a composite with soil particles, thereby imparting a certain chemical structure to the soil. That is, the asphalt molecules in the asphalt emulsion have the function of making the soil particles surface chemically hydrophobic by forming a film around the soil particles. These characteristics of asphalt particles compensate for the shortcomings of conventional inorganic solidifying agents, which were thought to be susceptible to fine particles due to freezing and thawing, and provide long-term retention of good water permeability to treated soil. can do. As mentioned above, soil that has been chemically agglomerated and made hydrophobic by using an inorganic solidifying agent and a neutral or basic asphalt emulsion is processed by a crushing mixer. Furthermore, it is mechanically crushed to increase its coarse particle ratio. As a result of these, soil having permeability that is chemically and soil-mechanically stable can be obtained. <Examples> Examples of the present invention will be described below. Example 1 For CH soil (impermeable soil) according to the unified classification method, slaked lime, fly ash, and asphalt emulsion shown in Table 3 were mixed at the proportions shown in Table 1, and treated and solidified to a depth of 40 cm. administer. First, predetermined amounts of slaked lime and Aria Ash are sprinkled on the CH soil and mixed, and then asphalt emulsion is mixed. Komatsu road-type crushing mixer is used for mixing.
Using GS-360 Road Stabilizer (manufactured by Komatsu Ltd.), a soil solidified body having an unconfined compressive strength of 7.5 Kg/cm 2 (curing time: 5 days) was obtained. Next, by running the crushing mixer once at a speed of 3 m/min, the soil solidification is crushed and granulated, with a coarse particle size ratio of 60
%, and a crushed body with a maximum particle size of 40 mm was obtained. This was compressed several times with a tire roller (load of 10 tons or more) to compact it a little, and then sand was sprinkled at a rate of 0.006 m 3 /m 2 to finish it. The water permeability effect test of Example 1 was conducted based on the variable water level test method according to JIS A1218, and the results are shown in Table 4. Example 2

【表】 統一分類法によるCL土壌(難透水性土壌)に
対して、消石灰、セメント及びフライアツシユを
表4に示したアスフアルト乳剤を表2に示した配
合割合で混合し、同じく深さ40cmの処理固化を施
す。 先ず該CL土壌に所定割合の該無機物質を一度
に散布して混合し、次いでアスフアルト乳剤を混
合する。締め固め時に最適含水比となるよう、混
合された土壌をかき拡げて水分を少し乾燥させ
る。混合には酒井式再生路盤機PM170((株)酒井製
作所製)を使用し、一軸圧縮強度が10Kg/cm2(養
生日数3日)の土壌固化体を得た。破砕には該路
盤機を3m/分の速度で2回走行させることによ
り、粗粒度率52%、最大粒率50mmの破砕体を得
た。これをタイヤローラー(荷重10t以上)で数
回転圧後、化粧砂を0.010m3/m2の割で散布して
仕上げた。
[Table] For CL soil (poorly permeable soil) according to the unified classification method, asphalt emulsion containing slaked lime, cement, and fly ash shown in Table 4 was mixed in the proportions shown in Table 2, and treated at a depth of 40 cm. Apply solidification. First, a predetermined proportion of the inorganic substance is sprinkled and mixed on the CL soil at once, and then the asphalt emulsion is mixed. During compaction, the mixed soil is spread out to dry out some of the moisture so that the optimum moisture content is achieved. For mixing, a Sakai type regenerating roadbed machine PM170 (manufactured by Sakai Seisakusho Co., Ltd.) was used to obtain a solidified soil having an unconfined compressive strength of 10 Kg/cm 2 (curing time: 3 days). For crushing, the roadbed machine was run twice at a speed of 3 m/min to obtain a crushed body with a coarse grain size ratio of 52% and a maximum grain ratio of 50 mm. This was compressed several times with a tire roller (load of 10 tons or more), and then finished by scattering decorative sand at a rate of 0.010 m 3 /m 2 .

【表】【table】

【表】 本実施例2の透水性効果試験は、上記実施例1
と同じ方法により行い、その結果は表4に示す。 以上2列の実施例により、不透水性もしくは難
透水性土壌を約100倍の透水能の良い土壌に改善
することができ、これらの土壌を透水性土壌とし
て活用できることが確認できた。 <発明の効果> 不透水性もしくは難透水性の土壌を容易に透
[Table] The water permeability effect test of Example 2 was carried out in Example 1 above.
The results are shown in Table 4. Through the above two rows of Examples, it was confirmed that impermeable or poorly permeable soils could be improved to soils with approximately 100 times higher water permeability, and that these soils could be utilized as permeable soils. <Effects of the invention> Easily permeates impermeable or poorly permeable soil.

