JPH0344128B2 - - Google Patents
Info
- Publication number
- JPH0344128B2 JPH0344128B2 JP1851287A JP1851287A JPH0344128B2 JP H0344128 B2 JPH0344128 B2 JP H0344128B2 JP 1851287 A JP1851287 A JP 1851287A JP 1851287 A JP1851287 A JP 1851287A JP H0344128 B2 JPH0344128 B2 JP H0344128B2
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- cooling
- water
- header
- cooled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 97
- 239000010959 steel Substances 0.000 claims description 97
- 238000001816 cooling Methods 0.000 claims description 81
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 54
- 239000000498 cooling water Substances 0.000 claims description 20
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 description 18
- 238000005452 bending Methods 0.000 description 7
- 239000011295 pitch Substances 0.000 description 7
- 241000282472 Canis lupus familiaris Species 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000005496 tempering Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Landscapes
- Heat Treatment Of Articles (AREA)
Description
〔産業上の利用分野〕
本発明は鋼管の冷却方法に関するものである。
〔従来技術〕
鋼管を高張力化、高靭性化あるいはその他の高
級化処理する一つの方法として、他の鋼材製品と
同様に焼入、焼戻処理が行なわれている。
鋼管の焼戻処理工程において、近年、製造ライ
ンのコンパクト化、短尺化から焼戻鋼管の放冷冷
却中に、材質性状に変化のない温度域(200〜300
℃以下)より水冷却し、常温付近まで冷却する水
冷床設備を設置するラインが増加している。
その鋼管焼戻工程を図により簡単に説明する
と、第3図において、焼戻用加熱炉1により所定
温度まで加熱された鋼管2は加熱炉1から搬送ラ
イン3へ払出され、鋼管長手軸線方向(縦送り)
に搬送され、その後、主に鋼管の真円度及び外径
寸法を仕上げることを目的とする定型機4を経
て、次に主に鋼管の曲りを矯正することを目的と
する矯正機5により鋼管を回転搬送しつつ矯正
し、冷却床6へ払出される。
以上のような工程を経て焼戻処理される鋼管
は、前記加熱炉1で概略500〜700℃位の温度に加
熱されるため、処理する鋼管の外径,肉厚及び搬
送時間等の諸条件によつて多少の温度の変動はあ
るが、前記冷却床6の入口で鋼管温度は約300〜
500℃程度あり、次工程となる精整あるいは検査
工程へ搬送するため、前記冷却床6上で常温まで
冷却される。
水冷却帯7は、冷却床6上において処理する鋼
管の外径肉厚等サイズ及び当該ライン能力より、
処理鋼管の材質変化の生じない温度域(概略200
〜300℃程度)から水冷却できるように前記冷却
床6上の適当な位置に設置される。
しかしながら、従来より実施されている一般的
な方法では以下に示す問題があつた。その問題を
第4図,第5図によつて説明する。
第4図,第5図は前記水冷却帯構造を詳細に示
した図であつて、鋼管の長手方向軸線の任意点に
於てその垂直方向に切断した面を見たもので長手
方向では同一構造である。また第4図は、処理す
る鋼管の搬送方法として、連続流れ搬送を主旨と
