JPH0344479B2 - - Google Patents

Info

Publication number
JPH0344479B2
JPH0344479B2 JP57175918A JP17591882A JPH0344479B2 JP H0344479 B2 JPH0344479 B2 JP H0344479B2 JP 57175918 A JP57175918 A JP 57175918A JP 17591882 A JP17591882 A JP 17591882A JP H0344479 B2 JPH0344479 B2 JP H0344479B2
Authority
JP
Japan
Prior art keywords
diaphragm
ceramic
pulp
shape
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57175918A
Other languages
Japanese (ja)
Other versions
JPS5964998A (en
Inventor
Akira Nakamura
Takao Nakatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP17591882A priority Critical patent/JPS5964998A/en
Publication of JPS5964998A publication Critical patent/JPS5964998A/en
Publication of JPH0344479B2 publication Critical patent/JPH0344479B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、セラミツクからなる振動板を任意
の形状に安価に製造し得る音響振動板の製造方法
に関するものである。 一般に、セラミツクは比ヤング率(E/ρ)が
大きくて、かつ価格も安いので、音響振動板とし
て非常に好適である。しかし、その反面、脆性に
問題があり、特に焼結前のセラミツク粉末をプレ
ス成形したグリーンコア状態のものは極めてもろ
いため、セラミツク単体で振動板を形成すること
は困難である。 このような問題を解決するために、Al合金か
らなる軽金属箔の表面にアルミナ等のセラミツク
を溶射して形成した複合板材を作り、これを音響
振動板に使用することが提案されている(特開昭
56−109096号)。 しかしながら、軽金属箔の材料としては、E/
ρ値の大きいB、Be等は脆性が悪いため使用で
きず、E/ρ値は小さくても脆性の良いAl系の
金属を使用せざるを得ない。このため、複合板材
としては十分に大きなE/ρ値は得られなかつ
た。 一方、振動板の形状に形成された型板に、セラ
ミツクやサーメツト等の粉末を溶射して堆積せし
め、型板上に同形状の薄板を形成した後、薄板を
型板から分離して振動板を製造する方法が提案さ
れている(特開昭56−115097号公報参照)。 しかしながら、この方法によると、薄板と型板
を分離するのに両者の熱収縮の差を利用したり、
また型板を溶解させたりして行なつているので製
造工程が煩雑になり、さらに粉末を溶融粒子とし
て吹き付けるための溶射装置が高価になるため、
製造コストが非常に高くなるという欠点があつ
た。 この発明は、上記の点に鑑みてなされたもので
あり、その目的とするところは、比ヤング率の大
きいセラミツクからなる振動板を任意の形状に、
かつ安価に製造することができる音響振動板の製
造方法を提供することにある。 このような目的を達成するために、この発明
は、パルプとセラミツク微粒子の混合体を振動板
の形状に形成した後、パルプ分を焼失させるべく
所定時間脱炭処理を行い、しかる後にセラミツク
分を焼結してセラミツクの振動板を作るようにし
たものである。 以下、この発明を実施例により詳細に説明す
る。 第1図は、この発明に係る音響振動板の製造方
法の一実施例を行なうための抄紙装置の構成図で
ある。図において第1原料タンク1にはパルプ2
が貯蔵されており、このパルプ2は調整弁3を開
くことによりパイプ4を通つて混合タンク5に流
入するようになつている。このパルプ2は、その
表面がセラミツク粉末が附着しやすいように可能
なかぎり、リグニンを除去してフイブリル化しそ
の表面積が多くなるように処理されており、かつ
陽イオン変性度を適当に調整されている。第2原
料タンク6には例えば、アルミナ(Al2O3)等か
らなる微粒子化されたセラミツク粉末7が貯蔵さ
れており、このセラミツク粉末7は調整弁8を開
くことによりパイプ9を通つて混合タンク5に流
入するようになつている。これらパルプ2とセラ
ミツク粉末7との混合比は調整弁3,8の操作に
よつて調整される。混合タンク5の内部には攪拌
フアン10が設けられており、攪拌モータ11の
動作によつて回転するようになつている。混合タ
ンク5内に流入したパルプ2とセラミツク粉末7
は攪拌フアン10によつて混合されて混合懸濁液
12となる。 ここで、パルプ2は表面がフイブリル化されて
いるためセラミツク粉末が多量に附着し、しかも
パルプ2は適当な陽イオン変性度のためセラミツ
ク粉末は強く附着する。 そして、混合タンク5に貯蔵された混合懸濁液
12は、調整弁13を開くことによつてパイプ1
4を通つて抄紙槽15に送られるようになつてい
る。この抄紙槽15には送水パイプ16と脱水パイ
プ17を経て水槽18が接続されており、水が槽
内を循環するようになつている。すなわち、弁1
9,20を開いて送水ポンプ21と脱水ポンプ2
2を動作させると、水槽18の水は抄紙槽15の
上部に送り込まれその底部から脱水されて槽内を
上から下へ移動する。このように水を循環させた
状態で調整弁13を開いて一定量の混合懸濁液1
2を抄紙槽15に送り込む。送り込まれた混合懸
濁液12は水とともに下方に流れるが、抄紙槽1
5内に設けられた振動板の形状に形成された抄紙
金網23によつて抄紙される。そして、抄紙槽1
5内の混合懸濁液12の濃度は水の循環とともに
除々に薄くなつていくが、この濃度が0.02%程度
になり、混合懸濁液12が完全に抄紙金網23に
抄紙された時点で送水ポンプ21を停止する。脱
水ポンプ22は継続して動作させて槽内の水を完
全に除去すると、抄紙金網23上に振動板の形状
に形成されたセラミツク粉末が附着したパルプか
らなる振動板素材24が残る。そして、無水の振
動板素材重量の3〜4倍程度の含水状態の時点
で、振動板素材24を抄紙金網23とも抄紙槽1
5から取り出す。しかる後、振動板素材24を抄
紙金網23からはずす。 次にこの振動板素材24を型で成形する。 第2図は、成形型の断面図である。図におい
て、26は振動板形状に凹に形成された上型、2
7は振動板形状に凸に形成された下型である。振
動板素材24を下型27にセツトした後、上型2
6を下降して成形すると、第3図に示すように、
正確に振動板形状に成形された振動板素材24が
得られる。 次に、成形した振動板素材24を加熱炉で加熱
する。 第4図は、加熱炉の断面図である。図におい
て、耐火物からなる外容器29内には同じく耐火
物からなる内容器30が設けられ、この内容器3
0の外周面にはヒータ31が巻かれている。な
お、32は内容器30内に設けられた多数の細孔
を有する仕切板、33は蓋板である。 ここで、振動板素材24を仕切板32の上に載
せ、蓋板33をかぶせた後、ヒータ31に通電し
て炉内を加熱する。炉内温度を200℃から200℃/
hの加熱速度で600℃まで上昇させると、400℃前
後で振動板素材24中のバルブ分が燃焼して炭化
し、引続いて400℃〜600℃間にて炭化物がガス化
して蒸発するとともに、セラミツクのガラス化成
分が溶融する。そして、600℃にて1時間程度保
持して脱炭する。次いで、600℃〜1200℃又は
1300℃の間、150℃〜160℃/hの加熱速度で温度
を上昇させて締め焼きすなわちセラミツクの焼結
を行なう。この締め焼き工程によつて、パルプ分
が燃焼してできた空孔が収縮して埋まる。 このようにして、振動板素材24はパルプ分が
完全に焼失し、セラミツク分のみが焼結して残る
ために、セラミツク単体からなる振動板が得られ
る。 セラミツク材としてはこのほか次の表に示す材
料等が使用できる。