【表】【table】

【表】 水性の土壌に改良することができ、運動グランド
やクレーコート、更には構造物基盤、路床土等の
透水性改善に有効であり、埋設透水管の使用の際
にも効果がある。 従来の掘削土壌入れ換え工法に比較しても経済
的であり且つ施工期も短縮することができる。又
寒冷地の凍士防止や、農業用土壌の改良法として
も応用することができその用途には多様なものが
ある。
[Table] Can be used to improve water-based soil, and is effective in improving the permeability of athletic grounds, clay courts, structure foundations, subgrade soil, etc., and is also effective when using buried permeable pipes. . It is more economical than the conventional excavated soil replacement method and can shorten the construction period. It can also be applied to prevent freezing in cold regions and as a method for improving agricultural soil, and its uses are diverse.

Claims (1)

【特許請求の範囲】[Claims] 1 不透水性もしくは難透水性土壌に無機系固結
剤と、中性もしくは塩基性のカチオン系アスフア
ルト乳剤を混合し、土壌を団粒固化させた後、こ
の固化した土壌を破砕し粒状化させることによ
り、土壌の透水性を向上させることを特徴とする
土壌の透水性改良法。
1. Mixing an inorganic solidifying agent and a neutral or basic cationic asphalt emulsion into impermeable or poorly permeable soil, solidifying the soil into aggregates, and then crushing and granulating the solidified soil. A soil water permeability improvement method characterized by improving the water permeability of soil.
JP15354984A 1984-07-23 1984-07-23 Method of improving water permeability of soil Granted JPS6131518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15354984A JPS6131518A (en) 1984-07-23 1984-07-23 Method of improving water permeability of soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15354984A JPS6131518A (en) 1984-07-23 1984-07-23 Method of improving water permeability of soil

Publications (2)

Publication Number Publication Date
JPS6131518A JPS6131518A (en) 1986-02-14
JPH03446B2 true JPH03446B2 (en) 1991-01-08

Family

ID=15564935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15354984A Granted JPS6131518A (en) 1984-07-23 1984-07-23 Method of improving water permeability of soil

Country Status (1)

Country Link
JP (1) JPS6131518A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471915A (en) * 1987-09-14 1989-03-16 Seinou Kensetsu Kk Improving-stabilizing work of ground
CN1051123C (en) * 1993-12-14 2000-04-05 李佑发 Cementing agent for road material and preparing process thereof
KR100477875B1 (en) * 2000-08-19 2005-03-22 주식회사 신한엔터프라이즈 Paving Composition for Sports Complex Courts Using Inorganic Compounds
CN104846807A (en) * 2015-04-09 2015-08-19 天津城建大学 Polypropylene fiber ribbed salinized soil and curing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920917A (en) * 1972-06-17 1974-02-23
JPS5218014A (en) * 1975-08-01 1977-02-10 Obayashi Gumi Kk Method of stabilizing surface of subsoil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920917A (en) * 1972-06-17 1974-02-23
JPS5218014A (en) * 1975-08-01 1977-02-10 Obayashi Gumi Kk Method of stabilizing surface of subsoil

Also Published As

Publication number Publication date
JPS6131518A (en) 1986-02-14

Similar Documents

Publication Publication Date Title
Beeghly Recent experiences with lime-fly ash stabilization of pavement subgrade soils, base and recycled asphalt
US7651294B2 (en) Soil stabilization method
JP2007284974A (en) Soil block
JP2007120184A (en) Slag for low-cost pavement, low-cost pavement body, slag for civil engineering, and civil engineering working body
JP2000176493A (en) Sludge solidifying material and solidifying treatment
US4836856A (en) Stabilizing road base composition and method for preparing same
CN101768950A (en) Improving method of high liquid limit soil in subgrade engineering
JP2935408B2 (en) Inorganic material for greening and soil stabilization, thick layer base seed spraying method or soil stabilization method using it
JPH0813413A (en) Improvement method for poor subgrade soil
JP3649657B2 (en) Soil improvement method
JP3689302B2 (en) Soil solidifying agent, soil solidifying method, and consolidated solidified ground
US20020152933A1 (en) Compositions for treating soils, the process for their preparation and the use thereof
JPH03446B2 (en)
WO2019227513A1 (en) Improved process of acid sulphate soil roadbed filling
US7798743B2 (en) Composition and method of use of soy-based binder material
JP2503771B2 (en) Solidifying material for cohesive soil of volcanic ash
JP2002146709A (en) Water permeable base material utilizing reclaimed aggregate
JP3795780B2 (en) Soil-based pavement improvement material and its construction method
JPS60229984A (en) Method of soil improvement
KR100881149B1 (en) High water content dredging mud solidification stabilizer and it&#39;s improved soil production method
JP4380154B2 (en) Solidification method of mud
CA2584189C (en) Soil stabilization method
JPH10266109A (en) Paving method, and modifier for paving soil or banking
JPH02157301A (en) Stabilization for permeable surface layer for road bed
JPH09296406A (en) Earth-paving agent and earth pavement and dust proofing method