JPH0344585B2 - - Google Patents

Info

Publication number
JPH0344585B2
JPH0344585B2 JP59189446A JP18944684A JPH0344585B2 JP H0344585 B2 JPH0344585 B2 JP H0344585B2 JP 59189446 A JP59189446 A JP 59189446A JP 18944684 A JP18944684 A JP 18944684A JP H0344585 B2 JPH0344585 B2 JP H0344585B2
Authority
JP
Japan
Prior art keywords
thermistor
nylon
glass transition
temperature
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59189446A
Other languages
Japanese (ja)
Other versions
JPS6166749A (en
Inventor
Michiharu Kamikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP18944684A priority Critical patent/JPS6166749A/en
Publication of JPS6166749A publication Critical patent/JPS6166749A/en
Publication of JPH0344585B2 publication Critical patent/JPH0344585B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は電気カーペツトや電気毛布に用いられ
る面状発熱体において、加熱温度の検出に用いら
れるサーミスタ材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a thermistor material used to detect heating temperature in a sheet heating element used in electric carpets and electric blankets.

(背景技術) 本発明は高分子サーミスタ材料、詳しくは改良
された熱感応性ポリアミド組成物に関するもので
ある。
BACKGROUND OF THE INVENTION This invention relates to polymeric thermistor materials, and more particularly to improved heat-sensitive polyamide compositions.

電気カーペツトや電気毛布等の広面積採暖具等の
温度検知には、従来から高分子サーミスタ材料と
して知られているポリ塩化ビニル系の材料のもの
と、ポリアミド系材料のものが用いられている。
しかしながら、前者のものは、可塑剤を多量に添
加して柔軟性を持たせている為に、可塑剤の耐熱
的な性質の問題から80℃以下で使用する必用があ
る。またサーミスタ特性(B定数)を大きくする
為に4級アンモニウムハライド等が添加されてい
るが、サーミスタ特性(B定数)を大きくするこ
とに限度があつた。その為に特に機械的性質、耐
熱性にすぐれ、かつサーミスタ特性(B定数)の
設計の容易さから、ポリアミド系の材料も広く応
用されている。しかるに、このポリアミド系の樹
脂は、一般的にポリ塩化ビニル系の材料よりも吸
水性が大きく、吸水率によつて材料のインピーダ
ンスが大きく異なつてしまうという欠点を持つて
いる。この欠点の改良には、ポリアミド樹脂の中
では吸水率の少ないナイロン11又はナイロン12
に、可塑剤的効果のある添加剤を混練する方法
(特公昭52−40439など)等が種々提案されている
が、ポリ塩化ビニル系の材料と同様に添加剤の耐
熱性(ブリードアウトが発生する)の問題から80
℃以上では使用できないという問題があつた。
Polyvinyl chloride-based materials and polyamide-based materials, which are known as polymer thermistor materials, have been used for temperature detection in large-area heating devices such as electric carpets and electric blankets.
However, since the former type has a large amount of plasticizer added to give it flexibility, it must be used at temperatures below 80°C due to the heat-resistant properties of the plasticizer. Additionally, quaternary ammonium halide and the like are added to increase the thermistor characteristics (B constant), but there is a limit to increasing the thermistor characteristics (B constant). For this reason, polyamide-based materials are widely used because they have particularly excellent mechanical properties and heat resistance, and thermistor characteristics (B constant) can be easily designed. However, this polyamide-based resin generally has a higher water absorption than polyvinyl chloride-based materials, and has the disadvantage that the impedance of the material varies greatly depending on the water absorption rate. To improve this drawback, nylon 11 or nylon 12, which has a low water absorption rate among polyamide resins, can be used.
Various methods have been proposed for kneading additives that have a plasticizing effect (such as Japanese Patent Publication No. 52-40439), but as with polyvinyl chloride materials, the heat resistance of the additives (bleedout occurs 80 from the problem of
There was a problem that it could not be used at temperatures above ℃.

本発明者は、かかる欠点を克服して、更に改良
された熱感応性ポリアミド樹脂を得るべく検討し
た結果、吸湿してもインピーダンス変動が少なく
耐熱的にも120℃連続使用に耐れ得るサーミスタ
材料として極めて好ましい特性を有する材料を開
発し本発明に達した。
As a result of studies aimed at overcoming these drawbacks and obtaining a further improved heat-sensitive polyamide resin, the present inventors have found a thermistor material that exhibits minimal impedance fluctuations even when moisture is absorbed and is heat resistant and can withstand continuous use at 120°C. The present invention was achieved by developing a material with extremely favorable characteristics.