The present invention relates to a method for manufacturing an acoustic diaphragm, which can inexpensively manufacture a diaphragm made of ceramic into any desired shape. In general, ceramics have a large specific Young's modulus (E/ρ) and are inexpensive, so they are very suitable as acoustic diaphragms. However, on the other hand, there is a problem with brittleness, and in particular, a green core obtained by press-molding ceramic powder before sintering is extremely brittle, making it difficult to form a diaphragm from ceramic alone. In order to solve these problems, it has been proposed to create a composite plate material by thermally spraying ceramic such as alumina onto the surface of a light metal foil made of an Al alloy, and to use this material as an acoustic diaphragm (in particular, Kaisho
56-109096). However, as a material for light metal foil, E/
B, Be, etc., which have a large ρ value, cannot be used because of their poor brittleness, and Al-based metals, which have good brittleness even if their E/ρ value is small, must be used. For this reason, a sufficiently large E/ρ value could not be obtained as a composite plate material. On the other hand, powder such as ceramic or cermet is deposited on a template formed in the shape of a diaphragm by thermal spraying to form a thin plate of the same shape on the template, and then the thin plate is separated from the template to form a diaphragm. A method of manufacturing has been proposed (see Japanese Patent Application Laid-open No. 115097/1983). However, according to this method, the difference in thermal contraction between the thin plate and the template is used to separate the thin plate and the template.
In addition, the manufacturing process is complicated because the template is melted, and the thermal spraying equipment for spraying the powder as molten particles becomes expensive.
The drawback was that the manufacturing cost was extremely high. This invention was made in view of the above points, and its purpose is to form a diaphragm made of ceramic with a large specific Young's modulus into an arbitrary shape.
Another object of the present invention is to provide a method for manufacturing an acoustic diaphragm that can be manufactured at low cost. In order to achieve such an object, the present invention forms a mixture of pulp and ceramic fine particles into the shape of a diaphragm, then decarburizes it for a predetermined period of time to burn out the pulp, and then removes the ceramic. It was sintered to make a ceramic diaphragm. Hereinafter, this invention will be explained in detail with reference to Examples. FIG. 1 is a block diagram of a paper making apparatus for carrying out an embodiment of the method for manufacturing an acoustic diaphragm according to the present invention. In the figure, the first raw material tank 1 contains pulp 2.
is stored, and this pulp 2 flows into a mixing tank 5 through a pipe 4 by opening a regulating valve 3. This pulp 2 has been treated to remove as much lignin as possible to increase its surface area by fibrillating it so that the ceramic powder can easily adhere to it, and the degree of cation modification has been appropriately adjusted. There is. A finely divided ceramic powder 7 made of, for example, alumina (Al 2 O 3 ) is stored in the second raw material tank 6 , and this ceramic powder 7 is mixed through a pipe 9 by opening a regulating valve 8 . It is designed to flow into tank 5. The mixing ratio of the pulp 2 and the ceramic powder 7 is adjusted by operating the regulating valves 3 and 8. A stirring fan 10 is provided inside the mixing tank 5, and is rotated by the operation of a stirring motor 11. Pulp 2 and ceramic powder 7 flowing into mixing tank 5
are mixed by a stirring fan 10 to form a mixed suspension 12. Here, since the pulp 2 has a fibrillated surface, a large amount of ceramic powder adheres to it, and since the pulp 2 has an appropriate degree of cation modification, the ceramic powder adheres strongly. Then, the mixed suspension 12 stored in the mixing tank 5 is transferred to the pipe 1 by opening the regulating valve 13.
