JPH0344619A - Manufacture of active matrix type liquid crystal display element - Google Patents

Manufacture of active matrix type liquid crystal display element

Info

Publication number
JPH0344619A
JPH0344619A JP18111589A JP18111589A JPH0344619A JP H0344619 A JPH0344619 A JP H0344619A JP 18111589 A JP18111589 A JP 18111589A JP 18111589 A JP18111589 A JP 18111589A JP H0344619 A JPH0344619 A JP H0344619A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
temperature
crystal display
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18111589A
Other languages
Japanese (ja)
Inventor
Shoichi Ishihara
將市 石原
Fumiko Yokoya
横谷 文子
Hirobumi Wakemoto
博文 分元
Yoshihiro Matsuo
嘉浩 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18111589A priority Critical patent/JPH0344619A/en
Publication of JPH0344619A publication Critical patent/JPH0344619A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To suppress the temperature dependency of a driving voltage which is applied to a liquid crystal layer by equalizing the temperature coefficient of the effective driving voltage to the temperature coefficient of a voltage holding rate. CONSTITUTION:The variation rate [V50(60 deg.C)/V50(20 deg.C)] of the driving voltage V50 between 20 and 60 deg.C required for the standardized transmitted light intensity in a liquid crystal material orienting film to reach 50% is nearly constant with out depending upon the setting temperature of the orienting film. The tempera ture variation rate of the voltage holding rate, on the other hand, depends greatly upon the setting temperature of the orienting film. The orienting film is so formed that the temperature variation rate of the voltage holding rate is nearly equal to that of the V50, and the active matrix type liquid crystal display element which uses an a-SiTFT as an active element is manufactured. The liquid crystal display element which is thus obtained does not very in voltage-transmissivity characteristic even if the temperature of the element varies, excellent picture quality and contrast are always obtained, therefore its practical value is high.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気光学的な液晶デイスプレィに用いられる液
晶表示素子、更に詳しくはアクティブマトリクス型液晶
表示素子の製造方法に関するものであも 従来の技術 液晶表示素子は薄徴 軽量、低消費電力を特徴とするも
ので、年々その需要は拡大してきていもそして、それら
の駆動方法ζ友l)スタティック駆詠2)単純マトリク
ス駆fA  3)アクティブマトリクス駆動の3つのタ
イプに分けられも なかでもアクティブマトリクス駆動
は 各画素にスイッチング素子を設けたものであり、優
れた画質を特徴としていも 一般に 液晶表示素子の設計において(よ デイスプレ
ィの要求特性をもとに使用する液晶材料、パネルギャッ
プ、配向膜材料、ラビング方法等が決められる力交 通
常(よ 室温(20℃あるいは25℃付近)°において
コントラストが最大となるようにパネル構成および駆動
条件が決定されも 即板 通常は室温におけるパネルの
電圧−透過率曲線からパネルの光透過率と駆動電圧との
関係を失敗 それをもとに階調表示を行っている。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a liquid crystal display element used in an electro-optical liquid crystal display, and more particularly to a method for manufacturing an active matrix type liquid crystal display element. The elements are characterized by light weight and low power consumption, and although the demand for them is increasing year by year, there are three types of drive methods: 1) Static drive, 2) Simple matrix drive, and 3) Active matrix drive. Among them, active matrix drive is one in which each pixel is provided with a switching element, and although it is characterized by excellent image quality, it is generally used in the design of liquid crystal display elements (based on the required characteristics of the display). The liquid crystal material, panel gap, alignment film material, rubbing method, etc. are determined. Normally, the panel configuration and driving conditions are determined so that the contrast is maximized at room temperature (around 20°C or 25°C). Normally, the relationship between the light transmittance of the panel and the drive voltage is determined from the voltage-transmittance curve of the panel at room temperature, and gradation display is performed based on this.

