JPH0344441A - Formed body of aluminum alloy with high strength and heat resistance and its production - Google Patents

Formed body of aluminum alloy with high strength and heat resistance and its production

Info

Publication number
JPH0344441A
JPH0344441A JP1179731A JP17973189A JPH0344441A JP H0344441 A JPH0344441 A JP H0344441A JP 1179731 A JP1179731 A JP 1179731A JP 17973189 A JP17973189 A JP 17973189A JP H0344441 A JPH0344441 A JP H0344441A
Authority
JP
Japan
Prior art keywords
powder
alloy
strength
aluminum alloy
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1179731A
Other languages
Japanese (ja)
Inventor
Mutsumi Abe
睦 安倍
Kenichi Aota
健一 青田
Takashi Motoda
元田 高司
Hideo Shingu
新宮 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1179731A priority Critical patent/JPH0344441A/en
Publication of JPH0344441A publication Critical patent/JPH0344441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve heat resistance and to provide high strength by blending specific amounts of Fe powder with an Al (alloy) powder, forming an amorphous region in a part of the resulting powder mixture by means of mechanical alloying treatment, and then carrying out solidification and forming. CONSTITUTION:An Fe powder is blended by 1-10wt.% with an Al or Al alloy powder. The resulting powder mixture is subjected to mechanical alloying treatment by using a ball mill, an attritor, etc., by which an amorphous region is formed in a part of the powder mixture. Subsequently, solidification and forming are performed and the amorphous part is decomposed and formed into a refined structure, by which a formed body in which an Al-base fine structure is stuck by means of the finely dispersed grains of Fe can be obtained. By this method, a heat resisting Al alloy showing excellent strength both at ordinary temp. and at high temp. can be produced while obviating the necessity of the use of SiC, alumina fiber, etc.

Description

【発明の詳細な説明】 [a業上の利用分野] 本発明は高温環境下で使用されるアルミニウム合金成形
体及びその製造方法に関し、詳細には、内燃機関を始め
とする高強度及び耐熱性の要求される機械構造材料の分
野に利用されるアルミニウム合金成形体及びその製造方
法に関するものである。
Detailed Description of the Invention [Field of Application in Industry A] The present invention relates to an aluminum alloy molded body used in high-temperature environments and a method for manufacturing the same, and in particular, it relates to aluminum alloy molded bodies used in high-temperature environments, and in particular, to high-strength and heat-resistant molded bodies such as those used in internal combustion engines. The present invention relates to an aluminum alloy molded body used in the field of mechanical structural materials requiring the following, and a method for manufacturing the same.

[従来の技術] Al及びAl合金は軽量性や耐熱性を備える他常温強度
においても優れたものを持っており広範な分野における
基礎材料として賞月されている。
[Prior Art] Al and Al alloys are lightweight, heat resistant, and have excellent strength at room temperature, and are prized as basic materials in a wide range of fields.

しかし高温強度が低いという難点があるため、自動車を
始めとする内燃機関、或は比較的高温環境下で使用され
る各種電気製品や機械製品への適用については夫々の要
求性能が一段と厳しさを見せていることもあって、利用
されるに至っていない。
However, it has the disadvantage of low high-temperature strength, so the required performance has become even more stringent when applied to internal combustion engines such as automobiles, and various electrical products and mechanical products used in relatively high-temperature environments. Partly because it's on display, it hasn't come to the point where it's being used.

例えばAl合金の中でも比較的優れた高温強度を有する
とされているAl−Cu系合金であっても、200℃を
超える高温環境下では硬化粒子であるAt−Cu系析出
物の粗大化を起こして強度低下を招くため、耐熱性の要
求される用途への適用には限界があるとされていた。
For example, even with Al-Cu alloys, which are said to have relatively excellent high-temperature strength among Al alloys, At-Cu precipitates, which are hardened particles, become coarse in high-temperature environments exceeding 200°C. It was thought that there was a limit to its application to applications requiring heat resistance, as this would lead to a decrease in strength.

