JPH034452A - Structure of unitary solid electrolyte fuel cell - Google Patents

Structure of unitary solid electrolyte fuel cell

Info

Publication number
JPH034452A
JPH034452A JP1138367A JP13836789A JPH034452A JP H034452 A JPH034452 A JP H034452A JP 1138367 A JP1138367 A JP 1138367A JP 13836789 A JP13836789 A JP 13836789A JP H034452 A JPH034452 A JP H034452A
Authority
JP
Japan
Prior art keywords
electrode
solid electrolyte
fuel
gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1138367A
Other languages
Japanese (ja)
Other versions
JPH077673B2 (en
Inventor
Masayuki Tan
丹 正之
Ryuichi Okiayu
置鮎 隆一
Shotaro Yoshida
昭太郎 吉田
Shoichi Hasegawa
正一 長谷川
Hiroshi Yamanouchi
山之内 宏
Masakatsu Nagata
雅克 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1138367A priority Critical patent/JPH077673B2/en
Publication of JPH034452A publication Critical patent/JPH034452A/en
Publication of JPH077673B2 publication Critical patent/JPH077673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain the subject fuel cell easily and in a short time by making this in a simple shape that an oxygen electrode, a solid electrolyte, and a fuel electrode are respectively laminated in order in cylindrical shape. CONSTITUTION:For a simple battery 10, oxidizing gas such as air is supplied continuously from a gas supply pipe 14 into inside, and fuel gas such as hydrogen gas, etc., is used for the atmosphere at the periphery, whereby electrochemical oxidizing and reducing reactions occur through a solid electrolyte 12 resulting from the difference of oxygen concentration between both the inside and outside of the solid electrolyte 12. As a result, electromotive force occurs such as that an oxygen electrode 11 becomes an anode and a fuel electrode 13 becomes a cathode. It follows that the electrodes 11 and 13 are formed, respectively, on both sides of the inside and outside of the solid electrolyte 12 this way, and that the electrode 13 at the outermost layer is exposed to the outside as it is, but the electrode 11 on the inner periphery side is lead out to the outside through the gas supply pipe 14 leading to this. Hereby, if each element such as the solid electrolyte 12, etc., is formed in order to the outer periphery of the element on the inner periphery side, that will do, and unefficient work such as masking, etc., can be obviated, and work efficiency in manufacturing can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は固体電解質を介した酸化・還元反応によって
起電力を得る燃料電池の単体すなわち単電池の構造に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to the structure of a single fuel cell, that is, a unit cell, which generates an electromotive force through oxidation and reduction reactions via a solid electrolyte.

従来の技術 周知のように固体電解質燃料電池は、第2図に原理的に
示す如く酸素イオン選択透過性のある固体電解質1を挟
んで多孔構造のM素電極2と燃料電極3とを設け、酸素
電極2側に空気や酸素ガスなどの酸化性ガスを供給し、
これに対して燃料電極3Nに水素ガスや一酸化炭素ガス
などの燃料ガスを供給し、固体電解質1の両側での酸素
濃度の差に起因して酸素イオンが固体電解質を透過する
ことにより酸化性ガスと燃料ガスとの間の酸化・還元反
応が生じ、それに伴う起電力を各電極2゜3から負荷4
に取出すものである。この固体電解質1としてはイツト
リア安定化ジルコニア(YS2)やカルシア安定化ジル
コニア(C8Z)などが知られており、またI素電極2
としてはベロアスカイト型ランタン系複合酸化物が知ら
れ、さらに燃料電極3としてはニッケルやニッケル合金
あるいはNi −Zr O2サーメツトなどが知られて
いる。
As is well known in the art, a solid electrolyte fuel cell has a porous M element electrode 2 and a fuel electrode 3 sandwiching a solid electrolyte 1 having oxygen ion selective permeability, as shown in principle in FIG. Supplying oxidizing gas such as air or oxygen gas to the oxygen electrode 2 side,
On the other hand, a fuel gas such as hydrogen gas or carbon monoxide gas is supplied to the fuel electrode 3N, and oxygen ions permeate through the solid electrolyte due to the difference in oxygen concentration on both sides of the solid electrolyte 1, causing oxidation. An oxidation/reduction reaction occurs between the gas and the fuel gas, and the resulting electromotive force is transferred from each electrode 2゜3 to the load 4.
It is to be taken out. As this solid electrolyte 1, yttria-stabilized zirconia (YS2), calcia-stabilized zirconia (C8Z), etc. are known.
A velorskite-type lanthanum-based composite oxide is known as a fuel electrode 3, and nickel, a nickel alloy, or Ni-ZrO2 cermet is also known as a material for the fuel electrode 3.