発明が解決しようとする課題 しかしながム 液晶表示素子の使用形態からすれば 様
々な温度環境で使用する場合も多く、パネルの温度は必
ずしも一定でな(t また バックライトを使用するこ
とによってもパネルの温度は5℃〜15℃上昇する。そ
のたべ 液晶表示素子の電圧−透過率特性が温度変化に
つれで変化してしまし\ 充分なコントラストが取れな
くなり、表示品質を著しく損ねるという問題が起こもこ
れに対して、液晶材料の諸物性の温度依存性を少なくす
る試みもなされている力交 実用上充分なものはまだ得
られていな1.Xo  そのたム 上記のようなパネル
の温度変化による駆動電圧の変動(友その都度対向電極
の電位を変化させ充分なコントラストが得られるように
調整しているのが現状である。
Problems to be Solved by the Invention However, considering the way in which liquid crystal display elements are used, they are often used in various temperature environments, and the temperature of the panel is not necessarily constant (t Also, by using a backlight, The temperature of the panel increases by 5 to 15 degrees Celsius.The voltage-transmittance characteristics of the liquid crystal display element change as the temperature changes. In response to this, attempts have been made to reduce the temperature dependence of various physical properties of liquid crystal materials. At present, the potential of the opposing electrode is changed each time the drive voltage is varied due to the change in the driving voltage, so that sufficient contrast can be obtained.

本発明(よ このような従来の液晶表示素子の課題を解
決することを目的とすも 課題を解決するための手段 本発明(よ 液晶層に印加される実効駆動電圧の温度係
数と、電圧保持率の温度係数とが等しくなるよう設計す
ることを特徴とするアクティブマトリクス型液晶表示素
子の製造方法であも作用 アクティブマトリクス型液晶表示素子において、駆動電
圧を決定する要因として(友 大きく分けて次の3つが
あげられも すなわち1)、素子の誘電損失による要ハ
2)、液晶材料の弾性エネルギーによる要ハ3)、配向
膜のアンカリングエネルギーによる要因であも そして
、パネル温度の上昇に伴(\ 1)は駆動電圧を高くす
るように働き、2)と3)は駆動電圧を低くする方向に
働く。従って、1)の効果の温度依存性と2)と3〉の
複合された効果の温度依存性とが丁度打ち消し合うよう
にパネルを設計すれば 即ム 上記のように構成するこ
とに依って、駆動電圧の温度依存性のないパネルを得る
ことが出来も 本発明ζよ パネル温度が変化してもその電圧−透過率
特性が変化しなし\ 即水 コントラストの温度依存性
の極めて小さいアクティブマトリクス型液晶表示素子を
提供するものであり、その実用的価値は極めて犬きl、
% 実施例 具体的な実施例を説明する前に 本発明の詳細な説明す
も −IIにアクティブマトリクス型液晶表示素子の場合、
スイッチング素子がONになった時のへ信号電圧はスイ
ッチング素子を通じて画素電極に印加される。この時の
電圧波形を第1図のaに実線で示す。しかしなか板 実
際には液晶層の上下に設けられた画素電極間の電位(友
 1フイールドの時間内に第1図のbのごとく徐々に低
下していく。この電圧損失の程度は使用する液晶材料と
配向膜材料との組合せにより大きく変化すも今ここにお
いて、液晶層に印加される実効電圧の平均値と、信号パ
ルス電圧の大きさ(第1図中のV、)との比でもって電
圧保持率R,を定義すると、 1−Rvが誘電損失の大
きさを表わしていもRvは通常20℃において0. 8
<Rv<1. 0となる。そして、パネル温度の上昇と
ともに徐々に低下していく。いま、Rvが印加電圧の大
きさに依存せず、第2図に示される温度依存性を有して
いる場合、 20℃の温度で第3図のaで示される電圧
−透過率特性を持つ液晶パネル(よ 誘電損失の温度依
存性のため40℃と60℃の温度での電圧−透過率曲線
はそれぞれ第3図のb、同図のCのようになん 一太2)と3)の効果は素子の静電容量−電圧特性を測
定することにより、それぞれフレブリックスしきい値電
圧 結合エネルギーとして定量化することが可能であも
 実用的にζ友 それぞれの効果が何れもパネルの温度
上昇とともに素子の駆動電圧を高くする方向に働くたべ
 これら2つの効果を複合した形で定量化しても良(1
具体的にはその表面が配向膜で覆われた2枚の電極基板
で液晶層を挟持しただけの評価セルに矩型波(例えば3
0H9矩型波)を印加しながら電圧−透過率特性を測定
し そのvllでもって2)と3)の効果を定量化する
(ここにおいて、vnは 液晶表示素子の電圧印加によ
る最大透過光強度と最小透過光強度を、それぞれlとO
に規格化した時α 任意の規格化透過光強度n(%)を
得るのに必要な駆動電圧の大きさを意味しており、0<
n<100である)。
