JPH0344249B2 - - Google Patents

Info

Publication number
JPH0344249B2
JPH0344249B2 JP58055445A JP5544583A JPH0344249B2 JP H0344249 B2 JPH0344249 B2 JP H0344249B2 JP 58055445 A JP58055445 A JP 58055445A JP 5544583 A JP5544583 A JP 5544583A JP H0344249 B2 JPH0344249 B2 JP H0344249B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
alloy
thickness
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58055445A
Other languages
Japanese (ja)
Other versions
JPS59180424A (en
Inventor
Osamu Myoga
Hitoshi Igarashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5544583A priority Critical patent/JPS59180424A/en
Publication of JPS59180424A publication Critical patent/JPS59180424A/en
Publication of JPH0344249B2 publication Critical patent/JPH0344249B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D15/00Component parts of recorders for measuring arrangements not specially adapted for a specific variable
    • G01D15/34Recording surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は磁気スケールに係わる。 従来の磁気スケールは記録媒体の酸化等による
磁気特性の劣化を避けるため、記媒体上に汚れが
付着しないように箱型の容器で覆つたりしてい
た。しかしながら湿気等の影響は避けられず、充
分管理された環境で使用することが必要である。 最近、磁気スケールの応用が広がり、悪環境で
磁気特性の劣化が生じない磁気スケールの要請が
強まつている。 本発明の目的は上記欠点を解決し、悪環境でも
記録媒体は酸化することなく、良好な磁気特性を
保持することのできる磁気スケールを提供するも
のである。 本発明は、非磁性基体の側面の長手方向に沿つ
て形成された溝に記録媒体として、磁気的に硬い
Fe−Co−Mn−C−Si−V係合金の磁性金属線材
が埋込まれている構造磁気スケールであつて、そ
の表面の前記記録媒を含む一部あるいは全面に第
1層として厚さが0.7μm以上から2μmを越えない
Znを形成し、該Zn層上に第2層として厚さが1μ
m以上から1.5μmを越えない非磁性Ni−Pの合
金の層が形成されていることを特徴とする磁気ス
ケールが得られる。 本発明の要点の1つは磁気スケールの記録媒体
が酸化し、磁気特性の劣化および磁束分布の不均
一が起ることを防止することにある。従つて、耐
食性が優れている金属あるいは合金が用いられな
ければならないが、その金属あるいは合金が磁性
を示すものであつては、記録媒体から湧き出る磁
束が空間に分布しなくなるため、非磁性体である
ことが必要である。具体的にはZnあるいは非磁
性Ni−P合金が望ましい。 本発明の要点の他の1つは、センサが接触する
場合は当然摩擦が起るが、非接触式の場合でも、
センサと記録媒体の間隔を安定して一定に保つた
めには、センサ保持台が磁気スケールと接触して
いることが望ましく、この場合も摩擦が問題とな
るため、耐摩耗性に優れた金属あるいは合金を用
いることが必要である。具体的には非磁性のNi
−P合金が望ましい。 金属あるいは合金層の形成は、基体にステンレ
スを使用する場合は磁気スケールの外周面の記録
媒体に含む一部あるいは全面のどちらでもかまわ
ない。 本発明の磁気スケールの外周面に第1層として
厚さが0.7μm以上から2μmを越えないZnを形成
し、その外側に第2層として厚さが1μm以上か
ら1.5μmを越えない非磁性Ni−P合金を形成す
ることによつて全体として被膜層の厚さを薄くす
ることができた。第1層として厚さが0.7μmを下
回るZnおよび第2層として厚さが1μmを下回る
Ni−Pを形成しても本発明の効果は得られない。
また、第1層として厚さが2μmを上回るZnおよ
び第2層として厚さが1.5μmを上回るNi−Pを
形成すると被膜層が厚くなり、本発明の目的が達
成されない。第1層としてのZnメツキおよび第
2層としての非磁性Ni−P合金メツキは以下の
工程で行なつた。 (Znメツキ) 脱脂→酸洗→脱脂→中和→
Znメツキ (非磁性Ni−P合金メツキ) 脱脂→酸洗→水洗→メツキ液に浸漬→
水洗→乾燥 上記工程でZnおよび非磁性Ni−P合金メツキ
を施したところ、耐食性の良好な磁気スケールが
得られた。 次に本発明の磁気スケールについて実施例によ
つて説明する。 上記磁気スケールは第1表に示すようなメツキ
条件および金属(Zn)および合金(Ni−P)層
厚さになるように耐食性合金層を形成した。 直径6mm、長さ1000mmのSUS303材の丸棒に巾
0.5mm、深さ0.5mmの溝を一直線に掘つた。その溝
に直径0.5mmの重量比で38.025%Co−19.512%Mn
−0.585%C−1.366%Si−0.488%V−残りFeから
成る冷間伸線加工された合金線材を埋込み、スエ
ージ加工を施して直径59.7mmの複合体とした。そ
の複合体を450℃で30分間、水素雰囲気中で熱処
理した。熱処理された複合体は、溝の部分を上方
に向けて固定され、液体冷却しながら精密研削用
グラインダーで線材埋込み面を平面に研削した。
埋込まれた磁性金属線材は、溝から遊離すること
なく、良好な磁性材料の平面が得られた。 以上の方法で得られた磁気スケールについて第
1表に示すような6種類の試料を作製した。非磁
性Ni−P合金メツキには無電解ニツケルメツキ
液としてカニゼンシユーマメツキ液(商品名)を
用いた。
The present invention relates to magnetic scales. In order to avoid deterioration of magnetic properties due to oxidation of the recording medium, conventional magnetic scales are covered with a box-shaped container to prevent dirt from adhering to the recording medium. However, the influence of humidity and the like cannot be avoided, and it is necessary to use it in a well-controlled environment. Recently, the applications of magnetic scales have expanded, and the demand for magnetic scales that do not deteriorate in magnetic properties in adverse environments is increasing. SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks and provide a magnetic scale that can maintain good magnetic properties without oxidizing the recording medium even in adverse environments. The present invention provides a magnetically hard magnetic recording medium for use as a recording medium in a groove formed along the longitudinal direction of the side surface of a non-magnetic substrate.
A structural magnetic scale in which a magnetic metal wire of a Fe-Co-Mn-C-Si-V alloy is embedded, and a first layer is formed on a part or the entire surface of the scale including the recording medium. From 0.7μm or more to no more than 2μm