4 to the paper making tank 15. A water tank 18 is connected to the papermaking tank 15 via a water supply pipe 16 and a dewatering pipe 17, so that water circulates within the tank. That is, valve 1
Open 9 and 20 and connect the water pump 21 and dehydration pump 2.
2 is operated, the water in the water tank 18 is sent to the upper part of the papermaking tank 15, is dehydrated from the bottom, and moves from the top to the bottom in the tank. With the water circulating in this way, open the regulating valve 13 to pump a certain amount of mixed suspension 1.
2 is fed into the papermaking tank 15. The fed mixed suspension 12 flows downward together with water, but the papermaking tank 1
Paper is made by a paper making wire mesh 23 formed in the shape of a diaphragm provided in the paper making machine 5. And paper making tank 1
The concentration of the mixed suspension 12 in the paper-making wire mesh 23 gradually becomes thinner as the water circulates, but when this concentration reaches about 0.02% and the mixed suspension 12 is completely transferred to the paper-making wire mesh 23, the water supply is stopped. Stop the pump 21. When the dewatering pump 22 is operated continuously to completely remove the water in the tank, a diaphragm material 24 made of pulp and having ceramic powder adhered thereon, formed in the shape of a diaphragm, remains on the paper-making wire mesh 23. Then, when the diaphragm material 24 is in a water-containing state of about 3 to 4 times the weight of the anhydrous diaphragm material, the diaphragm material 24 and the papermaking wire mesh 23 are added to the papermaking tank 1.
Take it out from 5. After that, the diaphragm material 24 is removed from the paper wire mesh 23. Next, this diaphragm material 24 is molded with a mold. FIG. 2 is a sectional view of the mold. In the figure, 26 is an upper mold formed concavely in the shape of a diaphragm;
7 is a lower mold formed in a convex shape in the shape of a diaphragm. After setting the diaphragm material 24 on the lower mold 27, the upper mold 2
6 is lowered and molded, as shown in Figure 3,
A diaphragm material 24 accurately formed into a diaphragm shape is obtained. Next, the formed diaphragm material 24 is heated in a heating furnace. FIG. 4 is a sectional view of the heating furnace. In the figure, an inner container 30 also made of a refractory material is provided inside an outer container 29 made of a refractory material.
A heater 31 is wound around the outer circumferential surface of 0. Note that 32 is a partition plate provided in the inner container 30 and has a large number of pores, and 33 is a lid plate. Here, after placing the diaphragm material 24 on the partition plate 32 and covering it with the lid plate 33, the heater 31 is energized to heat the inside of the furnace. Increase the furnace temperature from 200℃ to 200℃/
When the temperature is raised to 600°C at a heating rate of h, the bulb portion of the diaphragm material 24 burns and carbonizes at around 400°C, and subsequently, the carbide gasifies and evaporates between 400°C and 600°C. , the vitrification component of the ceramic is melted. Then, it is held at 600°C for about 1 hour to decarburize. Then 600℃~1200℃ or
The temperature is increased to 1300 DEG C. at a heating rate of 150 DEG C. to 160 DEG C./h to sinter the ceramic. This compaction process shrinks and fills the pores created by the combustion of the pulp. In this manner, the pulp portion of the diaphragm material 24 is completely burned away, and only the ceramic portion remains after being sintered, so that a diaphragm made solely of ceramic is obtained. Other ceramic materials that can be used include those shown in the table below.