The present invention aims to solve the problems of conventional liquid crystal display elements. In an active matrix liquid crystal display element, the factors that determine the driving voltage are broadly divided into the following: There are three factors that can be cited: 1), dielectric loss of the element (c), 2) elastic energy of the liquid crystal material, and anchoring energy of the alignment film. (\1) works to increase the driving voltage, and 2) and 3) work to lower the driving voltage. Therefore, if the panel is designed so that the temperature dependence of the effect 1) exactly cancels out the temperature dependence of the combined effect 2) and 3>, then by configuring it as above, The present invention also makes it possible to obtain a panel with no temperature dependence of driving voltage.The voltage-transmittance characteristics do not change even if the panel temperature changes. Active matrix type with extremely small temperature dependence of contrast. It provides liquid crystal display elements, and its practical value is extremely limited.
% EXAMPLES Before explaining specific examples, in the case of an active matrix type liquid crystal display element, a detailed explanation of the present invention is given below.
When the switching element is turned on, a signal voltage is applied to the pixel electrode through the switching element. The voltage waveform at this time is shown by the solid line in a of FIG. However, in reality, the potential between the pixel electrodes provided above and below the liquid crystal layer gradually decreases within the time of one field, as shown in b in Figure 1. Although it varies greatly depending on the combination of materials and alignment film materials, the ratio between the average value of the effective voltage applied to the liquid crystal layer and the magnitude of the signal pulse voltage (V in Figure 1) Defining the voltage holding ratio R, even though 1-Rv represents the magnitude of dielectric loss, Rv is normally 0.8 at 20°C.
<Rv<1. It becomes 0. Then, as the panel temperature increases, it gradually decreases. Now, if Rv does not depend on the magnitude of the applied voltage and has the temperature dependence shown in Figure 2, then at a temperature of 20°C it will have the voltage-transmittance characteristic shown by a in Figure 3. Due to the temperature dependence of dielectric loss on liquid crystal panels, the voltage-transmittance curves at temperatures of 40°C and 60°C are as shown in Figure 3b and Figure 3C, respectively. Although each effect can be quantified as the flexible threshold voltage and binding energy by measuring the capacitance-voltage characteristics of the element, in practical terms, each effect increases the temperature of the panel. These two effects can also be quantified in a combined form (1
Specifically, a rectangular wave (for example, 3
Measure the voltage-transmittance characteristics while applying a 0H9 rectangular wave), and use the vll to quantify the effects of 2) and 3) (where vn is the maximum transmitted light intensity due to voltage application of the liquid crystal display element). Let the minimum transmitted light intensity be l and O, respectively.
When normalized to α, it means the magnitude of the driving voltage necessary to obtain an arbitrary normalized transmitted light intensity n (%), and 0<
n<100).