Zn is formed, and a second layer with a thickness of 1 μm is formed on the Zn layer.
A magnetic scale is obtained which is characterized in that a layer of a non-magnetic Ni--P alloy is formed with a thickness of from more than m to no more than 1.5 μm. One of the points of the present invention is to prevent the magnetic scale recording medium from being oxidized, resulting in deterioration of magnetic properties and non-uniform magnetic flux distribution. Therefore, a metal or alloy with excellent corrosion resistance must be used, but if the metal or alloy exhibits magnetism, the magnetic flux gushing out from the recording medium will not be distributed in space, so a non-magnetic material must be used. It is necessary that there be. Specifically, Zn or a nonmagnetic Ni-P alloy is desirable. Another point of the present invention is that friction naturally occurs when the sensors are in contact, but even in the case of a non-contact type, friction occurs.
In order to keep the distance between the sensor and the recording medium stable and constant, it is desirable that the sensor holder is in contact with the magnetic scale.Friction is also a problem in this case, so it is recommended to use a metal with excellent wear resistance or It is necessary to use an alloy. Specifically, non-magnetic Ni
-P alloy is preferred. When stainless steel is used as the substrate, the metal or alloy layer may be formed either on a part of the recording medium on the outer peripheral surface of the magnetic scale or on the entire surface. A first layer of Zn with a thickness of 0.7 μm or more and not exceeding 2 μm is formed on the outer peripheral surface of the magnetic scale of the present invention, and a non-magnetic Ni layer with a thickness of 1 μm or more and not exceeding 1.5 μm is formed on the outside as a second layer. By forming the -P alloy, the overall thickness of the coating layer could be reduced. Zn with a thickness less than 0.7μm as the first layer and less than 1μm thickness as the second layer
Even if Ni--P is formed, the effects of the present invention cannot be obtained.
Furthermore, if Zn is formed as the first layer with a thickness exceeding 2 μm and Ni-P is formed as the second layer with a thickness exceeding 1.5 μm, the coating layer becomes thick and the object of the present invention cannot be achieved. Zn plating as the first layer and nonmagnetic Ni--P alloy plating as the second layer were performed in the following steps. (Zn plating) Degreasing → Pickling → Degreasing → Neutralization →
Zn plating (non-magnetic Ni-P alloy plating) Degreasing → Pickling → Water washing → Soaking in plating solution →
Water washing→drying When Zn and non-magnetic Ni-P alloy plating was applied in the above process, a magnetic scale with good corrosion resistance was obtained. Next, the magnetic scale of the present invention will be explained using examples. For the above magnetic scale, a corrosion-resistant alloy layer was formed so that the plating conditions and metal (Zn) and alloy (Ni-P) layer thicknesses were as shown in Table 1. A round bar made of SUS303 material with a diameter of 6 mm and a length of 1000 mm.
A trench of 0.5 mm and depth was dug in a straight line. The groove has a diameter of 0.5mm and a weight ratio of 38.025%Co−19.512%Mn.
A cold-drawn alloy wire consisting of -0.585% C, 1.366% Si, 0.488% V, and the remainder Fe was embedded and swaged to form a composite with a diameter of 59.7 mm. The composite was heat treated at 450°C for 30 minutes in a hydrogen atmosphere. The heat-treated composite was fixed with the groove portion facing upward, and the wire embedded surface was ground into a flat surface using a precision grinder while being cooled with liquid.
The embedded magnetic metal wire did not come loose from the groove, and a good flat surface of the magnetic material was obtained. Six types of samples as shown in Table 1 were prepared for the magnetic scale obtained by the above method. For plating the non-magnetic Ni--P alloy, Kanizen Shuma plating solution (trade name) was used as an electroless nickel plating solution.