【表】 この実施例の方法では、抄紙技術を用いて振動
板素材を形成しているので、素材を均一に所定の
薄さに形成でき、しかも抄紙金網の形状および成
形型の形状によつて、どのような形でも容易に形
成できる。 このように、この発明に係る音響振動板の製造
方法によると、パルプにセラミツク微粒子を附着
した混合体を振動板形状に形成した後、パルプ分
を焼失させるとともにセラミツク分を焼結するた
め、従来のような高価な溶射装置を用いることな
く、かつ溶射された薄板と型板とを分離する煩雑
な工程が必要なく、簡単な製造工程で安価にセラ
ミツク単体の振動板を得ることができる。そし
て、脆性が極めて悪い焼結前のセラミツク粉末を
プレス成形したグリーンコア状態を経ることなく
製造することが可能であるため、作業性が向上す
る。また、振動板はセラミツク単体で構成される
ため、従来の複合板材に比して大きなE/ρ値を
得ることができ、スピーカ等に用いて音響特性を
大幅に向上できる。 また、セラミツクの焼結温度未満で、かつパル
プ成分が炭化し得る温度で所定時間保持すること
により、混合体のパルプ成分がガス化して蒸発し
てしまうため、セラミツク成分がまだ焼結してい
ない状態でパルプ成分は完全に焼失してしまう。
このために、純度の高いセラミツク振動板を容易
に得ることができる。 このように、この発明によると数多くの優れた
効果がある。
[Table] In the method of this example, the diaphragm material is formed using papermaking technology, so the material can be formed uniformly to a predetermined thickness. , can be easily formed into any shape. As described above, according to the method for manufacturing an acoustic diaphragm according to the present invention, after forming a mixture of pulp and ceramic fine particles into the shape of a diaphragm, the pulp portion is burnt out and the ceramic portion is sintered. To obtain a single ceramic diaphragm at low cost through a simple manufacturing process without using an expensive thermal spraying device such as the above, and without the need for a complicated process of separating a thermally sprayed thin plate and a template. Further, since it is possible to manufacture the ceramic powder without going through a green core state in which unsintered ceramic powder, which has extremely poor brittleness, is press-molded, workability is improved. Furthermore, since the diaphragm is made of ceramic alone, it can obtain a larger E/ρ value than conventional composite plates, and can be used in speakers and the like to greatly improve acoustic characteristics. In addition, by holding the mixture for a predetermined time at a temperature below the sintering temperature of the ceramic and at a temperature at which the pulp components can carbonize, the pulp components of the mixture gasify and evaporate, so that the ceramic components are not yet sintered. In this state, the pulp components are completely burned away.
Therefore, a ceramic diaphragm with high purity can be easily obtained. As described above, the present invention has many excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る音響振動板の製造方法
の一実施例に用いる抄紙装置の構成図、第2図は
成形型の断面図、第3図は成形した振動板素材の
断面図、第4図は加熱炉の断面図である。 2……パルプ、5……混合タンク、7……セラ
ミツク粉末、12……混合懸濁液、15……抄紙
槽、18……水槽、21……送水ポンプ、22…
…脱水ポンプ、23……抄紙金網、24……振動
板素材、26……上型、27……下型、29……
外容器、30……内容器、31……ヒータ、32
……仕切板。
FIG. 1 is a block diagram of a paper making apparatus used in an embodiment of the method for manufacturing an acoustic diaphragm according to the present invention, FIG. 2 is a sectional view of a mold, and FIG. 3 is a sectional view of a molded diaphragm material. FIG. 4 is a sectional view of the heating furnace. 2...Pulp, 5...Mixing tank, 7...Ceramic powder, 12...Mixed suspension, 15...Paper making tank, 18...Water tank, 21...Water pump, 22...
... Dehydration pump, 23 ... Paper wire mesh, 24 ... Diaphragm material, 26 ... Upper mold, 27 ... Lower mold, 29 ...
Outer container, 30... Inner container, 31... Heater, 32
...Partition board.

