JPH0344259B2 - - Google Patents

Info

Publication number
JPH0344259B2
JPH0344259B2 JP3523184A JP3523184A JPH0344259B2 JP H0344259 B2 JPH0344259 B2 JP H0344259B2 JP 3523184 A JP3523184 A JP 3523184A JP 3523184 A JP3523184 A JP 3523184A JP H0344259 B2 JPH0344259 B2 JP H0344259B2
Authority
JP
Japan
Prior art keywords
hot metal
defect
signal
light
shot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3523184A
Other languages
Japanese (ja)
Other versions
JPS60179637A (en
Inventor
Hirosato Yamane
Shigeru Nakaji
Junjiro Yamazaki
Hideyuki Hanabusa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3523184A priority Critical patent/JPS60179637A/en
Publication of JPS60179637A publication Critical patent/JPS60179637A/en
Publication of JPH0344259B2 publication Critical patent/JPH0344259B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G3/00Apparatus for cleaning or pickling metallic material
    • C23G3/02Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously
    • C23G3/027Associated apparatus, e.g. for pretreating or after-treating

Description

【発明の詳細な説明】 (技術分野) 熱間金属材料の表面欠陥検出方法に関して、こ
の明細書で述べる技術内容は、光学式アクテイブ
法による表面欠陥の検出に当り、該材料の表面に
生成した酸化スケールの効果的な除去を図ると共
に、外部光の投光方法および受光方法に工夫を加
えることにより、欠陥検出精度を向上させること
に関連している。
[Detailed Description of the Invention] (Technical Field) Regarding a method for detecting surface defects in hot metal materials, the technical content described in this specification is to detect defects generated on the surface of the material when detecting surface defects using an optical active method. It is related to improving defect detection accuracy by effectively removing oxide scale and adding innovation to the method of projecting and receiving external light.

(従来技術とその問題点) 従来、熱間金属材料の表面欠陥を検出する代表
的な方法として、 (1) 熱間金属材料から放射される自発光たとえば
赤外光の処理信号から表面欠陥を検出するいわ
ゆる光学式パツシブ法、 (2) 該試料に外部から光を照射し、その反射光の
処理信号から表面欠陥を検出するいわゆる光学
式アクテイブ法および (3) 上記した2つの方法を利用したもので、反射
光よび自発光を同一光学系で受光したのち分光
し、それぞれ個別に処理した信号から、異なる
表面欠陥を検出する方法 などが知られている。
(Prior art and its problems) Conventionally, typical methods for detecting surface defects in hot metal materials include: (1) detecting surface defects from processed signals of self-luminescence, such as infrared light, emitted from hot metal materials; (2) the so-called optical active method, in which the sample is irradiated with light from the outside and surface defects are detected from the processed signal of the reflected light; and (3) the two methods described above are used. A known method is to receive reflected light and self-emitted light using the same optical system, separate them, and detect different surface defects from the separately processed signals.

しかるに上掲した従来法はいずれも、熱間金属
材料の表面に生成した酸化鉄の悪影響をまともに
受けていたため、これまで表面欠陥の検出に当つ
ては、それに先立つて脱スケール処理を施すこと
が不可欠とされた。
However, all of the conventional methods listed above were affected by the adverse effects of iron oxide generated on the surface of hot metal materials, so until now when detecting surface defects, it was necessary to perform descaling treatment beforehand. was considered essential.

ところでかかる脱スケール処理法としては、た
とえば特開昭52−100281号公報において高圧水を
利用する方法が提案されている。しかしながらこ
の方法は、材料によつては水噴射によつて割れが
誘起されるものもあるために新たな欠陥を生むお
それが大きく、また水をかけることは材料の温度
低下を招来することでもあり、省エネルギーから
の立場からも好ましくなかつた。
By the way, as such a descaling treatment method, for example, a method using high pressure water has been proposed in Japanese Patent Application Laid-Open No. 100281/1983. However, depending on the material, water spray may induce cracks in some materials, so there is a large risk of creating new defects, and spraying water may also cause a drop in the temperature of the material. This was not desirable from the standpoint of energy conservation.