これに対しSiCウィスカーやアルミナ繊維を補強材と
するAl系複合素材が注目を集めつつあり、Al合金の
用途拡大が検討されているが、本合金の基地となるAI
が熱的じ軟弱であるという本質が変らないこと、並びに
高価であるということが障害となり、実用面における利
用範囲の拡大という成果は得られていない。
In contrast, Al-based composite materials that use SiC whiskers and alumina fibers as reinforcing materials are attracting attention, and expanding the use of Al alloys is being considered.
However, it has not been possible to expand the range of practical use due to the fact that it remains thermally weak and that it is expensive.

またFeやCr等の遷移金属元素を多量じ合金化して急
冷凝固アルよニウム粉末合金を得ることが検討され、耐
熱性や耐摩耗性の向上に有効である旨報告されている、
しかし急速冷却法の採用によっていったん固溶せしめら
れたFe等の過飽和元素は、上記粉末合金の固化成形過
程や高温環境下での使用中に金属間化合物を形成し、そ
れに伴う粗大粒子の形成によって強度低下を招くことが
判明し、結局耐熱性の向上効果は非常に不十分なもので
あった。
In addition, it has been studied to obtain a rapidly solidified aluminum powder alloy by alloying large amounts of transition metal elements such as Fe and Cr, and it has been reported that it is effective in improving heat resistance and wear resistance.
However, supersaturated elements such as Fe, which have been made into a solid solution by rapid cooling, form intermetallic compounds during the solidification process of the powder alloy or during use in high-temperature environments, resulting in the formation of coarse particles. It was found that this resulted in a decrease in strength, and the effect of improving heat resistance was ultimately very insufficient.

[発明が解決しようとする課題] 本発明は上記の様な従来技術の展開を憂慮し、高強度耐
熱性アルミニウム合金成形体の提供を目的とするもので
あり、その具体的手段としてはアルミニウム合金の耐熱
性支配因子と考えられる高温での転位の移動度に着目し
、集団としての転位の発生及び再配列を防止することが
できる様な微視組織の導入を企図した。また経済性を担
保するため高価なセラミックスの使用を避け、比較的安
価C人手できる金属粉末を利用することとした。
[Problems to be Solved by the Invention] The present invention is concerned with the development of the prior art as described above, and aims to provide a high-strength, heat-resistant aluminum alloy molded body. Focusing on the mobility of dislocations at high temperatures, which is considered to be the governing factor for heat resistance, we attempted to introduce a microstructure that would prevent the generation and rearrangement of dislocations as a group. In addition, in order to ensure economic efficiency, we decided to avoid the use of expensive ceramics and instead use metal powder that is relatively inexpensive and can be made by hand.

[課題を解決する為の手段] 本発明によって提供される高強度耐熱性アルミニウム合
金成形体とは、AIまたはAl合金にFeが1〜10重
量%配合され、Al基の微細組織がFeの微細分散粒子
によって固着されたものである。またこの様な成形体を
製造する為の具体的手段としては、AlまたはAl合金
粉末にFe粉末を1〜10重量%配合し、機械的合金化
処理を行なって混合粉末の一部に非晶質領域を形成し、
次いでこれを固化成形する方法が提供される。
[Means for Solving the Problems] The high-strength, heat-resistant aluminum alloy molded body provided by the present invention is one in which 1 to 10% by weight of Fe is blended into AI or Al alloy, and the microstructure of the Al group is composed of Fe microstructure. It is fixed by dispersed particles. In addition, as a specific means for manufacturing such a compact, 1 to 10% by weight of Fe powder is blended with Al or Al alloy powder, and a part of the mixed powder is amorphous by mechanical alloying treatment. form a quality area,
A method of solidifying the same is then provided.

