JPH0344643B2 - - Google Patents

Info

Publication number
JPH0344643B2
JPH0344643B2 JP60078125A JP7812585A JPH0344643B2 JP H0344643 B2 JPH0344643 B2 JP H0344643B2 JP 60078125 A JP60078125 A JP 60078125A JP 7812585 A JP7812585 A JP 7812585A JP H0344643 B2 JPH0344643 B2 JP H0344643B2
Authority
JP
Japan
Prior art keywords
pipe
frequency
tube
diameter
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60078125A
Other languages
Japanese (ja)
Other versions
JPS61235712A (en
Inventor
Yoshinori Murakami
Kensaku Imaichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60078125A priority Critical patent/JPS61235712A/en
Publication of JPS61235712A publication Critical patent/JPS61235712A/en
Publication of JPH0344643B2 publication Critical patent/JPH0344643B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Pipeline Systems (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、気体や液体を流通自在とする管の内
径等の測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for measuring the inner diameter of a pipe through which gas or liquid can freely flow.

従来の技術 従来、水道の供給管や排水管、ガスの供給管等
が異物で詰まつたりして流通が悪くなると、詰ま
りそうな個所の配管をとりはずすことにより、詰
まつた部分を探索して補修しているものであつ
た。
Conventional Technology Conventionally, when water supply pipes, drain pipes, gas supply pipes, etc. are clogged with foreign objects and the flow becomes impaired, the pipes at the point where the blockage is likely to be removed are removed to search for the clogged area. It was under repair.

発明が解決しようとする問題点 そのため、詰まつた部分の探索に時間がかかる
とともに無駄な作業が多く、作業能率が悪いもの
であつた。
Problems to be Solved by the Invention As a result, searching for blocked areas takes time and involves a lot of wasted work, resulting in poor work efficiency.

ところで、管の内径等を測定する方法として
は、超音波装置で計測する方法が考えられている
が、装置が複雑化して高価となり、かつ管径を測
定するための周波数領域が狭いものであつた。
By the way, as a method of measuring the inner diameter of a pipe, etc., a method using an ultrasonic device has been considered, but the equipment is complicated and expensive, and the frequency range for measuring the pipe diameter is narrow. Ta.

また、特開昭61−107110号公報には、管の外面
を打撃してその周波数を求め、既知の管との比較
から管の内面付着量を推定すことが提案されてい
る。
Furthermore, Japanese Patent Application Laid-Open No. 107110/1983 proposes that the outer surface of a tube be struck to find its frequency, and the amount of adhesion on the inner surface of the tube can be estimated from comparison with known tubes.

しかし、上記では既知の多数の測定データーを
必要とするとともに、上記したように直接的でな
く、測定データーの比較から推定する方法にすぎ
なかつた。
However, the above method requires a large amount of known measurement data, and is not a direct method as described above, but is only a method of estimating from a comparison of measurement data.

問題点を解決するための手段 本発明は上記のような点に鑑みたもので、気体
または流体を流通する管の外周面にエヤージエツ
トによる高周波加振器で数KHzない数百KHzの範
囲の高周波を発振して管固有の共振周波数f(1)を
計測し、この固有の共振周波数f(1)で管内を流通
する気体または液体中を伝播する音速aを除算す
るd=a/f(1)の関係式から管径dを算出するこ
とを特徴とする管の内径等の測定方法を提供する
にある。
Means for Solving the Problems The present invention has been made in view of the above-mentioned points, and uses a high-frequency exciter using an air jet to generate high-frequency waves in the range of not several KHz to several hundred KHz on the outer peripheral surface of a pipe through which gas or fluid flows. oscillate to measure the resonance frequency f(1) unique to the tube, and divide the speed of sound a propagating in the gas or liquid flowing inside the tube by this unique resonance frequency f(1), d=a/f(1). To provide a method for measuring the inner diameter of a pipe, etc., which is characterized by calculating the pipe diameter d from the relational expression (2).

実施例 以下、本発明を実施例にもとずいて説明する。Example Hereinafter, the present invention will be explained based on examples.