その他特開昭53−144791号公報においては、高
圧気体にて金属粒体を鋳片表面に吹き付けてデス
ケーリングする方法が提案されたが、かような方
法ではデスケーリングされたスケール粉が気体に
よつて鋳片表面に吹付けられるため、表面の様相
が著しく変化し、また粉塵をまき散らすことにも
なるため、光学的検出法における作業環境を損ね
る場合が多かつた。
In addition, JP-A-53-144791 proposed a method of descaling by spraying metal particles onto the slab surface using high-pressure gas. Since the spray is sprayed onto the surface of the slab, the appearance of the surface changes significantly and it also scatters dust, which often impairs the working environment in optical detection methods.

(解決手段の解明経緯) かかる現状に鑑み、発明者らは、新しい表面欠
陥検出法につき、鋭意研究を重ねた結果、 (1) 脱スケール処理としては、被検材表面にシヨ
ツト粒を打ちつけるシヨツトブラスト法が好適
であること、 (2) シヨツト粒によつて、被検材表面には若干の
痕跡が残るけれども、かかる痕跡に由来する悪
影響は、投光方法と受光方法とに工夫を加える
ことによつて効果的に解消できることを究明
し、この発明を完成させるに至つたのである。
(History of the elucidation of the solution) In view of the current situation, the inventors have conducted intensive research on a new surface defect detection method and have found that (1) As a descaling process, a shot particle is shot onto the surface of the material to be inspected. (2) Although the shot particles leave some marks on the surface of the material to be tested, the negative effects caused by such marks can be avoided by adjusting the light emitting and receiving methods. They discovered that the problem could be effectively solved by doing so, and completed this invention.

(発明の構成) すなわちこの発明は、光学式アクテイブ法の改
良に係り、走行する熱間金属材料の表面欠陥を検
出するに際し、該熱間金属材料の被検出部にシヨ
ツト粒を投射密度:36〜50Kg/m2の条件下に投射
し、その後直ちに該熱間金属材料の走行方向と平
行または直角な方向のうち少くともいずれか一方
の方向から該被検出部に光を照射し、該被検出部
からの反射光を探傷カメラで受光して光電変換
し、ついで得られた電気信号につき、シヨツト粒
痕跡にもとづく影響の補正を行つたのち2値化処
理して表面欠陥に起因した欠陥信号のみを抽出
し、この欠陥信号にもとづいて表面欠陥を判定す
ることを特徴とする熱間金属材料の表面欠陥検出
方法である。
(Structure of the Invention) That is, the present invention relates to an improvement of the optical active method, and when detecting surface defects of a moving hot metal material, shot particles are projected onto the detected part of the hot metal material at a density of 36. ~50Kg/ m2 , and then immediately irradiate the detected part with light from at least one of the directions parallel to or perpendicular to the running direction of the hot metal material. The reflected light from the detection part is received by a flaw detection camera and photoelectrically converted.Then, the electrical signal obtained is corrected for the influence of shot particle traces, and then binarized to generate a defect signal caused by the surface defect. This is a method for detecting surface defects in hot metal materials, which is characterized by extracting only a defect signal and determining a surface defect based on this defect signal.

以下この発明を具体的に説明する。 This invention will be specifically explained below.

第1図に、この発明の実施に用いて好適な表面
欠陥検出装置を模式で示し、図中番号1はデスケ
ーリング装置、2は探傷カメラ、3は信号処理装
置である。そしてこの発明は、かかる検出装置を
用いた、シヨツトブラストによるデスケーリング
工程と、デスケーリングされた被検材表面を観察
する探傷工程および得られた信号を処理して表面
欠陥を抽出ついで判定する欠陥抽出・判定工程と
からなる。
FIG. 1 schematically shows a surface defect detection device suitable for carrying out the present invention, in which numeral 1 is a descaling device, 2 is a flaw detection camera, and 3 is a signal processing device. The present invention uses such a detection device to perform a descaling process by shot blasting, a flaw detection process for observing the descaled surface of the test material, and processing the obtained signals to extract and determine surface defects. It consists of a defect extraction and judgment process.