[作用] 本発明に係るアルミニウム合金成形体は、基地となるア
ルミニウム中に微細組織を形成Vると共に、この微細組
織をFeの微細分散粒子によって固着したものであり、
その製造手段については特に制限される訳ではないが、
本発明者らがもつとも優れた手段として推奨できる方法
を説明すれば下記の通りである。
[Function] The aluminum alloy molded body according to the present invention has a fine structure formed in aluminum serving as a base, and this fine structure is fixed by finely dispersed particles of Fe,
Although there are no particular restrictions on the manufacturing method,
The method that the present inventors recommend as an excellent means is as follows.

若干の不純物(不可避的な元素或は酸化物)を含んでい
ても良いAIまたはAl合金の粉末を主原料とし、これ
に1〜10重量%のFe粉末を混合する。Fe粉末も上
記と同様の不純物を若干量含むことは許容される。この
混合金属粉を、例えばボールミルやアトライター等の粉
砕機、或は大きな機械的エネルギーを負荷することので
きる混合機や攪拌機で処理することによって機械的合金
化を図る。即ち基地のアルミニウムを部分的に非晶質化
し得る機械エネルギーを与え、この非晶質化部分を後の
固化成形工程において分解し微細化構造にしようという
ものである。
The main raw material is an AI or Al alloy powder that may contain some impurities (inevitable elements or oxides), and 1 to 10% by weight of Fe powder is mixed therein. It is permissible for the Fe powder to contain a small amount of the same impurities as mentioned above. Mechanical alloying is achieved by processing this mixed metal powder with a pulverizer such as a ball mill or an attriter, or a mixer or a stirrer capable of applying a large amount of mechanical energy. In other words, mechanical energy is applied to partially amorphize the base aluminum, and this amorphous portion is decomposed in the subsequent solidification molding process to form a fine structure.

機械的合金処理の全所要時間は、原料となる金属粉末混
合物の量、機械的エネルギーの程度を判断して適宜調整
すれば良いことである。こうして基地となるアルミニウ
ムの一部を非晶質化しておけば、この混合粉末を固化成
形する際の圧力及び温度条件下において非晶質領域が分
解を起こし、ここに得られる微細構造部分が熱的に安定
な微細分散粒子によって固着される。この様な特徴的組
織を形成しておくと、従来のAl合金における再結晶軟
化温度とされている400℃以上の高温になっても転移
の再配列が起こらず、高温強度の向上が遠戚される。向
上記固化成形の手段は本発明の範囲を制限するものでは
ないが、代表的な方法としては、例えばAI製またはA
l合金製カプセル中に混合粉末を充填し、該カプセル内
を脱ガスした後、HIP法や押出法を利用して成形する
方法が挙げられる。
The total time required for the mechanical alloying process may be adjusted as appropriate by determining the amount of metal powder mixture used as a raw material and the degree of mechanical energy. If a part of the base aluminum is made amorphous in this way, the amorphous region will decompose under the pressure and temperature conditions during solidification and molding of this mixed powder, and the resulting microstructure will be heated up. It is fixed by physically stable finely dispersed particles. If such a characteristic structure is formed, the rearrangement of dislocations will not occur even at high temperatures of 400°C or higher, which is considered the recrystallization softening temperature of conventional Al alloys, and the high-temperature strength will be improved in a distant manner. be done. Although the means of solidification molding mentioned above does not limit the scope of the present invention, typical methods include, for example, molding made of AI or A
Examples include a method of filling a mixed powder into a capsule made of L alloy, degassing the inside of the capsule, and then molding the capsule using a HIP method or an extrusion method.

本発明におけるFe粉の配合量は1〜10重量%でなけ
ればならず、1重量%未満では微細組織の固着効果が不
十分であり、10ffifc%を超えると粗大Fe粒子
が形成され易くなって却って高温強度の低下を招く危険
がある。
The blending amount of Fe powder in the present invention must be 1 to 10% by weight; if it is less than 1% by weight, the effect of fixing the fine structure is insufficient, and if it exceeds 10ffifc%, coarse Fe particles are likely to be formed. On the contrary, there is a danger that the high-temperature strength will deteriorate.