Claims (1)

【特許請求の範囲】 1 パルプの繊維表面にセラミツクの微粒子を付
着させた混合体を生成する混合体生成工程と、 この混合体を振動板の形状に形成する形状形成
工程と、 この振動板の形状に形成した混合体を、前記セ
ラミツクの焼結温度未満で、かつ前記パルプ成分
が炭化した後ガス化し得る温度で、所定時間保持
する脱炭工程と、 この脱炭工程に次いで前記セラミツクの焼結温
度以上の温度で前記セラミツク成分を焼結する焼
結工程と からなることを特徴とする音響振動板の製造方
法。
[Claims] 1. A mixture production step of producing a mixture in which fine ceramic particles are attached to the surface of pulp fibers; A shape forming step of forming this mixture into the shape of a diaphragm; a decarburization step in which the mixture formed into a shape is held for a predetermined time at a temperature below the sintering temperature of the ceramic and at a temperature at which the pulp components are carbonized and then gasified; and after this decarburization step, the ceramic is sintered. A method for manufacturing an acoustic diaphragm, comprising a sintering step of sintering the ceramic component at a temperature higher than the sintering temperature.
JP17591882A 1982-10-06 1982-10-06 Production of acoustic diaphragm Granted JPS5964998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17591882A JPS5964998A (en) 1982-10-06 1982-10-06 Production of acoustic diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17591882A JPS5964998A (en) 1982-10-06 1982-10-06 Production of acoustic diaphragm

Publications (2)

Publication Number Publication Date
JPS5964998A JPS5964998A (en) 1984-04-13
JPH0344479B2 true JPH0344479B2 (en) 1991-07-08

Family

ID=16004521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17591882A Granted JPS5964998A (en) 1982-10-06 1982-10-06 Production of acoustic diaphragm

Country Status (1)

Country Link
JP (1) JPS5964998A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161099A (en) * 1985-01-09 1986-07-21 Mitsubishi Electric Corp Manufacture of diaphragm for speaker
JP2700314B2 (en) * 1987-05-06 1998-01-21 三菱電機株式会社 Speaker diaphragm
JPS6442698U (en) * 1987-09-09 1989-03-14

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863292A (en) * 1981-10-12 1983-04-15 Mitsubishi Electric Corp Speaker diaphragm

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863292A (en) * 1981-10-12 1983-04-15 Mitsubishi Electric Corp Speaker diaphragm

Also Published As

Publication number Publication date
JPS5964998A (en) 1984-04-13

Similar Documents

Publication Publication Date Title
CN108585810B (en) Microporous ceramic, preparation method thereof and atomizing core
CN109608206B (en) Heating element with heating net embedded on porous ceramic surface and preparation method thereof
US2553759A (en) Method for making refractory bodies and product thereof
CN109437875A (en) Micropore ceramics, ceramic heating element and its preparation method and application
CN104496507B (en) A kind of labyrinth ceramic part manufacture method towards gas turbine hot-end component
US4744540A (en) Casting mold for manufacturing grid plates for lead batteries
US4320079A (en) Method for making shaped carbon fiber structures
JPH0344479B2 (en)
US3836613A (en) Method of making liner in an induction melting furnace
CN101168484A (en) Method for manufacturing casing of heavy combustion engine II-stage diverter blade
CN114315319A (en) Preparation method of 25 kg high-temperature-resistant and wear-resistant furnace lining material of medium-frequency vacuum induction furnace and furnace lining building method
CN113735555A (en) Porous body, preparation method thereof and electronic cigarette using porous body
US20010033038A1 (en) Method of producing metal/ceramic composite, and method of producing porous ceramic body
CN105906369A (en) Sintering method of silicon carbide preform and preparation method of aluminum silicon carbide board
CN211091864U (en) Novel porous ceramic heating element
JPS6186473A (en) Manufacture of inorganic formed article
JP2864314B2 (en) Manufacturing method of molten metal tank
US1993955A (en) Permeable ceramic diaphragm
EP0523019A2 (en) Method for manufacturing dental prosthetic structures
CN108126413A (en) A kind of Ti-Ti5Si3The preparation method of complex gradient porous filtering piece
JP2008106299A (en) Floor plate for use in sintering of porous body and method for manufacturing porous sintered body
JPS63303855A (en) Production of low-expansion substrate
US1547787A (en) Shrink-head casing
RU2017562C1 (en) Ceramic multiple casting mold
JPH09286658A (en) Production of ceramic spherical hollow body and manufacture of ceramic panel using ceramic spherical hollow body as constituent material