まずデスケーリング工程について説明すると、
シヨツトブラスト力は強すぎても、また弱すぎて
もいけない。というのはシヨツトブラスト力が強
すぎると、背景信号のノイズが大きくなつて欠陥
を見逃す可能性が高くなるからであり、逆に弱す
ぎるとスケールが残存し、観察時に欠陥信号と同
様なノイズ信号を発生させて誤検出の増大を招く
からである。
First, let me explain the descaling process.
The shot blasting force should not be too strong or too weak. This is because if the shot blasting force is too strong, the noise in the background signal will increase and there is a high possibility that defects will be overlooked.On the other hand, if the shot blasting force is too weak, the scale will remain and noise similar to the defect signal will be generated during observation. This is because a signal is generated, leading to an increase in false detections.

第2図に、シヨツト粒の投射密度とスケールの
残存面積比との関係について調べた結果を、また
第3図には、同じく投射密度とノイズ比すなわち
観察時の背景信号のノイズ増加状況との関係につ
いて調べた結果をそれぞれ示す。
Figure 2 shows the results of investigating the relationship between shot grain projection density and scale residual area ratio, and Figure 3 also shows the relationship between projection density and noise ratio, that is, the increase in background signal noise during observation. The results of investigating the relationships are shown below.

第2図によれば、投射密度が36Kg/m2未満にな
るとスケールの残存量が増大し、一方第3図に示
したように投射密度が50Kg/m2を超えるとノイズ
比が大きくなるので、この発明ではシヨツト粒の
投射密度は36〜50Kg/m2の範囲に限定したのであ
る。
According to Figure 2, when the projection density is less than 36Kg/ m2 , the residual amount of scale increases, while as shown in Figure 3, when the projection density exceeds 50Kg/ m2 , the noise ratio increases. In this invention, the shot density is limited to a range of 36 to 50 kg/m 2 .

かくしてデスケーリングを施された被検材は、
後続の探傷工程に送られるわけであるが、被検材
は高温であるため、脱スケールされたとしてもま
たすぐに表面に酸化スケールが生成する。第4図
にデスケーリング前後のS/N比の相違を示す。
第4図によればデスケーリングによつてS/N比
が4〜5倍向上し、スケールが除去され探傷しや
すい環境となることがわかる。
The specimen material that has been descaled in this way is
The material to be tested is sent to the subsequent flaw detection process, but since the material to be tested is at a high temperature, oxide scale will immediately form on the surface even if it is descaled. FIG. 4 shows the difference in S/N ratio before and after descaling.
According to FIG. 4, it can be seen that descaling improves the S/N ratio by 4 to 5 times, and removes scale, creating an environment that is easy to detect.

またシヨツトブラストを施すことにより鋳片表
面に若干凹凸ができる。この凹凸の影響を除去す
るために、ローパスフイルタを用いノイズ成分の
低減を図つた。第5図にローパスフイルタリング
前後のS/N比の関係を示しておりS/N比が改
善されていることがわかる。従つてスケール除去
後は直ちに被検出部の観察を行う必要があり、そ
のためには探傷カメラはできるだけデスケーリン
グ装置に近接させて設置しておくことが望まし
い。
Shot blasting also creates slight irregularities on the surface of the slab. In order to eliminate the influence of this unevenness, a low-pass filter was used to reduce noise components. FIG. 5 shows the relationship between the S/N ratio before and after low-pass filtering, and it can be seen that the S/N ratio has been improved. Therefore, it is necessary to observe the detected part immediately after removing the scale, and for this purpose, it is desirable to install the flaw detection camera as close to the descaling device as possible.

第6図に、外部光の投光角度とノイズ比との関
係について調べた結果を、また第7図には、同じ
く投光角度とS/N比(ノイズ信号量に対する欠
陥信号量)との関係について調べた結果をそれぞ
れ示す。
Figure 6 shows the results of investigating the relationship between the projection angle of external light and the noise ratio, and Figure 7 also shows the relationship between the projection angle and the S/N ratio (defect signal amount relative to the noise signal amount). The results of investigating the relationships are shown below.