[実施例] 実IL上 空気アトマイズ法による市販のアルくニウム粉末に、0
.5〜20重景%の水アトマイズ鉄粉を添加し、アトラ
イターを用いて20時間機械的合金化を行なった。得ら
れた混合粉末をAl合金製カプセルに充填し、真空脱気
した後、400℃の塩浴を用いて加熱し、直ちに熱間静
水圧押出(押出比=10)を行ない、12■φの丸棒を
得た。各丸棒について高温強度を測定したところ、第1
表に示す様な結果が得られた。
[Example] Commercially available aluminum powder obtained by real IL air atomization method was
.. 5 to 20% water atomized iron powder was added, and mechanical alloying was performed for 20 hours using an attritor. The obtained mixed powder was filled into an Al alloy capsule, vacuum degassed, heated in a salt bath at 400°C, and immediately subjected to hot isostatic extrusion (extrusion ratio = 10) to form a 12 φ I got a round bar. When we measured the high temperature strength of each round bar, we found that
The results shown in the table were obtained.

第 表 H。No. table H.

a :ビッカース硬さ(kg10n’) :引張強さ(kg/mm’) 第1表に見られる通り、本発明の条件を満足するものは
室温でのビッカース硬度が150 kg/mm2以上、
300℃でのビッカース硬度が100kg/mm2を超
える値を示している。
a: Vickers hardness (kg10n'): Tensile strength (kg/mm') As shown in Table 1, those that satisfy the conditions of the present invention have a Vickers hardness of 150 kg/mm2 or more at room temperature.
The Vickers hardness at 300° C. exceeds 100 kg/mm 2 .

五凰生ユ ガスアトマイズ法で得られた純Al粉末に水アトマイズ
鉄粉を4重量%添加し、アトライターを用いて機械的合
金化を行なった。機械的合金化の処理時間を変更して実
験を行ない、得られた合金粉の組織状態と実施例1の第
1表で示した固化成形後の機械的強度の関係を検討した
ところ第2表の通りであった。
4% by weight of water atomized iron powder was added to pure Al powder obtained by the Gooyugas atomization method, and mechanical alloying was performed using an attritor. Experiments were conducted by changing the mechanical alloying treatment time, and the relationship between the microstructure of the obtained alloy powder and the mechanical strength after solidification and forming shown in Table 1 of Example 1 was examined, and Table 2 shows It was as follows.

弔 表 非晶質;メスバウアー分析にて確認 第2表に示す如く、十分な機械的合金化IA理を加えた
ものは固化成形体中に非晶質領域が認められ、常温はも
とより高温下においても良好な強度が得られている。
Amorphous surface: Confirmed by Mössbauer analysis As shown in Table 2, amorphous regions are observed in the solidified compacts that have been subjected to sufficient mechanical alloying IA process, and are not only resistant at room temperature but also at high temperatures. Good strength was also obtained.

[発明の効果] 本発明は上記の様に構成されているので、常温・高温の
いずれにおいても優れた強度を示す高強度耐熱性アルミ
ニウム合金が提供されることとなった。この際SiCや
アル主す繊維といった高価なセラミックを使用する必要
がないので、経済性についてもこれを十分に満足するこ
とができた。
[Effects of the Invention] Since the present invention is configured as described above, a high-strength, heat-resistant aluminum alloy that exhibits excellent strength at both room temperature and high temperature is provided. In this case, there is no need to use expensive ceramics such as SiC or Al-based fibers, so the economical efficiency can also be fully satisfied.