固体電解’J(1を介した上記の酸化・還元反応によっ
て得られる電圧は高々1V程度に過ぎず、また74流は
反応面積に応じて増大するので、実用化するためには上
述した構造を基本構造とし反応面積を拡大した単電池を
多数直並列に接続する必要がある。そのための単電池の
構造として、例えば、固体電解質を円筒状に形成すると
ともにその内外面に酸素電極と燃料電極を設けた円筒型
と、固体電解質を波形に形成するとともにその表裏両面
に酸素電極と燃料電極とを設け、かつこれを導電性のあ
る平板体であるインターコネクタで所定の間隔をあけて
挟み込んで酸化性ガスと燃料ガスのと流路を形成した平
板型などが知られている。これらのうち平板型の単電池
はコンパクト化し易いが、酸化性ガスと燃料ガスとの流
路を面接触する二部材によって区画形成するから、シー
ル性に劣る不都合があり、これに対して円筒型の単電池
はそれ自体の構造が内周部と外周部とを区画する構造で
あるため、シール性に優れており、実用性に富んでいる
。第3図は円筒型単電池の一例を示す模式図であり、ア
ルミナなどのセラミック材料によって多孔4M造に形成
した支持管5の外周面全体に酸素電極2が形成されると
ともに、その酸素電極2の外面の一部にNiやla (
:、r 03などからなるインターコネクタ6が形成さ
れ、また酸素電極2の外面にはインターコネクタ6が外
部に露出するよう固体電解質1が形成され、さらにその
外周にインターコネクタ6に対して非導通状態に燃料電
極3が形成されている。なお、第3図に示す単電池は所
謂非自己支持型のものであり、自己支持型の単電池では
、支持管5を省いた構造とする場合がある。
The voltage obtained by the above oxidation/reduction reaction via the solid electrolyte 'J(1) is only about 1 V at most, and the 74 current increases with the reaction area, so in order to put it into practical use, the above structure is required. It is necessary to connect a large number of cells in series and parallel with each other in a basic structure with an expanded reaction area.The structure of the cell for this purpose is, for example, to form a solid electrolyte into a cylindrical shape, and to attach an oxygen electrode and a fuel electrode to the inner and outer surfaces of the cell. The cylindrical shape and the solid electrolyte are formed into a corrugated shape, and oxygen electrodes and fuel electrodes are provided on both sides of the solid electrolyte, and these are sandwiched at a predetermined interval by interconnectors, which are conductive flat plates, to perform oxidation. Flat plate type cells with flow paths for oxidizing gas and fuel gas are known.Of these, flat plate type cells are easy to make compact, but two cells with surface contact between the flow paths for oxidizing gas and fuel gas are known. Since the cells are divided into sections, they have the disadvantage of poor sealing performance.On the other hand, cylindrical cells have a structure that separates the inner and outer peripheries, so they have excellent sealing properties. Fig. 3 is a schematic diagram showing an example of a cylindrical cell, in which an oxygen electrode 2 is provided on the entire outer circumferential surface of a support tube 5 made of a ceramic material such as alumina and having a porous 4M structure. At the same time, Ni and la (
:, r03, etc., and a solid electrolyte 1 is formed on the outer surface of the oxygen electrode 2 so that the interconnector 6 is exposed to the outside. A fuel electrode 3 is formed in this state. Note that the cell shown in FIG. 3 is of a so-called non-self-supporting type, and a self-supporting cell may have a structure in which the support tube 5 is omitted.