第1図は、本発明の測定原理を示す一例であ
る。内径等を測定しようとする管1の外周面の一
部には、エヤージエツトによる数KHzないし数百
KHz位の広範囲の高周波加振器2を発振装置3で
加振自在に設けるとともに、この高周波加振器2
に対向する管1の外周面に振動検出器4を設け、
共振検出装置5で上記高周波加振による固有の共
振周波数を計測するようにしている。上記振動検
出器4で検出される共振周波数をf(n)、管1を
流通する気体または液体中を伝播する音速をa、
管1の内径をdとすれば、周波数f(n)、音速
a、管1の内径dとの関係は、 f(n)=n×a/d となる。nは1、2、3…の整数である。
FIG. 1 is an example showing the measurement principle of the present invention. On a part of the outer peripheral surface of the tube 1 whose inner diameter etc. are to be measured, a high frequency exciter 2 using an air jet with a wide range of several KHz to several hundred KHz is installed so that it can be freely excited by an oscillation device 3, and this high frequency excitation is Shaker 2
A vibration detector 4 is provided on the outer peripheral surface of the tube 1 facing the
A resonance detection device 5 measures the unique resonance frequency caused by the high-frequency excitation. The resonance frequency detected by the vibration detector 4 is f(n), the speed of sound propagating in the gas or liquid flowing through the tube 1 is a,
If the inner diameter of the tube 1 is d, the relationship between the frequency f(n), the speed of sound a, and the inner diameter d of the tube 1 is f(n)=n×a/d. n is an integer of 1, 2, 3...

ゆえに、管1の内径dは、共振検出装置5で固
有の共振周波数f(1)を求めれば、 d=a/f(1) ……(1) で求められる。
Therefore, the inner diameter d of the tube 1 can be found by using the resonance detection device 5 to find the unique resonance frequency f(1) as follows: d=a/f(1) (1).

したがつて、管内の流体の特性値によつて流体
中を伝播する音速aを決定できれば、管1の内径
dは簡単に算出できるものであり、管内に異物が
付着している場合にも、同様に異物が付着した状
態の管1の有効内径が算出でき、初期状態の管1
の内径と比較すれば、管1の詰まり状態を管1の
外部から計測できることになる。実務上、使用さ
れる管径としてはほぼ数mm〜数百mm位であり、ま
た音速は気体中では数百m/秒、液体中では千
m/秒位なので、測定用の加振周波数としては、
数KHz〜数百KHzで発振することが必要で、エヤ
ージエツトを利用すれば最適なものである。
Therefore, if the speed of sound a propagating in the fluid can be determined from the characteristic values of the fluid inside the pipe, the inner diameter d of the pipe 1 can be easily calculated, and even if there is a foreign object inside the pipe, Similarly, the effective inner diameter of tube 1 with foreign matter attached can be calculated, and the effective inner diameter of tube 1 in the initial state
By comparing the inner diameter of the pipe 1 with the inner diameter of the pipe 1, the clogging state of the pipe 1 can be measured from the outside of the pipe 1. In practice, the diameter of the tube used is approximately several mm to several hundred mm, and the sound velocity is several hundred m/sec in gas and approximately 1,000 m/sec in liquid, so the excitation frequency for measurement is teeth,
It is necessary to oscillate at several KHz to several hundred KHz, and it is optimal to use an air jet.

第2図〜第4図は、本発明を具体化した一実施
例である。固有周波数測定装置6は、第2図のよ
うにコ字状のホルダー7の一端部にエヤージエツ
トの高周波加振器2を脱着可能に装着し、他端部
にねじ機構8で伸縮可能に螺着した支持部9に振
動検出器4を脱着可能に装着して、種々の径の管
1に高周波加振器2、振動検出器4を対向して設
置できるように形成している。高周波加振器2
は、第3図のようにパイプノズルのように形成し
たもので、特に前部の噴射口10を直径がほぼ
1.0〜1.2mmで、長さがほぼ1.8〜2.0mmのオリフイ
ス状に開口し、後部のホース接続口11にエヤー
ホース12を接続してエヤーを流入するようにし
ている。エヤーの圧力を0.4〜2.0Kg/cm2にしてお
くと、第4図に示すように40〜60KHzを中心とし
た数KHz〜150KHz位の広範囲にわたる振動を発
生することができるものである。また、振動検出
器4としては、電磁型変換や圧電気型変換、セラ
ミツク加速度センサー等の振動センサーを利用
し、共振検出装置(図示せず)に検出自在に接続
して共振周波数を検出できるようにしているもの
である。また、固有周波数測定装置6の両側の高
周波加振部と振動検出部とは、第2図のようにV
ブロツクのような鈍角状のV形の当接面としてし
て、常に管1の直径に対応する外周面を的確に挟
着できるようにしている。13は、伸縮自在の支
持部固定用の固定ねじ、14は、共振検出装置接
続用リード線である。
FIGS. 2 to 4 show an embodiment of the present invention. As shown in FIG. 2, the natural frequency measuring device 6 has an air jet high frequency exciter 2 removably attached to one end of a U-shaped holder 7, and is extendably screwed onto the other end with a screw mechanism 8. The vibration detector 4 is removably attached to the supporting part 9, and the high frequency exciter 2 and the vibration detector 4 are formed so as to be installed facing each other in the tube 1 of various diameters. High frequency exciter 2
is formed like a pipe nozzle as shown in Fig. 3, and in particular the front injection port 10 has a diameter of approximately
It has an orifice-like opening with a diameter of 1.0 to 1.2 mm and a length of approximately 1.8 to 2.0 mm, and an air hose 12 is connected to a hose connection port 11 at the rear to allow air to flow in. When the air pressure is set to 0.4 to 2.0 Kg/cm 2 , it is possible to generate vibrations over a wide range of about 40 to 60 KHz and about 150 KHz, as shown in FIG. Further, as the vibration detector 4, a vibration sensor such as an electromagnetic type conversion, a piezoelectric type conversion, or a ceramic acceleration sensor is used, and it can be freely connected to a resonance detection device (not shown) to detect the resonance frequency. This is what we do. In addition, the high frequency excitation section and the vibration detection section on both sides of the natural frequency measuring device 6 are connected to the VV as shown in FIG.
The abutting surfaces are obtuse-angled V-shaped like a block, so that the outer circumferential surface corresponding to the diameter of the tube 1 can be accurately clamped at all times. Reference numeral 13 indicates a fixing screw for fixing the expandable support portion, and 14 indicates a lead wire for connecting the resonance detection device.