するチエンコンベア方式のものを、第5図は同様
に搬送方法としてウオーキングビーム方式を採用
した例を示したものである。初めにこの水冷却帯
での搬送及び処理の手順を図に従つて説明する。
まず第4図に於て前段放冷却(大気中)帯20
で水冷却しても品質上差支えない温度まで冷却さ
れた鋼管2は、逆転コンベア12及びドツグ14
によつて回転支持されながら連続的に搬送コンベ
ア13により横方向へ送られて水冷却帯7内へ送
られる。水冷却帯7内では、上部水冷ヘツダー8
及び下部水冷ヘツダー9によつて予め所定量の冷
却水が噴射されており、鋼管2はこの水冷却帯7
内を通過して必要温度まで冷却され連続的に下工
程へ払出される。一方、第5図に於ても、鋼管2
が固定ビーム17に保持され移動ビーム18によ
り固定ビーム17の鞍部の1ピツチ、あるいは任
意数ピツチで搬送され、前記第4図に示した順序
と同様に所定温度まで冷却される。これらの従来
方法での最大の問題点は、第6図に示す通りであ
り、第6図は被冷却鋼管が前記水冷却帯7内に侵
入する時点での前記鋼管の曲り挙動を示した図で
ある。
すなわち、従来技術では、鋼管2が水冷却帯内
に侵入する時、上部水冷ヘツダー8及び下部水冷
ヘツダー9により連続して冷却水が噴射されてい
るため、鋼管2の円周方向に水冷部28及び非水
冷部29を発生させ、これによつて発生する鋼管
の円周方向温度差で鋼管2に曲りを誘発し、搬送
トラブルを引起したり、また冷却後に残留曲りを
生じせしめ、冷却後に鋼管を再矯正する必要が生
じ、更に材質によつては再熱処理が必要となるな
ど、鋼管の品質上重大な問題があつた。
この対策として、鋼管の前記水冷却開始時に於
る円周方向温度差を軽減するために、例えば特開
昭59−140330号公報の如く鋼管の冷却中の回転速
度を上げる方法や搬送コンベア13のスピードを
上げる方法があるが、このために搬送に必要な動
力が著しく増加したり、また鋼管の回転速度また
は搬送速度をあまり速くすると、かえつて鋼管の
ばたつきが発生して搬送状態が不安定になるとい
う欠点がある。
〔発明が解決しようとする問題点〕
本発明は鋼管を冷却する際に生じる種々の問題
点を解消するもので、特に冷却曲り防止に有利な
鋼管の冷却方法を提供するものである。
〔問題点を解決するための手段〕
本発明は、従来一般的に行なわれていた冷却方
法による問題を背景に鑑みてなされたものであつ
て、本発明の要旨は、鋼管を横送りに搬送し、該
鋼管の上部および下部より冷却水を噴射して鋼管
を冷却するに際し、鋼管が水冷却帯内に侵入する
時、一時的に上部水冷ヘツダーおよび下部水冷ヘ
ツダーの水を停止し、鋼管が完全に水冷却帯内に
侵入した後、鋼管の搬送に連動して上部水冷ヘツ
ダーおよび下部水冷ヘツダーから冷却水を鋼管に
向かつて噴射し、鋼管の全周を冷却するように冷
却水を間欠噴射することを特徴とする鋼管の冷却
方法にある。
すなわち、本発明は、鋼管の搬送中に冷却水を
噴出したままにすると、どうしても第6図に示し
たように、水冷却帯入口で鋼管の円周方向に温度
差を発生させ、これが鋼管曲り誘発の原因となる
ため、鋼管が前記水冷却帯内に侵入する時、一時
的に上部水冷ヘツダー及び下部水冷ヘツダーの水
を止め、鋼管が完全に水冷却帯内に侵入した後、
水冷を開始する冷却水の間欠噴射を行ない、この
ようにして鋼管の円周方向の温度差発生を回避さ
せるものである。
なお第1図に示すように、搬送コンベア13が
ピツチ搬送でない場合、すなわち連続搬送であつ
ても、鋼管2が水冷却帯7内に侵入する直前よ
り、前記の方法と同様に上部水冷ヘツダー及び下
部水冷ヘツダーからの冷却水噴出起動及び噴出停
止動作の反復により間欠噴射を行なえば、本発明
の機能効果と何ら変らない結果が得られる。
また冷却中の鋼管を放冷時と同様に回転冷却す
るのが望ましい。鋼管を回転させないで冷却する
と、第1図に示した上部水冷ヘツダー8及び下部
水冷ヘツダー9の冷却水が、鋼管のサイズによつ
ては鋼管の側面に到達しないで冷却が不充分とな
り、鋼管に円周方向の温度差を発生させる。この
温度差発生を回避させるために鋼管に与える必要
回転数は、鋼管サイズによつて異なるが放冷時と
同様に毎分1〜10回転程度である。
〔実施例〕
以下、本発明を図によつて詳細に説明する。
第1図は本発明を実施して鋼管を冷却する際の
冷却帯を鋼管長手方向軸線に対し垂直方向に切断
した断面より見た図で、鋼管長手方向には同一構