発明が解決しようとする課題 ところで上述した構造の単電池における固体電解質1な
どの要素の多くはセラミック材料からなるものであり、
したがって従来では、化学蒸着(CVD)や電気化学蒸
着(EVD)あるいは溶射などの方法によって固体電解
質層や各電極などを形成している。しかるに第3図に示
す構造の単電池を製造するにあたっては、支持管5の外
周面にペロブスカイト型ランタン系複合酸化物をCVD
もしくは溶射などの方法で付着させて酸素電極2を形成
し、ついでインターコネクタ6を形成すべき部分を除い
た部分をマスキングした状態でニッケルやla Qr 
Oj3などをEVDもしくは溶射などの方法で酸素電極
2の外面の露出部分に付着させてインターコネクタ6を
形成し、さらにそのインターコネクタ6をマスキングし
た状態でイツトリア安定化ジルコニア(YSZ)などを
EVDもしくは溶射などの方法で付着させて固体電解質
1の層を形成し、そしてインターコネクタ6およびその
周辺部分をマスキングした状態でNiやNiサーメット
などをスラリーコーティング法や溶射などの方法によっ
て付着させて燃料電極3を形成する。したがって上記従
来の構造の単電池では、その製造過程において複数回の
マスキングが必要になり、マスキングが手作業による細
かい作業であることから、単電池の製造に長時間を要し
、製造効率が悪くなる不都合があった。
Problems to be Solved by the Invention By the way, many of the elements such as the solid electrolyte 1 in the unit cell having the above-described structure are made of ceramic materials.
Therefore, conventionally, the solid electrolyte layer, each electrode, etc. are formed by methods such as chemical vapor deposition (CVD), electrochemical vapor deposition (EVD), or thermal spraying. However, in manufacturing a unit cell having the structure shown in FIG.
Alternatively, the oxygen electrode 2 is formed by attaching it by a method such as thermal spraying, and then nickel or LA Qr is applied while masking the area except for the area where the interconnector 6 is to be formed.
An interconnector 6 is formed by attaching Oj3 or the like to the exposed portion of the outer surface of the oxygen electrode 2 by EVD or thermal spraying, and then with the interconnector 6 masked, itria stabilized zirconia (YSZ) or the like is deposited by EVD or thermal spraying. A layer of solid electrolyte 1 is formed by depositing the solid electrolyte 1 by a method such as thermal spraying, and then Ni, Ni cermet, etc. is deposited by a method such as slurry coating or thermal spraying with the interconnector 6 and its surrounding area masked to form a fuel electrode. form 3. Therefore, with the above-mentioned conventional cell structure, masking is required multiple times during the manufacturing process, and since masking is a detailed manual operation, it takes a long time to manufacture the cell, resulting in poor manufacturing efficiency. There was some inconvenience.

この発明は上記の事情を背景としてなされたもので、電
気的な特性を低下させることなく容易に製造することの
できる構造の燃料電池単体を提供することを目的とする
ものである。
This invention was made against the background of the above-mentioned circumstances, and it is an object of the present invention to provide a fuel cell unit having a structure that can be easily manufactured without deteriorating its electrical characteristics.

課題を解決するための手段 この発明は、上記の目的を達成するために、円筒形の固
体電解質の内周面に酸素電極と燃料電極とのいずれか一
方の電極を設けるとともに、その固体電解質の外周面に
他方の電極を設け、さらに内周側の電極の内側に導電性
のあるガス供給管を挿入し、かつそのガス供給管を前記
内周側の電極に電気的に導通させたことを特徴とするも
のである。
Means for Solving the Problems In order to achieve the above object, the present invention provides one of an oxygen electrode and a fuel electrode on the inner peripheral surface of a cylindrical solid electrolyte, and also The other electrode is provided on the outer peripheral surface, and a conductive gas supply pipe is inserted inside the inner electrode, and the gas supply pipe is electrically connected to the inner electrode. This is a characteristic feature.

作     用 この発明の単電池では、固体電解質を挟んだ内外両側に
それぞれ電極が形成され、最外層の電極はそのまま外部
に露出することになるが、内周側の電極はこれに導通し
ているガス供給管を介して外部に導き出される。したが
って従来のインターコネクタのように半径方向に貫通す
る部材もしくは部分が存在しないので、固体電解質など
の各要素を内周側の要素の外周面に順次形成すればよく
、マスキングなどの効率の悪い作業を省き、製造作業性
が向上する。
Function: In the unit cell of this invention, electrodes are formed on both the inner and outer sides of the solid electrolyte, and the outermost electrode is exposed to the outside as it is, but the inner electrode is electrically connected to it. The gas is led out via a gas supply pipe. Therefore, unlike conventional interconnectors, there is no member or part that penetrates in the radial direction, so each element such as a solid electrolyte can be formed sequentially on the outer peripheral surface of the inner peripheral element, which requires inefficient work such as masking. This improves manufacturing workability.