両図より明らかなように、投光角度は50゜〜60゜
が最適である。
As is clear from both figures, the optimal projection angle is 50° to 60°.

次に第8図に、縦割れや横割れだけでなくヘゲ
やあばたおよびブローホールなどを対象とし、投
光角度は60゜と一定に保持する一方、投光方向を
被検材の走行方向に対して種々に変化させて探傷
作業を行つた場合の、投光方向とS/N比との関
係について調べた結果をまとめて示す。なお投光
方向は被検材の走行方向に対して直角の方向を0゜
とし、走行方向と平行な方向を90゜とした。
Next, Figure 8 shows that not only vertical cracks and horizontal cracks but also baldness, pockmarks, and blowholes are targeted.The light projection angle is kept constant at 60 degrees, and the light projection direction is set in the direction of travel of the material to be inspected. The following is a summary of the results of an investigation into the relationship between the light projection direction and the S/N ratio when flaw detection was performed with various changes in the direction. The light projection direction was set at 0° perpendicular to the running direction of the test material, and at 90° parallel to the running direction.

同図より明らかなように、投光方向について
は、投光方向を0゜および90゜と直交する2方向と
する投光が最適である。1方向からのみの投光の
場合には、被検材の走行方向と平行または直角な
方向のうちいずれか一方の方向とするのが好まし
い。工業的見地からはコスト/パフオーマンスを
考慮していずれか一つの投光方法を選択すればよ
い。
As is clear from the figure, it is optimal to project light in two directions perpendicular to 0° and 90°. In the case of projecting light from only one direction, it is preferable to project the light from one of the directions parallel to or perpendicular to the traveling direction of the test material. From an industrial standpoint, any one of the light projection methods may be selected in consideration of cost/performance.

このようにして外部光を照射して得た被検出部
からの反射光は、探傷カメラに受光されて光電変
換されたのち欠陥抽出・判定工程に送られ、ここ
で2値化処理し、その結果に基いて表面欠陥の判
定を行うわけであるが、シヨツト粒の痕跡は若干
光るため、2値化処理に先立ち第9図に示したよ
うな前処理を施して電気信号の補正を行うことが
肝要である。
The reflected light from the detected part obtained by irradiating external light in this way is received by a flaw detection camera, photoelectrically converted, and then sent to the defect extraction and determination process, where it is binarized and Surface defects are determined based on the results, but since traces of shot grains are slightly shiny, it is necessary to perform preprocessing as shown in Figure 9 prior to binarization processing to correct the electrical signal. is essential.

すなわち探傷カメラで受光された光電変換され
た電気信号はブランキング除去され振幅補正が施
される。これは投光むらが若干生じた場合の光量
低下部分のS/N比を確保し、2値化しやすくす
るのために施されるものである。ついで後段の諧
調変換を行うために、背景信号を一定レベルにす
るための平均値補正を施したのち、ノイズを除去
してから諧調変換を行う。かかる諧調変換を施す
ことによつて欠陥部の信号を強調して2値比し易
くした上で2値化処理を施し、その結果に基いて
表面欠陥を判定するわけである。
That is, the photoelectrically converted electrical signal received by the flaw detection camera is subjected to blanking removal and amplitude correction. This is done in order to ensure the S/N ratio in the portion where the amount of light decreases when some light projection unevenness occurs, and to facilitate binarization. Next, in order to perform the subsequent gradation conversion, average value correction is performed to bring the background signal to a constant level, noise is removed, and then gradation conversion is performed. By performing such gradation conversion, the signal of the defective portion is emphasized to make it easier to perform a binary comparison, and then a binarization process is performed, and a surface defect is determined based on the result.

第10図a,bに、デスケーリングを施さない
場合および投射密度40Kg/m2でデスケーリング処
理を施した場合の、光電変換後の電気信号をそれ
ぞれ比較して示す。
FIGS. 10a and 10b show a comparison of electrical signals after photoelectric conversion when no descaling is performed and when descaling is performed at a projection density of 40 Kg/m 2 .