この値Vnが液晶材料の実効駆動電圧であり、アクティ
ブマトリクス型液晶表示素子においてスイッチング素子
が常時ON状態で矩型波を印加して求められるVLlに
一致すも 第4図はこのような電圧印加方法で測定した
電圧−透過率特性の温度依存性を表わしていも 同図よ
りパネルの温度上昇により駆動電圧が低電圧側にシフト
していくことが分かも 実際のアクティブマトリクス型液晶表示素子では第3図
に示される1)の効果と第4図に示される2)と3)の
効果とが組合わさって表れてくる。誘電損失の温度依存
性に基づく駆動電圧の変化と、液晶材料の弾性エネルギ
ーや配向膜のアンカリングエネルギーの温度依存性に基
づく駆動電圧の変化とは符号(節板 増減の方向)が反
対であるた敗Rvの温度変化率とVLlの温度変化率と
を等しくしてやることにより、電圧−透過率特性の温度
による変化が極めて少ないアクティブマトリクス型液晶
表示素子を提供することが可能となも以下の実施例にお
いて電圧保持率Rvと実効駆動電圧v、it  実験の
便宜上スイッチング素子を有しない液晶セルで測定しt
ラ  電圧保持率Rvi&  液晶セルに時間t (秒
)の時の信号電圧V、(t)が下式で表わされるパルス
を印加して求めた(以下、この駆動を疑似TPT駆動と
略称する)。
This value Vn is the effective driving voltage of the liquid crystal material, and corresponds to VLl, which is obtained by applying a rectangular wave with the switching element always on in an active matrix type liquid crystal display element. Figure 4 shows such a voltage application. Although this figure shows the temperature dependence of the voltage-transmittance characteristics measured by the method, it can be seen from the figure that the driving voltage shifts to the lower voltage side as the panel temperature increases. The effect 1) shown in FIG. 3 and the effects 2) and 3) shown in FIG. 4 appear in combination. The change in drive voltage based on the temperature dependence of dielectric loss is opposite in sign (direction of increase/decrease in node plate) to the change in drive voltage based on the temperature dependence of the elastic energy of the liquid crystal material or the anchoring energy of the alignment film. By making the temperature change rate of Rv equal to the temperature change rate of VLl, it is possible to provide an active matrix liquid crystal display element whose voltage-transmittance characteristics change extremely little due to temperature. In the example, voltage holding ratio Rv and effective driving voltage v, it are measured using a liquid crystal cell without a switching element for convenience of experiment.
Voltage holding ratio Rvi & was determined by applying a pulse whose signal voltage V, (t) at time t (seconds) is expressed by the following formula to the liquid crystal cell (hereinafter, this drive will be abbreviated as pseudo-TPT drive).