作 用 しかして、たとえば水道管等の管1の内部が詰
まつたと思われる個所に上記のように構成した固
有周波数測定装置6を第2図のように管1の外周
部に高周波発振部と振動検出部とを当接して挟着
し、高周波加振器2のホース接続口11にエヤー
ホース12を接続して所定圧のエヤーを流通する
と、第4図のように数KHz〜150KHzの振動を発
振し、振動検出器4、共振検出装置で共振周波数
を検出することができるものである。したがつ
て、管内の流体の特性値から音速aを決定すれ
ば、(1)式から管1の内部の汚物で詰まつた有効内
径dを算出でき、管1の詰まり状況が判断できる
ものである。
Function: For example, in a place where the inside of a pipe 1 such as a water pipe is thought to be clogged, the natural frequency measuring device 6 configured as described above is installed with a high frequency oscillator on the outer periphery of the pipe 1 as shown in Fig. 2. When the air hose 12 is connected to the hose connection port 11 of the high-frequency exciter 2 and air at a predetermined pressure is passed through the vibration detector, vibrations of several KHz to 150 KHz are generated as shown in Fig. 4. It oscillates, and the resonance frequency can be detected by the vibration detector 4 and resonance detection device. Therefore, if the sound velocity a is determined from the characteristic value of the fluid inside the pipe, the effective inner diameter d of the inside of the pipe 1 clogged with dirt can be calculated from equation (1), and the clogging status of the pipe 1 can be determined. be.

このように、高周波加振器としてエヤーを噴出
させるだけで、簡単に数KHz〜百数十KHzの広範
囲の周波数を安定して発振でき、実用されている
数mm〜数百mm径の管の有効内径を簡単にかつ経済
的に測定できるものである。
In this way, just by ejecting air as a high-frequency exciter, it is possible to easily and stably oscillate a wide range of frequencies from several KHz to over 100 KHz. The effective inner diameter can be measured easily and economically.

上記のようにして管軸にそつて複数個数にわた
つて測定していくと、管軸にそつた詰まり状態に
ついても検出することができ、状況判断を的確に
行なえて対応できるものである。
By measuring a plurality of tubes along the tube axis as described above, clogging along the tube axis can also be detected, and the situation can be accurately determined and dealt with accordingly.

なお、エヤージエツトの噴出口の口径として
は、上記のものが好ましいが、口径を変更するだ
けで、他の広周波数領域に簡単に変えることがで
き、適宜な管径に対応して適用するようにもでき
るものである。
The diameter of the air jet nozzle is preferably the one listed above, but it can be easily changed to another wide frequency range by simply changing the diameter. It is also possible.

他の実施例 第5図は本発明の他の実施例で、上記のような
エヤージエツトの高周波加振器2、振動検出器4
を同心円状に配設して固有周波数測定装置6を形
成したものである。
Other Embodiments FIG. 5 shows another embodiment of the present invention, in which a high frequency exciter 2 and a vibration detector 4 of the air jet as described above are used.
are arranged concentrically to form the natural frequency measuring device 6.