すなわち、ポリアミド樹脂の中で一番吸湿性の
少ないナイロン12に、イオン性の添加剤を添加し
た材料について80℃風乾操時のサーミスタ特性
と、40℃90%の飽和吸水量の吸湿時のサーミスタ
特性及びそのときのガラス転移点(伸張状態にお
ける等時複素動的伸張弾性率の損失弾性率の温度
挙動のピーク値が発現する温度)の変化等につい
て検討した結果、ナイロン12に関しては飽和吸水
量を下げるよりも、ガラス転移温度を低下させる
方が、吸湿時のサーミスタ特性の変化が少なくな
ることを発見した。またこのことは公知であるポ
リアミド樹脂に可塑剤的作用をする物質を混連す
る方法いついても同様な関係があることを確認し
た。
In other words, the thermistor characteristics of a material made by adding an ionic additive to nylon 12, which has the lowest hygroscopicity among polyamide resins, when air-dried at 80℃, and the thermistor when moisture is absorbed at a saturated water absorption of 90% at 40℃. As a result of examining the characteristics and changes in the glass transition point (the temperature at which the peak value of the temperature behavior of the loss modulus of the isochronous complex dynamic elongation modulus in the stretched state appears), we found that the saturated water absorption amount for Nylon 12 We discovered that lowering the glass transition temperature causes less change in thermistor characteristics upon moisture absorption than lowering the glass transition temperature. It was also confirmed that the same relationship holds true for the known method of mixing polyamide resin with a substance that acts as a plasticizer.

また部分的な過熱を検知する為に高温側のサー
ミスタ特性を大きくする為の添加剤を加えること
によつて、さらに吸湿によるインピーダンス変動
が少なくできることも見い出した。
We have also discovered that impedance fluctuations due to moisture absorption can be further reduced by adding an additive to increase the thermistor characteristics on the high temperature side in order to detect local overheating.

(発明の目的) 本発明は乾燥状態のインピーダンスと吸湿状態
のインピーダンスの変化が少く、かつサーミスタ
感度を向上させた高分子サーミスタ材料を提供す
ることを目的とする。
(Objective of the Invention) An object of the present invention is to provide a polymer thermistor material that has little change in impedance in a dry state and impedance in a hygroscopic state and has improved thermistor sensitivity.

(発明の開示) ナイロン12のガラス転移温度を可塑剤の添加以
外の方法で低下させる手段であるポリマーブレン
ド(ポリマーアロイとも言う)について、サーミ
スタ材料化の検討を行なつた結果、ガラス転移点
が広面積採暖具の温度調節範囲(30〜60℃程度)
以下である、ポリマーアロイであつて、その吸湿
度がナイロン12以下である材料を主材に選び、さ
らにイオン性物質を添加すれば吸湿に対するサー
ミスタ特性の変化が少なく、可塑剤のように耐熱
的な心配がなく120℃連続使用に耐えるサーミス
タ材料として極めて好ましい材料に成り得ること
を発見した。
(Disclosure of the Invention) As a result of investigating the use of polymer blends (also known as polymer alloys), which is a means of lowering the glass transition temperature of nylon 12 by a method other than adding a plasticizer, as a thermistor material, it was found that the glass transition temperature Temperature control range of wide-area heating equipment (approximately 30 to 60 degrees Celsius)
If you choose the following polymer alloy material whose moisture absorption is less than nylon 12 as the main material, and add an ionic substance, the thermistor characteristics will not change due to moisture absorption, and it will be heat resistant like a plasticizer. We have discovered that this material can be used as an extremely desirable thermistor material that can withstand continuous use at 120°C without any concerns.

この動作については次のように孝えられる。す
なわちナイロン12の乾燥時のガラス転移点(約52
℃)は40℃×90%の飽和吸水状態で約26degも低
下する為に、サーミスタ定数(B定数)を大きく
する為に添加しているイオン性添加剤によるイオ
ン伝導が低温域より発現してしまいインピーダン
スの低下を大きくしている。これに対して、予め
ポリマーアロイ化によつて乾燥時のガラス転移点
を30℃以下にしておけば吸湿によるガラス転移温
度の低下が少なくて済み、さらにイオン伝導の発
現する温度が広面積採暖具の実用温度以下になつ
ているので、イオン性添加剤の添加量に比例して
増大するサーミスタ定数が温度調節範囲内で大き
くできること、さらにポリマーアロン化によつて
飽和吸水量が少し低下していること等が変化を少
なくする作用をしていると孝えられる。
This operation can be explained as follows. In other words, the dry glass transition point of nylon 12 (approximately 52
°C) decreases by about 26 degrees in a saturated water absorption state of 40 °C x 90%, so ionic conduction due to the ionic additive added to increase the thermistor constant (B constant) occurs from the low temperature range. This results in a large drop in impedance. On the other hand, if the glass transition temperature during drying is lowered to 30°C or lower through polymer alloying in advance, the drop in glass transition temperature due to moisture absorption can be minimized, and the temperature at which ionic conduction occurs can be lowered in large-area heating devices. The thermistor constant, which increases in proportion to the amount of ionic additive added, can be increased within the temperature control range, and the saturated water absorption is slightly lower due to polymer aronization. It can be assumed that these factors have the effect of reducing change.