ここにおいて、mは正の整数である。まな セルの電圧
−透過率特性は液晶セルに30H2、矩型波を印加して
行なった 実施例1 表面にITO電極を有するガラス基板上に 乾燥後膜厚
が80OAとなるよう配向#RN−707(日産化学製
ポリイミド塗料)を塗布り、  150t、 170t
、  200t、  250℃の各温度で硬化させた 
次に ラビング処理後、 5.5μm径のガラスピーズ
を介してそれぞれの基板を貼り合わせTN型液晶表示素
子A、  B、  C,Dを作成し7.  その後、そ
れぞれの液晶表示素子に減圧注入によりチッソ石油化学
製液晶組成物L I X0N−9150CBを封入し 
注入口をエポ、キシ樹脂により封止し?、  その後、
ポジ表示モードとなるよう偏光板を貼付した後、上下電
極間に30Hよ、矩形波を印加し20t、  60℃の
各温度での電圧−透過率特性を測定した。また疑似TP
T駆動により20t?l、  60℃での電圧保持率R
vも測定した測定結果およびそれらの温度変化率を表1
および表2に示す。V2Oは規格化透過光強度が50%
となるに要する駆動電圧の大きさであも また温度変化
率は何れの場合も60℃の値と20℃の値との比でもっ
て定義した 表2 表1において、 20℃から60℃の温度域におけ6V
50の変化率(V2O(60℃)/V50(20℃))
(ヨ  配向膜の硬化温度に依らずほぼ一定であり、 
0.83の値を示す。一方 電圧保持率の温度変化率は
配向膜の硬化温度に大きく依存L0.52から0.95
の値を取も ここにおいて、電圧保持率の温度変化率が
V2Oの温度変化率とほぼ同程度の値をとる液晶表示素
子は液晶表示素子Bである。次に 素子Bと同一の液晶
材料と配向膜の組合せを用(\ アクティブ素子として
a−8iTFTを用いたアクティブマトリクス型液晶表
示素子(3インチ、 240x372ドット、補助容量
なし)を作成した スペーサとしては5.5μmガラス
ピーズを用1.X、減圧法によりL lX0N−915
0CBを封入しtも 常法に従(\ ポジ表示モードで
電圧−透過率特性の温度依存性を求めたとこム 表3の
結果が得られたこの時の信号電圧波形印加のタイミング
(よ 疑似TPT駆動と同一の条件で測定を行なり九 
表3より明らかなように 本発明液晶表示素子は素子の
温度が変化しても電圧−透過率特性が変化せ哄常に良好
な画質、コントラストを得ることができ、その実用的価
値は非常に犬き鶏 表3 実施例2 表面にIT○電極を有するガラス基板上に 乾燥後膜厚
が800Aとなるよう配向膜RN−725(8産化学製
ポリイミド塗料)を塗布シ170℃の温度で2時間硬化
させ?Q、  次に ラビング処理機5.5μm径のガ
ラスピーズを介して基板を貼り合わせTN型液晶表示素
子E、  F、  G、Hを作成した その後、それぞ
れの液晶表示素子にトランス−4−ペンチル(4−シア
ノフェニル)シクロヘキサン(PCl3と略称する)X
重量%とメルク社製液晶ZLI−3376−000、(
100−X)重量%との混合液晶を減圧注入し注入口を
エポキシ樹脂により封止し九 各表示素子中のPCl3
の混合割合(X重量%)を表4に示す。
Here, m is a positive integer. The voltage-transmittance characteristics of the cell were determined by applying a 30H2 rectangular wave to a liquid crystal cell.Example 1: #RN-707 was oriented on a glass substrate with an ITO electrode on the surface so that the film thickness after drying was 80OA. (Nissan Chemical polyimide paint) applied, 150t, 170t
, 200t, and 250℃.
Next, after the rubbing treatment, the respective substrates were bonded together via glass beads with a diameter of 5.5 μm to create TN type liquid crystal display devices A, B, C, and D.7. Thereafter, Chisso Petrochemical's liquid crystal composition LI
Is the injection port sealed with epoxy resin? , after that,
After attaching a polarizing plate to achieve a positive display mode, a rectangular wave was applied for 30 hours between the upper and lower electrodes, and the voltage-transmittance characteristics were measured at 20 tons and 60 degrees Celsius. Also pseudo TP
20t by T drive? l, Voltage holding rate R at 60℃
Table 1 shows the results of measuring v and their temperature change rates.
and shown in Table 2. V2O has a normalized transmitted light intensity of 50%
In Table 1, the temperature change rate is defined as the ratio of the value at 60℃ and the value at 20℃. 6V in the area
Rate of change of 50 (V2O (60℃)/V50 (20℃))
(Y) It is almost constant regardless of the curing temperature of the alignment film,
It shows a value of 0.83. On the other hand, the temperature change rate of the voltage holding ratio largely depends on the curing temperature of the alignment film L0.52 to 0.95
Here, liquid crystal display element B has a temperature change rate of voltage holding ratio that is approximately the same as the temperature change rate of V2O. Next, we created an active matrix liquid crystal display element (3 inches, 240x372 dots, no auxiliary capacitance) using a-8i TFT as an active element using the same combination of liquid crystal material and alignment film as for element B. As a spacer: 1.X using 5.5 μm glass beads, L lX0N-915 by vacuum method
The temperature dependence of the voltage-transmittance characteristics was determined in the positive display mode using the usual method. Measurements were made under the same conditions as TPT drive.
As is clear from Table 3, the voltage-transmittance characteristics of the liquid crystal display element of the present invention change even when the temperature of the element changes, and it is possible to always obtain good image quality and contrast, and its practical value is extremely high. Table 3 Example 2 An alignment film RN-725 (polyimide paint made by Sansan Kagaku Co., Ltd.) was coated on a glass substrate having an IT○ electrode on its surface so that the film thickness after drying was 800A.The film was coated at a temperature of 170°C for 2 hours. Let it harden? Q.Next, the substrates were bonded together through glass beads with a diameter of 5.5 μm using a rubbing machine to create TN type liquid crystal display devices E, F, G, and H. After that, each liquid crystal display device was coated with trans-4-pentyl ( 4-cyanophenyl)cyclohexane (abbreviated as PCl3)
Weight% and Merck liquid crystal ZLI-3376-000, (
PCl3 in each display element was injected under reduced pressure and the injection port was sealed with epoxy resin.
Table 4 shows the mixing ratio (X weight %).