本実施例では、ホルダーで管に挟着することな
く管の外周面に当接するだけで管径を測定でき、
大径のものでも容易に測定できるとともに、地中
に埋設したガス管であつても容易に測定できるも
のである。
In this example, the pipe diameter can be measured simply by touching the outer circumferential surface of the pipe without clamping the pipe with a holder.
Not only can large-diameter pipes be easily measured, but also gas pipes buried underground can be easily measured.

上記にあつては、内壁に付着の管の詰まり状況
の測定について説明したが、管の腐食状況の測定
についても同様に行なうことができるものであ
る。
In the above case, the measurement of the state of clogging of the pipe adhering to the inner wall has been described, but the measurement of the state of corrosion of the pipe can also be carried out in the same way.

なお、(1)式の管径の算出については、いちいち
計算することなく、周波数分析装置、伝播速度算
出データ、データ入力装置、データ出力装置等を
設けて、所定のマイクロプロセツト、インターフ
エイスを媒介して即座に出力することも適宜に行
なうこともできるものである。特に、安全性が要
求される原子力プラント等の配管の管理に利用す
れば、保守の自動化がはかれて好ましいものであ
る。
In addition, regarding calculation of the pipe diameter using equation (1), instead of performing calculations one by one, it is necessary to install a frequency analyzer, propagation velocity calculation data, data input device, data output device, etc., and use the specified microprocessor and interface. It can be outputted immediately via an intermediary, or it can be outputted as appropriate. In particular, it is preferable to use it for managing piping in a nuclear power plant or the like where safety is required, since maintenance can be automated.

以上の実施例では、円形状の管について説明し
たが矩形状のダクト管やチヤンネル管についても
同様に適用できるものである。
In the above embodiments, circular pipes have been described, but the present invention can also be applied to rectangular duct pipes and channel pipes.

発明の効果 以上のように本発明にあつては、エヤージエツ
トで簡単かつ安定した数KHzないし数百KHzの広
領域の高周波を発生することができて、管の内径
を容易に算出できる数KHzないし数百KHzの範囲
の管固有の共振周波数f(1)を計測できる。そし
て、測定しようとする管内を流通する気体または
液体中の音速aを上記の共振周波数f(1)で除算す
ることで、所要の管径d=a/f(1)として、直接
的に、簡単に算出することができる。そのため、
管の詰まり状況や腐食状況等を外部から計測でき
て、保守、点検等の作業を的確にかつ迅速に行な
うことができるものである。
Effects of the Invention As described above, according to the present invention, it is possible to easily and stably generate high frequencies in a wide range of several KHz to several hundred KHz using an air jet, and the inner diameter of the pipe can be easily calculated from several KHz to several hundred KHz. It is possible to measure the resonant frequency f(1) unique to the tube in the range of several hundred KHz. Then, by dividing the sound velocity a in the gas or liquid flowing in the pipe to be measured by the above resonance frequency f(1), the required pipe diameter d=a/f(1) can be directly obtained. It can be easily calculated. Therefore,
It is possible to measure the state of clogging and corrosion of pipes from the outside, and to perform maintenance, inspection, etc. accurately and quickly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定原理を示す説明用断面
図、第2図〜第4図は同上の一実施例で、固有周
波数測定装置の一部省略した側断面図、高周波加
振部の拡大側断面図および高周波加振器の周波数
特性曲線図、第5図は同上の他の実施例の一部省
略した側断面図である。 1…管、2…高周波加振器、4…振動検出器、
6…固有周波数測定装置。
Fig. 1 is an explanatory sectional view showing the measurement principle of the present invention, and Figs. 2 to 4 are an embodiment of the same as the above, a partially omitted side sectional view of the natural frequency measuring device, and an enlarged view of the high frequency excitation part. A side sectional view and a frequency characteristic curve diagram of the high frequency exciter. FIG. 5 is a partially omitted side sectional view of another embodiment of the same. 1... tube, 2... high frequency exciter, 4... vibration detector,
6...Natural frequency measuring device.