次に実施例及び比較例について述べる。 Next, examples and comparative examples will be described.

〈比較例1〉(従来例) ナイロン12樹脂中にイオン性添加剤としてヨウ
化カリ(KI)を0.5重量%均一分散させた後、0.5
mm厚のプレスシートを作成し、80℃にて乾燥した
後のインピーダンス特性とガラス転移温度等の測
定を行なう。次に40℃×90%の飽和吸水率まで吸
湿処理した後の特性測定を実施した。
<Comparative Example 1> (Conventional example) After uniformly dispersing 0.5% by weight of potassium iodide (KI) as an ionic additive in nylon 12 resin,
A press sheet with a thickness of mm is prepared, and after drying at 80℃, the impedance characteristics and glass transition temperature are measured. Next, properties were measured after moisture absorption treatment at 40°C x 90% saturation water absorption.

さらに、120℃雰囲気中に600時間放置した後の
インピーダンス特性変化を測定した。サーミスタ
特性は1KHzの特性を測定し、サーミスタ特性の
変動は乾燥時の50℃相当のインピーダンス値が何
deg相当ズレが生じたかで表わした。
Furthermore, changes in impedance characteristics after being left in a 120°C atmosphere for 600 hours were measured. The thermistor characteristics are measured at 1KHz, and the fluctuations in the thermistor characteristics are determined by determining the impedance value equivalent to 50℃ when dry.
It is expressed by whether a deviation equivalent to deg occurred.

結果: 乾燥時ガラス転移点 52℃ 吸湿時ガラス転移点 26℃ 飽和吸水率 1.5% 吸湿によるサーミスタ特性のズレ ΔT1=−26deg 120℃×600時間後の特性のズレ ΔT2=+2deg 〈比較例2〉(従来例) ナイロン12樹脂中にイオン性添加剤としてヨウ
化カリ(KI)を0.5%、可塑剤としてパラオキシ
安息香酸エステルを15%均一分散させた後0.5mm
厚のプレスシートを作成し、前記と同様なテスト
を実施した。
Results: Glass transition point when dry 52℃ Glass transition temperature when absorbed moisture 26℃ Saturated water absorption rate 1.5% Difference in thermistor characteristics due to moisture absorption ΔT 1 = -26deg Difference in characteristics after 120℃ x 600 hours ΔT 2 = +2deg <Comparative example 2 〉(Conventional example) After uniformly dispersing 0.5% of potassium iodide (KI) as an ionic additive and 15% of paraoxybenzoic acid ester as a plasticizer in nylon 12 resin, 0.5 mm
A thick press sheet was prepared and the same test as above was conducted.

結果: 乾燥時ガラス転移点 9℃ 吸湿時 〃 3℃ 飽和吸水率 1.3% 吸湿によるサーミスタ特性のズレ ΔT1=−16deg 120℃×600時間後の特性のズレ ΔT2=+13deg 〈実施例1〉(本発明) ナイロン12樹脂中にポリエチレングリコールを
30重量%混練し、イオン性添加剤としてヨウ化カ
リ(KI)を0.5重量%均一分布させた後0.5mm厚の
プレスシートを作成し、前記と同様なテストを実
施した。
Results: Glass transition point when drying: 9°C When absorbing moisture: 3°C Saturated water absorption rate: 1.3% Difference in thermistor characteristics due to moisture absorption ΔT 1 = -16deg Difference in characteristics after 120°C x 600 hours ΔT 2 = +13deg <Example 1> ( This invention) Polyethylene glycol in nylon 12 resin
After kneading 30% by weight and uniformly distributing 0.5% by weight of potassium iodide (KI) as an ionic additive, a press sheet with a thickness of 0.5 mm was prepared, and the same test as above was conducted.