実施例 つぎにこの発明の実施例を図面を参照して説明する。Example Next, embodiments of the invention will be described with reference to the drawings.

第1図はこの発明の一実施例を示す概略的な斜視図であ
って、ここに示す単電池10は先端部を閉じた円筒状を
なし、その最内層は酸素電極11であり、その外周面に
固体電解質12の層が形成され、さらに最外層に燃料電
極13が形成されている。そして中心部にはガス供給′
g14が挿入されてその先端部は単電池10の先端部付
近まで延びており、このガス供給管14と酸素電極11
の内周面との間には通気性に富む導電性部材15が充填
されている。
FIG. 1 is a schematic perspective view showing one embodiment of the present invention, and a cell 10 shown here has a cylindrical shape with a closed tip, the innermost layer of which is an oxygen electrode 11, and the outer periphery of the cell 10. A layer of solid electrolyte 12 is formed on the surface, and a fuel electrode 13 is further formed on the outermost layer. And gas supply in the center
g14 is inserted and its tip extends to near the tip of the cell 10, and this gas supply pipe 14 and oxygen electrode 11
A conductive member 15 with good air permeability is filled between the inner circumferential surface and the inner circumferential surface of the conductive member 15 .

前記酸素電極11は、la +−xSr X Mn O
3やla Qo 03などのペロプスカイト型ランタン
系複合酸化物を素材とした多孔構造体であり、これらの
材料を所定の心材の外周面にCVDや溶射などの方法で
所定の厚さに付着させることにより形成される。なお、
その心材は後工程で抜き取られ、もしくは除去される。
The oxygen electrode 11 is la +-xSr
It is a porous structure made of perovskite-type lanthanum-based composite oxides such as 3 and LAQo 03, and these materials are attached to the outer circumferential surface of a predetermined core material to a predetermined thickness using methods such as CVD or thermal spraying. It is formed by In addition,
The core material is extracted or removed in a subsequent process.

また固体電解質12は従来と同様にYSZやC8zを素
材とするものであり、上記の酸素電極11の外周面の全
体にYSZ等をEVDもしくは溶射などの方法によって
所定の厚さに付着させることにより形成される。さらに
燃料電極13はNiやNiサーメットを素材とするもの
であって、その素材をスラリー状にして上記の固体電解
質12の外周面の全体に塗布した後に焼成する方法や溶
射する方法などによって多孔構造に形成される。他方、
前記ガス供給管14は酸素電極11の内周側に空気や酸
素ガスなどの酸化性ガスを供給するとともに一方の電極
もしくは端子となるものであって、導電性がありかつ高
温下での化学的安定性に富む材料、例えば酸素電極11
と同様な素材によって形成され、その後端部は単電池1
0から突出されている。またさらに導電性材料15は酸
素電極11とガス供給管14とを電気的に接続するため
のものであり、通気性を確保するためにフェルト状に形
成され、その素材としては高温酸化雰囲気で化学的に安
定な材料、例えば酸素電極11を構成している素材と同
様な素材によって構成されている。
In addition, the solid electrolyte 12 is made of YSZ or C8z as in the past, and is made by depositing YSZ or the like on the entire outer peripheral surface of the oxygen electrode 11 to a predetermined thickness by a method such as EVD or thermal spraying. It is formed. Further, the fuel electrode 13 is made of Ni or Ni cermet, and has a porous structure formed by applying the slurry to the entire outer circumferential surface of the solid electrolyte 12 and then firing or thermal spraying the material. is formed. On the other hand,
The gas supply pipe 14 supplies an oxidizing gas such as air or oxygen gas to the inner circumferential side of the oxygen electrode 11, and serves as one electrode or terminal, and is electrically conductive and chemically resistant at high temperatures. A highly stable material, such as the oxygen electrode 11
The rear end is made of the same material as the single cell 1.
Extruded from 0. Further, the conductive material 15 is for electrically connecting the oxygen electrode 11 and the gas supply pipe 14, and is formed into a felt shape to ensure breathability. The oxygen electrode 11 is made of a material that is stable, for example, the same material as the material that makes up the oxygen electrode 11.