その眞 ポジ表示モードとなるよう偏光板を貼 付した後、上下電極間に30Hz、矩形波を印加し2Q
t、  60℃の各温度での電圧−透過率特性を測定し
た また 疑似TPT駆動により20t。
After attaching a polarizing plate to achieve the true positive display mode, a 30Hz square wave is applied between the upper and lower electrodes for 2Q.
The voltage-transmittance characteristics were measured at each temperature of 60°C and 20t by pseudo-TPT driving.

60℃での電圧保持率も測定しt4 測定結果およびそれらの温度変化率を表5および表6に
示す。
The voltage holding ratio at 60° C. was also measured, and the t4 measurement results and their temperature change rates are shown in Tables 5 and 6.

表5 表6 表5において、 20℃から60℃の温度域におけるV
2Oの温度変化率i&PcH5の含有割合に依存して0
.88から0.86へと変化する。
Table 5 Table 6 In Table 5, V in the temperature range from 20°C to 60°C
The temperature change rate of 2O depends on the content ratio of i & PcH5.
.. It changes from 88 to 0.86.

−X  電圧保持率の温度変化率はPCl3の含有割合
に大きく依存り、、0.92から0.73の値を取も 
ここにおいて、電圧保持特性の変化率がV2Oの温度変
化率とほぼ同程度の値をとる液晶表示素子は液晶表示素
子Fであも 次に 素子Fと同一の液晶材料と配向膜の
組合せを用へ アクティ、プ素子としてa−8iTFT
を用いたアクティブマトリクス型液晶表示素子(3イン
チ、 240x372ドツト、補助容量なし)を作成し
九スペーサとしては5.5μmガラスピーズを用(\減
圧法によりPCl3、5重量%とZLI−3376−0
00,95重量%との混合液晶を封入しf、  常法に
従も\ ポジ表示モードで電圧−透過率特性の温度依存
性を求めたとこ水 表7の結果が得られ1.  この時
の信号電圧波形印加のタイミング1上 疑似TPT駆動
と同一の条件で測定を行なっtラ  表7より明らかな
ように 本発明液晶表示素子は素子の温度が変化しても
電圧−透過率特性が変化せす 常に良好な画質、コント
ラストを得ることができ、その実用的価値は非常に大き
l、%表7 実施例3 実施例1で作成した液晶表示素子Aの電圧−透過率特性
及び電圧保持率の温度依存性を、・素子Aと並列に各種
容量のポリプロピレンコンデンサを入れた状態で測定し
た 表8に測定系番号と使用したポリプロピレンコンデ
ンサの容量とを示す。
-X The rate of temperature change in voltage holding ratio depends largely on the content of PCl3, and can take values from 0.92 to 0.73.
Here, the liquid crystal display element whose rate of change in voltage holding characteristics is approximately the same as the rate of temperature change of V2O is liquid crystal display element F. A-8iTFT as an active element
An active matrix type liquid crystal display element (3 inches, 240 x 372 dots, no auxiliary capacitance) was fabricated using 5.5 μm glass beads as spacers.
The temperature dependence of the voltage-transmittance characteristics was obtained in the positive display mode according to the conventional method, and the results shown in Table 7 were obtained. At this time, the measurement was carried out under the same conditions as the pseudo-TPT drive.As is clear from Table 7, the liquid crystal display element of the present invention has voltage-transmittance characteristics even when the temperature of the element changes. It is possible to always obtain good image quality and contrast, and its practical value is very large.Table 7 Example 3 Voltage-transmittance characteristics and voltage of liquid crystal display element A prepared in Example 1 The temperature dependence of the retention rate was measured with polypropylene capacitors of various capacities placed in parallel with element A. Table 8 shows the measurement system numbers and the capacities of the polypropylene capacitors used.

表8 それぞれの測定系において、液晶表示素子Aの上下電極
間に30Hz、矩形波を印加し20t。
Table 8 In each measurement system, a 30Hz rectangular wave was applied between the upper and lower electrodes of liquid crystal display element A for 20t.

60℃の各温度での電圧−透過率特性を測定しf。Voltage-transmittance characteristics were measured at each temperature of 60°C.

まね 併せて20t、  60℃での電圧保持率も疑似
TPT駆動により測定した 測定結果を表9および表10に示す。
Table 9 and Table 10 show the measurement results of the voltage holding rate at 20 t and 60° C. also measured by pseudo TPT driving.