同図より明らかなように、デスケーリング処理
を施すことにより、ノイズ信号が大幅に減少して
いる。
As is clear from the figure, the noise signal is significantly reduced by performing the descaling process.

次に第11図には、かくして得られた光電変換
後の電気信号を2値化処理するまでの角段階にお
ける信号形状の推移を、処理順に示す。
Next, FIG. 11 shows the transition of the signal shape in the angular stages up to the binarization processing of the electrical signal after photoelectric conversion obtained in this way, in the order of processing.

この発明に従う信号処理を施すことにより、表
面欠陥に由来した欠陥のみが効果的に抽出されて
いることがわかる。
It can be seen that by applying the signal processing according to the present invention, only defects originating from surface defects are effectively extracted.

(発明の効果) かくしてこの発明によれば、光学式アクテイブ
法による表面欠陥の検出に際し、従来懸命された
酸化スケールによる悪影響を効果的に解消して、
検出精度の格段の向上を達成することができる。
(Effects of the Invention) Thus, according to the present invention, when detecting surface defects using the optical active method, it is possible to effectively eliminate the negative effects caused by oxide scale that have been conventionally attempted.
A marked improvement in detection accuracy can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の実施に用いて好適な表面
欠陥検出装置の模式図、第2図は、シヨツト粒の
投射密度とスケールの残存面積比との関係を示し
たグラフ、第3図は、同じくシヨツト粒の投射密
度とノイズ比との関係を示したグラフ、第4図は
デスケーリング前後のS/N比の相違を示したグ
ラフ、第5図はローパスフイルタリング前後の
S/N比の相違を示したグラフ、第6図は、外部
光の投光角度とノイズ比との関係を示したグラ
フ、第7図は、同じく外部光の投光角度とS/N
比との関係を示したグラフ、第8図は、外部光の
投光方向とS/N比との関係を示したグラフ、第
9図は、光電変換信号の2値化処理に先立つ前処
理を示したフローチヤート、第10図a,bは、
デスケーリング処理を施さない場合および施した
場合の、光電変換後の電気信号をそれぞれ比較し
て示した図、第11図は、光電変換直後の電気信
号から2値化処理信号に至るまでの信号波形の推
移を、処理順に示した図である。
FIG. 1 is a schematic diagram of a surface defect detection device suitable for carrying out the present invention, FIG. 2 is a graph showing the relationship between shot particle projection density and scale remaining area ratio, and FIG. , also a graph showing the relationship between shot grain projection density and noise ratio, Figure 4 is a graph showing the difference in S/N ratio before and after descaling, and Figure 5 is a graph showing the S/N ratio before and after low-pass filtering. Figure 6 is a graph showing the relationship between the projection angle of external light and the noise ratio, and Figure 7 is a graph showing the relationship between the projection angle of external light and S/N.
Figure 8 is a graph showing the relationship between the projection direction of external light and the S/N ratio. Figure 9 is a graph showing the relationship between the direction of external light projection and the S/N ratio. Figure 9 is the pre-processing prior to the binarization process of the photoelectric conversion signal. The flowchart shown in Figure 10a and b is as follows:
Figure 11 is a diagram comparing electrical signals after photoelectric conversion without and with descaling processing, and shows the signal from the electrical signal immediately after photoelectric conversion to the binarized signal. FIG. 3 is a diagram showing the transition of a waveform in the order of processing.