上述した構成の単電池10は、ガス供給管14がら空気
などの酸化性ガスを内部に連続して供給するとともに、
外周の雰囲気を水素ガスなどの燃料ガスとすることによ
り、固体電解質12の内外両側での酸素濃度の差に起因
して固体電解質12を介した電気化学的な酸化・還元反
応が生じ、酸素電極11が陽極、燃料電極13が陰極と
なるよう起電力が生じる。そしてガス供給管14が導電
性を具備しかつ酸素電極11に電気的に接続されている
から、このガス供給管14と最外層の燃料電極13とか
ら出力することができる。
The unit cell 10 configured as described above continuously supplies an oxidizing gas such as air through the gas supply pipe 14, and
By setting the outer atmosphere to a fuel gas such as hydrogen gas, an electrochemical oxidation/reduction reaction occurs through the solid electrolyte 12 due to the difference in oxygen concentration between the inside and outside of the solid electrolyte 12, and the oxygen electrode An electromotive force is generated such that 11 serves as an anode and the fuel electrode 13 serves as a cathode. Since the gas supply pipe 14 is electrically conductive and electrically connected to the oxygen electrode 11, the gas can be output from the gas supply pipe 14 and the outermost fuel electrode 13.

また上記の単電池1QはそのIR造から明らかなように
酸素電極11を円筒状に作り、その外周に固体電解質1
2および燃料電極13を順次形成することにより製造す
ることができ、その過程でマスキングなどの部分的に異
材種とするための面倒な作業を行なう必要はない。
Furthermore, as is clear from its IR structure, the above cell 1Q has an oxygen electrode 11 made in a cylindrical shape, and a solid electrolyte 1 on its outer periphery.
It can be manufactured by sequentially forming the fuel electrode 2 and the fuel electrode 13, and in the process there is no need to perform troublesome work such as masking to partially make different materials.

なお、上記の実施例では、先端部が閉じた構造の単電池
10を例に取って説明したが、この発明は、上記の実施
例に限定されるものではなく、中心部が貫通した円筒状
の単電池にも適用することができる。またガス供給管を
内周側の電極に導通させるための手段は、上述したフェ
ルト材に限定されるものではない。
In addition, although the above embodiment has been explained by taking as an example the single cell 10 having a structure with a closed tip, the present invention is not limited to the above embodiment, and the present invention is not limited to the above embodiment. It can also be applied to single cells. Further, the means for connecting the gas supply pipe to the electrode on the inner peripheral side is not limited to the above-mentioned felt material.

発明の効果 以上の説明から明らかなようにこの発明の燃料電池単体
によれば、酸素電極および固体電解質ならびに燃料電極
のそれぞれが円筒状に順次積層された単純な形状をなす
ものであり、外周の一部を異材種とする必要がないので
、その製造過程でマスキングなどの面倒な作業を介在さ
せる必要がなく、したがフてこの発明によれば、容易か
っXi1間に製造でき、しかも連続多量生産に適する燃
料電池単体を得ることができる。
Effects of the Invention As is clear from the above explanation, the single fuel cell of the present invention has a simple shape in which the oxygen electrode, the solid electrolyte, and the fuel electrode are stacked one after another in a cylindrical shape. Since there is no need to use different materials in some parts, there is no need to intervene in troublesome operations such as masking in the manufacturing process.However, according to this invention, it can be easily manufactured in one time, and in continuous large quantities. A fuel cell unit suitable for production can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を概略的に示す斜視図、第
2図は固体電解質燃料電池の原理図、第3図は従来の円
筒型単電池の断面図である。 10・・・単電池、 11・・・酸素電極、 12・・
・固体電解質、 13・・・燃料電極、 14・・・ガ
ス供給管、 15・・・導電性材料。 1 第2 図
FIG. 1 is a perspective view schematically showing an embodiment of the present invention, FIG. 2 is a principle diagram of a solid electrolyte fuel cell, and FIG. 3 is a sectional view of a conventional cylindrical unit cell. 10... Cell, 11... Oxygen electrode, 12...
- Solid electrolyte, 13... Fuel electrode, 14... Gas supply pipe, 15... Conductive material. 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 円筒形の固体電解質の内周面に酸素電極と燃料電極との
いずれか一方の電極を設けるとともに、その固体電解質
の外周面に他方の電極を設け、さらに内周側の電極の内
側に導電性のあるガス供給管を挿入し、かつそのガス供
給管を前記内周側の電極に電気的に導通させてなる固体
電解質燃料電池単体の構造。
One electrode, an oxygen electrode or a fuel electrode, is provided on the inner peripheral surface of the cylindrical solid electrolyte, and the other electrode is provided on the outer peripheral surface of the solid electrolyte, and a conductive electrode is provided inside the inner peripheral electrode. A single solid electrolyte fuel cell structure in which a gas supply pipe is inserted and the gas supply pipe is electrically connected to the electrode on the inner peripheral side.
JP1138367A 1989-05-31 1989-05-31 Solid electrolyte fuel cell unit Expired - Lifetime JPH077673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1138367A JPH077673B2 (en) 1989-05-31 1989-05-31 Solid electrolyte fuel cell unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1138367A JPH077673B2 (en) 1989-05-31 1989-05-31 Solid electrolyte fuel cell unit