結果: 乾燥時ガラス転移点 28℃ 吸湿時 〃 8℃ 飽和吸水率 1.24% 吸湿によるサーミスタ特性のズレ ΔT1=−18deg 120℃×600時間後の特性のズレ ΔT2=+2deg 〈実施例2〉(本発明) ナイロン12樹脂中に変性P・Pを30%混練し、
イオン性添加剤としてヨウ化カリ(KI)を0.5%
均一分散させた後0.5mm厚のプレスシートを作成
し、前記と同様なテストを実施した。
Results: Glass transition point when drying: 28°C When absorbing moisture: 8°C Saturated water absorption rate: 1.24% Difference in thermistor characteristics due to moisture absorption ΔT 1 = -18deg Difference in characteristics after 120°C x 600 hours ΔT 2 = +2deg <Example 2> ( This invention) 30% modified P/P is kneaded in nylon 12 resin,
0.5% potassium iodide (KI) as an ionic additive
After uniform dispersion, a 0.5 mm thick press sheet was prepared and the same test as above was conducted.

結果: 乾燥時ガラス転移点 25℃ 吸湿時 〃 5℃ 飽和吸水率 1.13% 吸湿によりサーミスタ特性のズレ ΔT4=−12deg 120℃×600時間後の特性のズレ ΔT2=+3deg 〈実施例3〉(本発明) ナイロン12樹脂中にNBR(アクリロ・ニトリル
−ブタジエン共重合ゴム)を15%混練し、イオン
性添加剤としてヨウ化カリ(KI)を0.5%均一分
散させた後0.5mm厚のブレスシートを作成し、前
記と同様なテストを実施した。
Results: Glass transition point when drying: 25°C When absorbing moisture: 5°C Saturated water absorption rate: 1.13% Difference in thermistor characteristics due to moisture absorption ΔT 4 = -12deg Difference in characteristics after 120°C x 600 hours ΔT 2 = +3deg <Example 3> The present invention) After kneading 15% NBR (acrylo-nitrile-butadiene copolymer rubber) in nylon 12 resin and uniformly dispersing 0.5% potassium iodide (KI) as an ionic additive, a 0.5 mm thick breath sheet is produced. was created and the same tests as above were conducted.

結果: 乾燥時ガラス転移点 15℃ 吸湿時 〃 5℃ 飽和吸水率 1.3% 吸湿によるサーミスタ特性のズレ ΔT1=−17.5deg 120℃×600時間後の特性のズレ ΔT2=+2deg 以上の例以外にもナイロンエラストマーやナイ
ロンプレポリマー,ポリブタジエン,変性エチレ
ン共重合体など種々のポリマーアロイが実現可能
である。要はナイロン12に分散が可能でナイロン
12より吸湿性が少なくかつポリマーアロイした場
合ガラス転移温度が30℃以下となる組合せが効果
があると言える。
Results: Glass transition point when drying: 15°C When absorbing moisture: 〃 5°C Saturated water absorption rate: 1.3% Difference in thermistor characteristics due to moisture absorption ΔT 1 = -17.5deg Difference in characteristics after 120°C x 600 hours ΔT 2 = +2deg In addition to the above examples Various polymer alloys such as nylon elastomer, nylon prepolymer, polybutadiene, and modified ethylene copolymer can also be realized. In short, dispersion is possible in nylon 12, and nylon
It can be said that a combination that has less hygroscopicity than 12 and has a glass transition temperature of 30°C or less when used as a polymer alloy is effective.

ここで、ガラス転移点を30℃以下と限定したの
は、電気カーペツトのような広面積採暖具の使用
温度範囲が30℃〜60℃程度であり、局部的な発熱
を検知する為にサーミスタ特性(B定数を大きく
する)の改善の為に添加するイオン性添加剤によ
るイオン伝導効果を使用温度以下の温度で発現さ
せて、使用範囲のB定数を大きくし、吸湿による
インピーダンスの低下を少なくする為と、吸湿に
よるガラス転移点の変動が顕著に少なくなる温度
であるためである。
Here, the glass transition point was limited to 30°C or less because the operating temperature range of large-area heating devices such as electric carpets is approximately 30°C to 60°C, and the thermistor characteristics are used to detect localized heat generation. (Increase the B constant) The ionic conduction effect of the ionic additive added is expressed at a temperature below the operating temperature, increasing the B constant within the operating range and reducing the decrease in impedance due to moisture absorption. This is because the temperature is such that fluctuations in the glass transition point due to moisture absorption are significantly reduced.