Claims (2)

【特許請求の範囲】[Claims] (1)AlまたはAl合金にFeが1〜10重量%配合
され、Al基の微細組織がFeの微細分散粒子によって
固着されたものであることを特徴とする高強度耐熱性ア
ルミニウム合金成形体。
(1) A high-strength, heat-resistant aluminum alloy molded article, characterized in that 1 to 10% by weight of Fe is blended with Al or an Al alloy, and the Al-based microstructure is fixed by finely dispersed particles of Fe.
(2)AlまたはAl合金粉末にFe粉末を1〜10重
量%配合し、機械的合金化処理を行なって混合粉末の一
部に非晶質領域を形成し、次いでこれを固化成形するこ
とを特徴とする請求項(1)記載の高強度耐熱性アルミ
ニウム合金成形体の製造方法。
(2) Mixing 1 to 10% by weight of Fe powder with Al or Al alloy powder, performing mechanical alloying treatment to form an amorphous region in a part of the mixed powder, and then solidifying and molding this. A method for producing a high-strength, heat-resistant aluminum alloy molded body according to claim (1).
JP1179731A 1989-07-11 1989-07-11 Formed body of aluminum alloy with high strength and heat resistance and its production Pending JPH0344441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1179731A JPH0344441A (en) 1989-07-11 1989-07-11 Formed body of aluminum alloy with high strength and heat resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1179731A JPH0344441A (en) 1989-07-11 1989-07-11 Formed body of aluminum alloy with high strength and heat resistance and its production

Publications (1)

Publication Number Publication Date
JPH0344441A true JPH0344441A (en) 1991-02-26

Family

ID=16070884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1179731A Pending JPH0344441A (en) 1989-07-11 1989-07-11 Formed body of aluminum alloy with high strength and heat resistance and its production

Country Status (1)

Country Link
JP (1) JPH0344441A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359625B1 (en) * 2000-07-05 2002-11-07 삼성에버랜드 주식회사 Method manufacturing topiary using the branches of tree and thereof topiary
JP2010077475A (en) * 2008-09-25 2010-04-08 Sumitomo Electric Sintered Alloy Ltd Aluminum sintered alloy
CN112030027A (en) * 2020-09-02 2020-12-04 宁波乌卡科技有限公司 Preparation method of multifunctional induction aluminum alloy manipulator material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359625B1 (en) * 2000-07-05 2002-11-07 삼성에버랜드 주식회사 Method manufacturing topiary using the branches of tree and thereof topiary
JP2010077475A (en) * 2008-09-25 2010-04-08 Sumitomo Electric Sintered Alloy Ltd Aluminum sintered alloy
CN112030027A (en) * 2020-09-02 2020-12-04 宁波乌卡科技有限公司 Preparation method of multifunctional induction aluminum alloy manipulator material

Similar Documents

Publication Publication Date Title
CN1084393C (en) Iron aluminide useful as electrical resistance heating element
US6592687B1 (en) Aluminum alloy and article cast therefrom
EP0529993B1 (en) Production of Aluminum matrix composite powder
KR20010094994A (en) Copper Base Alloy, and Methods for Producing Casting and Forging Employing Copper Base Alloy
US4676830A (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
JPH0344441A (en) Formed body of aluminum alloy with high strength and heat resistance and its production
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
JPH0578762A (en) Tial-based composite material having excellent strength and its production
RU2752489C1 (en) Powder material with high thermal conductivity
EP0514498B1 (en) Rapidly solidified aluminum lithium alloys having zirconium
JP2711296B2 (en) Heat resistant aluminum alloy
CN101805860B (en) Spherical silicon phase aluminum-silicon alloy and technological method thereof
JPS60125345A (en) Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JPS62185857A (en) Heat resistant and high strength aluminum alloy
JPS6223952A (en) Al-fe-ni heat-resisting alloy having high toughness and its production
JP2856251B2 (en) High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same
JPH0739615B2 (en) Method for producing Zn-22A1 superplastic powder-potassium titanate composite material
JPH0121856B2 (en)
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property
JP2729479B2 (en) Manufacturing method of aluminum alloy excellent in high temperature strength
JPS6157380B2 (en)
JP2572832B2 (en) Al-based alloy powder for sintering
JP2022180175A (en) Aluminum alloy atomized powder, aluminum alloy extruded material, and method for producing aluminum alloy extruded material
JP2906277B2 (en) Method for producing high-strength Al lower 3 Ti-based alloy
JPH0320453B2 (en)