Publications (2)

Publication Number Publication Date
JPH034452A true JPH034452A (en) 1991-01-10
JPH077673B2 JPH077673B2 (en) 1995-01-30

Family

ID=15220277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1138367A Expired - Lifetime JPH077673B2 (en) 1989-05-31 1989-05-31 Solid electrolyte fuel cell unit

Country Status (1)

Country Link
JP (1) JPH077673B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359955A (en) * 1989-07-28 1991-03-14 Ngk Insulators Ltd Fuel battery generator
JP2005158529A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel battery cell, cell stack, and fuel battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359955A (en) * 1989-07-28 1991-03-14 Ngk Insulators Ltd Fuel battery generator
JP2005158529A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel battery cell, cell stack, and fuel battery

Also Published As

Publication number Publication date
JPH077673B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
CA1301243C (en) High bulk self-supporting electrode with integral gas feed conduit for solid oxide fuel cells
US8389180B2 (en) Electrolytic/fuel cell bundles and systems including a current collector in communication with an electrode thereof
RU2310952C2 (en) Tubular cell (alternatives), tubular-cell battery with current passage over generating line, and method for its manufacture
US20040115503A1 (en) Planar electrochemical device assembly
JP2004511070A (en) Solid oxide fuel cell component and method of manufacturing solid oxide fuel cell component
JPH0159705B2 (en)
JPH0536417A (en) Hollow thin plate type solid electrolytic fuel cell
JPS63261678A (en) Electrode for solid oxide fuel battery
US7566509B2 (en) Tubular fuel cell and method of producing the same
JP3057342B2 (en) Solid electrolyte fuel cell
JP3636406B2 (en) SUPPORT FOR SOLID ELECTROLYTE FUEL CELL, UNIT CELL FOR SOLID ELECTROLYTE FUEL CELL, AND METHOD FOR PRODUCING SUPPORT FOR SOLID ELECTROLYTE FUEL CELL
JPH046752A (en) Solid electrolyte fuel cell and manufacture thereof
JPH07235316A (en) Cylindrical solid electrolyte fuel cell
JPH034452A (en) Structure of unitary solid electrolyte fuel cell
JP5010133B2 (en) SUBSTRATE TUBE FOR FUEL CELL, FUEL CELL AND METHOD FOR PRODUCING FUEL CELL
JP2980921B2 (en) Flat solid electrolyte fuel cell
JPH11121019A (en) Electrochemical cell and electrochemical device
JPH07145492A (en) Steam electrolytic cell
JPH03238758A (en) Fuel cell of solid electrolyte type
JP2001060461A (en) Base tube for fuel cell and fuel cell module
JPH07130385A (en) Cylindrical lateral band type solid electrolyte electrolytic cell
JP2675546B2 (en) Solid electrolyte fuel cell
JP3257363B2 (en) Solid oxide fuel cell
JP2777725B2 (en) Solid electrolyte type cylindrical fuel cell unit and its manufacturing method
JPH1167244A (en) Solid electroyte fuel cell with hollow structure and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080130

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 15