Claims (1)

【特許請求の範囲】[Claims] 1 走行する熱間金属材料の表面欠陥を検出する
に際し、該熱間金属材料の被検出部にシヨツト粒
を投射密度:36〜50Kg/m2の条件下に投射し、そ
の後直ちに該熱間金属材料の走行方向と平行また
は直角な方向のうち少くともいずれか一方の方向
から該被検出部に光を照射し、該被検出部からの
反射光を探傷カメラで受光して光電変換し、つい
で得られた電気信号につき、シヨツト粒痕跡にも
とづく影響の補正を行つたのち2値化処理して表
面欠陥に起因した欠陥信号のみを抽出し、この欠
陥信号に基いて表面欠陥を判定することを特徴と
する熱間金属材料の表面欠陥検出方法。
1. When detecting surface defects of a moving hot metal material, shot particles are projected onto the detected part of the hot metal material under conditions of a projection density of 36 to 50 kg/ m2 , and then the hot metal material is immediately removed. The detected part is irradiated with light from at least one of the directions parallel or perpendicular to the running direction of the material, and the reflected light from the detected part is received by a flaw detection camera and photoelectrically converted, and then After correcting the influence of the shot grain traces on the obtained electrical signal, it is binarized to extract only the defect signal caused by the surface defect, and the surface defect is determined based on this defect signal. A method for detecting surface defects in hot metal materials.
JP3523184A 1984-02-28 1984-02-28 Detection for surface defect of hot metallic material Granted JPS60179637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3523184A JPS60179637A (en) 1984-02-28 1984-02-28 Detection for surface defect of hot metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3523184A JPS60179637A (en) 1984-02-28 1984-02-28 Detection for surface defect of hot metallic material

Publications (2)

Publication Number Publication Date
JPS60179637A JPS60179637A (en) 1985-09-13
JPH0344259B2 true JPH0344259B2 (en) 1991-07-05

Family

ID=12436063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3523184A Granted JPS60179637A (en) 1984-02-28 1984-02-28 Detection for surface defect of hot metallic material

Country Status (1)

Country Link
JP (1) JPS60179637A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10031978A1 (en) * 2000-06-30 2002-01-10 Sms Demag Ag Method and device for automatic scale detection from surfaces of metallic strip material, in particular hot-rolled steel strip and stainless steel strip
FR2961598B1 (en) * 2010-06-21 2012-07-27 Snecma PROCESS FOR CHECKING A TITANIUM OR TITANIUM ALLOY FOR THE DETECTION OF MACHINING DEFECTS
DE102016217561A1 (en) * 2016-03-18 2017-09-21 Sms Group Gmbh Apparatus and method for descaling a moving workpiece

Also Published As

Publication number Publication date
JPS60179637A (en) 1985-09-13

Similar Documents

Publication Publication Date Title
JPH0344259B2 (en)
CN110455923B (en) Rapid evaluation method for anchor rod anchoring quality grade
JPH0392758A (en) Product inspection
JP2861649B2 (en) Steel plate weld inspection method
JPH0882616A (en) Method and apparatus for inspecting flaw with magnetic particle
CN109870500B (en) Method and system for real-time defect discrimination based on alternating current magnetic field detection
JPH0253748B2 (en)
JPH0972851A (en) Method and apparatus for detection of welding bead for steel pipe
JPS5922895B2 (en) Automatic surface flaw detection method and equipment
JPH079403B2 (en) Surface defect inspection method for objects
Jacobsen et al. Automated evaluation of digitized radiographs with neuronal methods
JPS6261899B2 (en)
CN111062939A (en) Method for quickly discriminating quality and automatically extracting defect characteristics of strip steel surface
JP2564737B2 (en) Automatic magnetic particle flaw detector
JP3389692B2 (en) Magnetic particle flaw detection method and apparatus
JP2009047513A (en) Inspection apparatus
JP4420602B2 (en) Appearance inspection apparatus and appearance inspection method
JPS63277963A (en) Method for deciding acceptance or rejection of material to be inspected such as billet
JP2508662Y2 (en) Flaw detection device
JPH03235949A (en) Mask inspecting method
JPS63271157A (en) Eddy current flaw detector for external surface deformed metallic material
JPS6216372B2 (en)
JPS63150662A (en) Flaw detecting method for steel material
Kern Zerstoerungsfreie Online-Ueberwachung und-Verfolgung der Laser-Oberflaechenhaertung an Bauteilen. Abschlussbericht.(Nondestructive online monitoring and tracking of laser surface hardening of component parts. Final report)
JPS59145953A (en) Hot eddy current testing method