表10 表9において、 0℃から 0℃の温度域にお けるV2Oの変化率(よ プロピレンコンデンサ容量の
大きさに依らずほぼ一定であり、 0.83の値を示す
。−六 電圧保持特性の変化率はプロピレンコンデンサ
容量の大きさに大きく依存し0、59から0.90の値
を取る。ここにおいて、電圧保持特性の変化率がV2O
の温度変化率とほぼ同程度の値をとる液晶表示素子は測
定系番号2である。次に 素子Aと同一の液晶材料と配
向膜の組合せを用ち\ アクティブ素子としてa−3i
TFTを用いたアクティブマトリクス型液晶表示素子(
3インチ、 240X372ドツト、補助容量あり)を
作成した 補助容量の大きさは 測定系番号2の測定に
おける素子Aの静電容量とコンデンサー容量の比力曳 
本発明のアクティブマトリクス液晶表示素子においても
成り立つように調節しtも  スペーサとしては5.5
μmガラスピーズを用uX、減圧法によりL I X0
N−9150CBを封入し九 常法に従t、%  ポジ
表示モードで電圧−透過率特性の温度依存性を求めたと
こム 表11の結果が得られtも  この時の信号電圧
波形印加のタイミング(よ 疑似TPT駆動と同一の条
件で測定を行なっ九 表11より明らかなように 本発明液晶表示素子は素子
の温度が変化しても電圧−透過率特性が変化せず、常に
良好な画質、コントラストを得ることができ、その実用
的価値は非常に大きい。
Table 10 In Table 9, the rate of change in V2O in the temperature range from 0°C to 0°C is almost constant regardless of the size of the propylene capacitor, and shows a value of 0.83.-6 Changes in voltage holding characteristics The rate depends largely on the size of the propylene capacitor capacitance and takes a value from 0.59 to 0.90.Here, the rate of change in the voltage holding characteristic is V2O
Measurement system number 2 is a liquid crystal display element that takes a value approximately equal to the temperature change rate of . Next, using the same combination of liquid crystal material and alignment film as element A, a-3i was used as an active element.
Active matrix liquid crystal display element using TFT (
3 inches, 240 x 372 dots, with auxiliary capacitor) The size of the auxiliary capacitor is the specific force between the capacitance of element A and the capacitor capacitance in the measurement of measurement system number 2.
The spacer t is adjusted to be 5.5 so that it also holds true in the active matrix liquid crystal display element of the present invention.
uX using μm glass beads, L I X0 by vacuum method
The temperature dependence of the voltage-transmittance characteristics was obtained in t and % positive display modes according to the usual method with N-9150CB sealed. The results shown in Table 11 were obtained and the timing of applying the signal voltage waveform at this time (The measurements were carried out under the same conditions as the pseudo-TPT drive, and as is clear from Table 11, the liquid crystal display element of the present invention does not change the voltage-transmittance characteristics even if the temperature of the element changes, and always has good image quality. Contrast can be obtained and its practical value is very large.

表11 アクティブマトリクス型液晶表示素子のなかには誘電損
失による電圧ロスを抑えるた吹 本実施例のごとく液晶
層と並列に補助容量を付加する方法も取られている力丈
 この場合k 本発明のアクティブマトリクス型液晶表
示素子の製造方法が有効なことは明かであん 本実施例
において(よ 電圧保持率の温度依存性が30Hz、矩
形波印加時のV2Oの温度依存性とほぼ同じとなるよう
液晶材料、配向膜材礼 補助容量などの最適化をおこな
った力文 液晶表示素子の使用用途によっては電圧保持
率の温度依存性が30Hz、矩形波印加時のVIOlあ
るいはV2Oの温度依存性とほぼ同じとなるよう素子の
最適化を行ってもよいことは言うまでもない。
Table 11 Some active matrix liquid crystal display elements have a method of adding an auxiliary capacitance in parallel with the liquid crystal layer as in this embodiment to suppress voltage loss due to dielectric loss. In this case, k Active matrix of the present invention It is clear that the method for manufacturing a type liquid crystal display element is effective. In this example, the liquid crystal material was Alignment film material Rikimon with optimization of auxiliary capacitance, etc. Depending on the usage of the liquid crystal display element, the temperature dependence of the voltage holding rate may be 30 Hz, which is almost the same as the temperature dependence of VIOL or V2O when applying a square wave. It goes without saying that the optical element may be optimized.

本発明により駆動電圧の温度依存性の極めて少ないアク
ティブマトリクス型液晶表示素子を得ることは可能であ
る力上 消費電力量の観点より電圧保持率Rvは使用温
度域において70%以上が好ましい。
According to the present invention, it is possible to obtain an active matrix type liquid crystal display element in which the temperature dependence of the driving voltage is extremely small.From the viewpoint of power consumption, the voltage holding ratio Rv is preferably 70% or more in the operating temperature range.