またイオン性添加剤の種類は耐熱性があり、分
散作業が容易である理由により選択されており添
加量は0.05%以下では、B定数が大きくならない
ことと分散が均一になりにくい為で2.0%以上の
添加では、イオン性添加剤のに吸湿性が増大した
り、イオン分極の増大と孝えられるインピーダン
スの低下が大きい為である。
In addition, the type of ionic additive was selected because it is heat resistant and easy to disperse, and the amount added is 2.0% because if it is less than 0.05%, the B constant will not become large and it will be difficult for the dispersion to become uniform. This is because the addition of the above amount increases the hygroscopicity of the ionic additive and causes a large decrease in impedance, which can be attributed to an increase in ionic polarization.

(発明の効果) 叙上のように本発明によれば、乾燥状態におけ
るインピーダンスと吸湿状態のインピーダンスの
変化が少く、かつサーミスタ感度を向上させた高
分子サーミスタ材料をうることができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to obtain a polymer thermistor material in which there is little change in impedance in a dry state and impedance in a hygroscopic state, and the thermistor sensitivity is improved.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリドデカンアミド(ナイロン12)に他のナ
イロン12より低吸湿性のポリマーを添加したポリ
アミドを主成分としたポリマアロイにおいて、乾
燥時のガラス転移温度を30℃以下の範囲のものを
主剤とし、イオン性の添加剤としてKI,CuI,
KSCNのいずれかを0.05%〜2重量%の範囲で添
加して成る高分子サーミスタ材料。
1 A polymer alloy whose main component is polyamide, which is made by adding a polymer with lower hygroscopicity than other nylon 12 to polydodecaneamide (nylon 12). KI, CuI,
A polymer thermistor material containing KSCN in a range of 0.05% to 2% by weight.
JP18944684A 1984-09-10 1984-09-10 Polymeric thermistor material for wide-area heating Granted JPS6166749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18944684A JPS6166749A (en) 1984-09-10 1984-09-10 Polymeric thermistor material for wide-area heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18944684A JPS6166749A (en) 1984-09-10 1984-09-10 Polymeric thermistor material for wide-area heating

Publications (2)

Publication Number Publication Date
JPS6166749A JPS6166749A (en) 1986-04-05
JPH0344585B2 true JPH0344585B2 (en) 1991-07-08

Family

ID=16241382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18944684A Granted JPS6166749A (en) 1984-09-10 1984-09-10 Polymeric thermistor material for wide-area heating

Country Status (1)

Country Link
JP (1) JPS6166749A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957393A (en) * 1972-10-02 1974-06-04
JPS4957392A (en) * 1972-10-02 1974-06-04
JPS4957394A (en) * 1972-10-02 1974-06-04
JPS4982736A (en) * 1972-12-13 1974-08-09
JPS54132796A (en) * 1978-04-05 1979-10-16 Daicel Ltd High molecular temperature sensing body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957393A (en) * 1972-10-02 1974-06-04
JPS4957392A (en) * 1972-10-02 1974-06-04
JPS4957394A (en) * 1972-10-02 1974-06-04
JPS4982736A (en) * 1972-12-13 1974-08-09
JPS54132796A (en) * 1978-04-05 1979-10-16 Daicel Ltd High molecular temperature sensing body

Also Published As

Publication number Publication date
JPS6166749A (en) 1986-04-05

Similar Documents

Publication Publication Date Title
JPH0344585B2 (en)
US4139522A (en) Stabilized ethylene-carbon monoxide copolymers
JPH0247084B2 (en)
JPS6254828B2 (en)
JPS639362B2 (en)
JPH0461026B2 (en)
JPH10140004A (en) Resin composition for polymer temperature sensing element and polymer temperature sensing element
JPS58173155A (en) Polyamide resin composition
JPH0334497B2 (en)
JPH07216174A (en) Heat-sensitive resin material, heat-sensitive body and heat-sensitive heat-generating body
JPS63173302A (en) Polymer temperature sensitive unit
JPH051305B2 (en)
JPH1171482A (en) Antistatic agent for olefinic resin and olefinic resin composition containing the same
JP2866407B2 (en) Chloroprene rubber composition
JPH07216173A (en) Heat-sensitive resin material, heat-sensitive body and heat-sensitive heat-generating body
JPH0827377A (en) Polyamide resin composition
JPH0247088B2 (en) SAAMISUTAZAIRYO
JPS6063236A (en) Conductive polymer composition
JPS60106103A (en) Polymer temperature sensor
JP2002267055A (en) Flame-retardant resin tube
JPS6176548A (en) Thermistor material
JPH062419A (en) Floor material
JPH0638361B2 (en) Flexible heat-sensitive electric wire
JPS614736A (en) Rendering resin molding antistatic
JPS6298504A (en) Flexible heat sensitive wire