【表】 第1表のような耐食性合金層を形成した6種類
の磁気スケールは85℃−100%湿度の環境で試験
を行つたところ第2表のに示す結果となつた。 尚、第2表のNo.7は第1表のNo.1でNi−P合
金の形成厚さを3μmとし、Zn層は形成しなかつ
たものである。第2表のNo.8は第1表のNo.4で
Znの形成厚さを2μmとし、Ni−P合金層は形成
しなかつたものである。第2表のNo.9は第1表の
No.5でNi−P合金の形成厚さを4μmとし、Zn層
は形成しなかつたものである。
[Table] Six types of magnetic scales with corrosion-resistant alloy layers as shown in Table 1 were tested in an environment of 85°C and 100% humidity, and the results shown in Table 2 were obtained. Incidentally, No. 7 in Table 2 is the same as No. 1 in Table 1 except that the thickness of the Ni--P alloy was 3 μm and no Zn layer was formed. No. 8 in Table 2 is No. 4 in Table 1.
The thickness of Zn was 2 μm, and no Ni-P alloy layer was formed. No.9 in Table 2 is in Table 1.
In No. 5, the Ni--P alloy was formed to a thickness of 4 μm, and no Zn layer was formed.

【表】 ○:記録媒体部が酸化しなかつた。
×:記録媒体部が酸化した。
以上のように、本発明の耐食性磁気スケールお
よびその製造方法は磁気スケールの応用範囲が広
がり、しかも悪環境での用途が広がる最近の状況
で、その工業的価値が大きい。
[Table] ○: The recording medium portion was not oxidized.
×: The recording medium portion was oxidized.
As described above, the corrosion-resistant magnetic scale of the present invention and its manufacturing method have great industrial value in the recent situation where the range of application of magnetic scales is expanding and moreover, the use in adverse environments is expanding.