まね 本実施例では電圧保持率測定時の駆動電圧波形高
さとして5vの大きさを採用した力交 これにより本発
明を何等限定するものではな(ち発明の効果 本発明は 液晶表示素子の温度が変化してもその電圧−
透過率特性が殆ど変化しないアクティブマトリクス型液
晶表示素子を提供するものであり、実用的価値は極めて
大き賎
In this example, a driving voltage waveform height of 5V was adopted when measuring the voltage holding ratio. This is not intended to limit the present invention in any way. Even if changes, the voltage −
It provides an active matrix type liquid crystal display element with almost no change in transmittance characteristics, and its practical value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアクティブマトリクス型液晶表示素子の画素電
極に印加される信号電圧と、液晶層に印加される実効電
圧との関係を説明するためのグラフ、第2図は一般的な
液晶材料−配向膜の系における電圧保持率の温度依存性
を表すグラフ、第3図は誘電損失の温度依存性に基づく
電圧−透過率曲線の温度変化を説明するためのグラフ、
第4図は液晶材料の弾性エネルギーや配向膜のアンカリ
ングエネルギーに基づく電圧−透過率曲線の温度変化を
説明するためのグラフである。
Figure 1 is a graph for explaining the relationship between the signal voltage applied to the pixel electrode of an active matrix liquid crystal display element and the effective voltage applied to the liquid crystal layer, and Figure 2 is a graph of common liquid crystal materials - orientation A graph showing the temperature dependence of voltage holding ratio in a film system; FIG. 3 is a graph explaining the temperature change of the voltage-transmittance curve based on the temperature dependence of dielectric loss;
FIG. 4 is a graph for explaining the temperature change of the voltage-transmittance curve based on the elastic energy of the liquid crystal material and the anchoring energy of the alignment film.

Claims (1)

【特許請求の範囲】[Claims] 液晶層に印加される実効駆動電圧の温度係数と、電圧保
持率の温度係数とが等しくなるよう設計することを特徴
とするアクティブマトリクス型液晶表示素子の製造方法
1. A method of manufacturing an active matrix liquid crystal display element, characterized in that the temperature coefficient of an effective driving voltage applied to a liquid crystal layer is designed to be equal to the temperature coefficient of a voltage holding rate.
JP18111589A 1989-07-12 1989-07-12 Manufacture of active matrix type liquid crystal display element Pending JPH0344619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18111589A JPH0344619A (en) 1989-07-12 1989-07-12 Manufacture of active matrix type liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18111589A JPH0344619A (en) 1989-07-12 1989-07-12 Manufacture of active matrix type liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH0344619A true JPH0344619A (en) 1991-02-26

Family

ID=16095112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18111589A Pending JPH0344619A (en) 1989-07-12 1989-07-12 Manufacture of active matrix type liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH0344619A (en)

Similar Documents

Publication Publication Date Title
US4674839A (en) Ferroelectric liquid crystal apparatus having protective cover means
JPH02176625A (en) Liquid crystal display device
JPH01302226A (en) Ferroelectric liquid crystal element
US7218303B2 (en) Aligning method under electric field for ferroelectric liquid crystal and liquid crystal display using the same
KR100260465B1 (en) Liquid crystal display device
US6151093A (en) Liquid crystal display device having mixture to suppress changing switching characteristics with temperature of the liquid crystal display device
KR970701870A (en) COLOR LIQUID CRYSTAL DISPLAY APPARATUS
US7123330B2 (en) Liquid crystal panel substrate having alignment film and method for forming alignment film by varied evaporation angle
JPH01202713A (en) Liquid crystal optical device
JPH0344619A (en) Manufacture of active matrix type liquid crystal display element
JP2600647B2 (en) Liquid crystal display
JPS6117129A (en) Liquid crystal display device
JPS60235121A (en) Driving method of liquid crystal element
JPS62210419A (en) Production of liquid crystal display element
JP2610516B2 (en) Liquid crystal electro-optical device
JPS6228717A (en) Method for driving liquid crystal display device
KR900012118A (en) Liquid crystal display
JPH06194623A (en) Driving method of antiferroelectric liquid crystal display element
JPH0921997A (en) Liquid crystal display device
JP2858142B2 (en) LCD color display
JPS63206724A (en) Liquid crystal display device
JPH0222116B2 (en)
JPH01161221A (en) Liquid crystal element and its driving method
JPS6375730A (en) Liquid crystal electrooptical device
JPH0659231A (en) Liquid crystal display element