Claims (1)

【特許請求の範囲】 1 気体または流体を流通する管の外周面にエヤ
ージエツトによる高周波加振器で数KHzない数百
KHzの範囲の高周波を発振して管固有の共振周波
数f(1)を計測し、 この固有の共振周波数f(1)で管内を流通する気
体または液体中を伝播する音速aを除算するd=
a/f(1)の関係式から管径dを算出することを特
徴とする管の内径等の測定方法。
[Claims] 1. A high frequency exciter using an air jet is used to oscillate a high frequency in the range of several hundred KHz on the outer peripheral surface of a pipe through which gas or fluid flows, and the resonance frequency f(1) unique to the pipe is measured. Then, the speed of sound a propagating in the gas or liquid flowing in the pipe is divided by this unique resonance frequency f(1) = d=
A method for measuring the inner diameter of a pipe, etc., characterized in that the pipe diameter d is calculated from the relational expression of a/f(1).
JP60078125A 1985-04-11 1985-04-11 Measuring method for internal diameter or the like of tube Granted JPS61235712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60078125A JPS61235712A (en) 1985-04-11 1985-04-11 Measuring method for internal diameter or the like of tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60078125A JPS61235712A (en) 1985-04-11 1985-04-11 Measuring method for internal diameter or the like of tube

Publications (2)

Publication Number Publication Date
JPS61235712A JPS61235712A (en) 1986-10-21
JPH0344643B2 true JPH0344643B2 (en) 1991-07-08

Family

ID=13653158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60078125A Granted JPS61235712A (en) 1985-04-11 1985-04-11 Measuring method for internal diameter or the like of tube

Country Status (1)

Country Link
JP (1) JPS61235712A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2281393B (en) * 1993-06-15 1996-11-06 Univ East London Gas acoustic probe
US7095482B2 (en) 2001-03-27 2006-08-22 Nikon Corporation Multiple system vibration isolator
JP4581981B2 (en) * 2005-11-29 2010-11-17 三菱自動車工業株式会社 Quality inspection equipment
EP2120317A1 (en) * 2008-05-14 2009-11-18 ABB Research LTD A method and a device for determining the mechanical resonant frequency of a vibration mode for a winding package of a transformer
EP2454568B1 (en) * 2009-07-16 2013-09-11 Koninklijke Philips Electronics N.V. A system and method for measuring a resonance frequency of a tube
JP6207428B2 (en) * 2014-03-04 2017-10-04 大阪瓦斯株式会社 Ultrasonic sound velocity measuring device and ultrasonic sound velocity measuring method
JP6850185B2 (en) * 2017-04-14 2021-03-31 日立造船株式会社 Void determination method, void determination system and elastic wave detection method
JP2020165849A (en) * 2019-03-29 2020-10-08 東京瓦斯株式会社 Pipeline diagnostic system and pipeline diagnostic method
RU2757473C1 (en) * 2021-02-19 2021-10-18 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Device for measuring the diameter of the wire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107110A (en) * 1984-10-30 1986-05-26 Mitsubishi Heavy Ind Ltd Method for estimating adhesion amount on inner surface of pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107110A (en) * 1984-10-30 1986-05-26 Mitsubishi Heavy Ind Ltd Method for estimating adhesion amount on inner surface of pipe

Also Published As

Publication number Publication date
JPS61235712A (en) 1986-10-21

Similar Documents

Publication Publication Date Title
US20140130606A1 (en) System and method for ultrasonic metering using an orifice meter fitting
JP3045677B2 (en) Ultrasonic flow meter
JPH04236328A (en) Mass flowmeter
JPH0344643B2 (en)
JP6582855B2 (en) Flow rate measuring device and flow rate measuring method
EP3710795B1 (en) Device and method for detecting deposition layers in a conduit conducting a liquid or a soft medium and/or for level detection
US5900534A (en) Densitometer
JPH11201812A (en) Method for measuring sound velocity in fluid piping
US6628568B1 (en) System and method for verification of acoustic horn performance
JP4827007B2 (en) Ultrasonic flow meter
JP7233647B2 (en) Measurement position determination method and ultrasonic flowmeter
JP2010286330A (en) Method for inspecting thickness reduction of pipe, and inspection device used in the same
JP2004205475A (en) Ultrasonic flowmeter
JP2632041B2 (en) Current meter
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
RU206991U1 (en) VIBRATION TRANSMITTER
RU2121136C1 (en) Vortex flowmeter
RU201254U1 (en) VIBRATION MEASURING CONVERTER
SU974248A1 (en) Device for determination continuity of liquid flow
SU905769A1 (en) Device for determination liquid flow continuity
JPS61107110A (en) Method for estimating adhesion amount on inner surface of pipe
JPH04369431A (en) Flow velocity and flow rate measuring method
JP2005241628A (en) Doppler ultrasonic flow velocity distribution meter
KR100189166B1 (en) New liquid quantity measurement apparatus and measurement method
JP2853508B2 (en) Gas flow meter