Claims (1)

【特許請求の範囲】[Claims] 1 非磁性基体の側面の長手方向に沿つて形成さ
れた溝に、記録媒体として磁気的に硬いFe−Co
−Mn−C−Si−V系合金の磁性金属線材が埋め
込まれている構造の磁気スケールであつて、その
表面の前記磁性金属記録媒体を含む一部あるいは
全面に第1層として厚さが0.7μm以上から2μmを
越えないZnを形成し、該Zn層上に第2層として
厚さが1μm以上から1.5μmを越えない非磁性Ni
−Pの合金の層が形成されていることを特徴とす
る磁気スケール。
1 A magnetically hard Fe-Co material is used as a recording medium in a groove formed along the longitudinal direction of the side surface of a non-magnetic substrate.
- A magnetic scale having a structure in which a magnetic metal wire of a Mn-C-Si-V alloy is embedded, and a first layer with a thickness of 0.7 mm is formed on a part or the entire surface of the scale including the magnetic metal recording medium. Zn with a thickness of 1 μm or more and not exceeding 2 μm is formed on the Zn layer, and a non-magnetic Ni layer with a thickness of 1 μm or more and not exceeding 1.5 μm is formed on the Zn layer.
- A magnetic scale characterized in that a layer of an alloy of P is formed.
JP5544583A 1983-03-31 1983-03-31 Magnetic scale and manufacture thereof Granted JPS59180424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5544583A JPS59180424A (en) 1983-03-31 1983-03-31 Magnetic scale and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5544583A JPS59180424A (en) 1983-03-31 1983-03-31 Magnetic scale and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS59180424A JPS59180424A (en) 1984-10-13
JPH0344249B2 true JPH0344249B2 (en) 1991-07-05

Family

ID=12998788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5544583A Granted JPS59180424A (en) 1983-03-31 1983-03-31 Magnetic scale and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59180424A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109224A (en) * 1975-03-20 1976-09-28 Satosen Co Ltd TAINETSUSEICHOKO GOKINHIFUKUOJUSURU KOZOTAI
JPS5630602A (en) * 1979-08-18 1981-03-27 Bosch Gmbh Robert Device for measuring distance or speed without contact

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963973U (en) * 1972-09-15 1974-06-05

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109224A (en) * 1975-03-20 1976-09-28 Satosen Co Ltd TAINETSUSEICHOKO GOKINHIFUKUOJUSURU KOZOTAI
JPS5630602A (en) * 1979-08-18 1981-03-27 Bosch Gmbh Robert Device for measuring distance or speed without contact

Also Published As

Publication number Publication date
JPS59180424A (en) 1984-10-13

Similar Documents

Publication Publication Date Title
KR940000607A (en) Corrosion-resistant nickel plated steel sheet and manufacturing method thereof
KR940005812A (en) Directional electrical steel with high magnetic flux density and ultra low iron loss and its manufacturing method
KR940002893A (en) Internal shielding material attached to the color cathode ray tube and its manufacturing method
JPH0344249B2 (en)
JPH0248981B2 (en)
JPH0344250B2 (en)
JPH0344248B2 (en)
JPH0230375B2 (en)
JPH0131570B2 (en)
JPS57158037A (en) Magnetic recording medium and its manufacture
EP0066357A2 (en) Composite thermostat metal
US3114661A (en) Process for producing core laminations
US3383761A (en) Process of producing magnetic memory elements
JPS5613516A (en) Magnetic recording medium
JPH0428788B2 (en)
JPH08199332A (en) Super-nonmagnetic steel, super-nonmagnetic steel product and their production
JPS61195964A (en) Rust preventing method of permanent magnet alloy
JPS6363051B2 (en)
JPS617507A (en) Composite aluminum wire
JP2820312B2 (en) High corrosion resistant soft magnetic rod steel
KR930010222A (en) How to improve corrosion resistance and wear resistance of stainless steel
JP3274409B2 (en) Grain-oriented electrical steel sheet with excellent coating adhesion and extremely low iron loss, and method for producing the same
JP3432667B2 (en) Soft magnetic thin film for high density magnetic recording head
JPH06204683A (en) Electromagnetic shielding material with insulating coating and manufacture thereof
JPS60126879A (en) Magnetoresistance material