造である。まず処理される鋼管が間欠的に搬送さ
れる時を例にあげその工程を説明する。加熱炉に
よつて所定温度に加熱され、矯正機等を通されて
前工程より搬送(図の紙面に対して垂直方向搬送
り)されてきた鋼管2は、冷却床の入側の側方の
搬送ロール21上で一旦停止し、払出キツカ22
により冷却床上に払出され、この時、停止して待
機する搬送コンベア13及びドツグ14により保
持される。
搬送コンベア13と逆方向に循環される逆転コ
ンベア12は、常時運転されて冷却床における搬
送コンベア13上の鋼管2を連続して回転させ
る。搬送コンベア13上の鋼管2を回転させない
と、放冷中の鋼管に円周方向温度差(多くは円周
方向の上面および下面の温度差)を発生させた
り、また鋼管の端曲りの原因となるので、鋼管2
を回転させる必要がある。鋼管2に与える回転数
は鋼管のサイズにより異なるが毎分1〜10回転程
度の回転を与える。勿論これ以上の回転を与えて
も、鋼管に庇を発生させることなく鋼管を安定状
態で搬送できる範囲であれば、鋼管の回転数を増
加させてもよい。
次に一定間隔で配置された多数のドツグ14を
備えている搬送コンベア13を、ドツグ14の単
一ピツチもしくは任意数ピツチ分だけ起動運転
し、順次前工程よりの鋼管2を冷却床上へ受入
れ、水冷却しても材質上差支えない温度まで鋼管
2を放冷却帯20上で回転冷却する。一方、水冷
直前温度まで放冷された鋼管2Aは前記前工程よ
り送られてくる鋼管2に同調してドツグ14の単
一ピツチまたは任意数ピツチ搬送され、水冷却帯
7内の2Bの位置まで搬送される。この時、水冷
却帯7内の上部水冷ヘツダー8のノズル15及び
下部水冷ヘツダー9のノズル15からの冷却水噴
射は、鋼管2Aの搬送中は停止され、前記鋼管2
Aが水冷却帯7内に完全に送り込まれた直後、す
なわち鋼管2Aの円周方向全域に冷却水を噴射で
きる位置2Bに鋼管が到達したとき、冷却水の噴
射が開始されて、水冷却が開始される。
このようにして、前工程からの鋼管2の冷却床
への受入れに同調して間欠的に連続運転が行なわ
れる。なお搬送モータ25及び冷却水開閉バルブ
27の起動停止制御はコントローラ26を介して
行なわれる。
水冷却帯7において冷却された鋼管は、払出キ
ツカ24により搬送ロール23上に払出される。
なお第1図において、19は水飛散防止用カーテ
ンである。
次に本発明を実施して鋼管の冷却を行なつた具
体例について説明する。
前記第1図に示した回転横送り方式の水冷却床
に於て、第1表に示す仕様に基づいて前記被冷却
鋼管が水冷却帯に侵入する時に、上部水冷ヘツダ
ー及び下部水冷ヘツダーよりの冷却水噴射を停止
し、前記鋼管が完全に水冷却帯内に侵入してか
ら、前記上部水冷ヘツダー及び下部水冷ヘツダー
より冷却水が噴出するように、鋼管の搬送と冷却
水噴射起動とをマツチングさせ、一連の焼戻操業
を実施した。その結果、搬送中の鋼管の曲りは全
く発生せず、安定した操業を実施することができ
た。
[Industrial Field of Application] The present invention relates to a method for cooling steel pipes. [Prior Art] As one method for increasing the tensile strength, toughness, or other high-grade treatments for steel pipes, quenching and tempering treatments are performed in the same manner as other steel products. In the tempering process of steel pipes, due to the downsizing and shortening of production lines in recent years, the temperature range (200 to 300
An increasing number of lines are installing water-cooled floor equipment, which cools the product from below (℃ or below) to around room temperature. To briefly explain the steel pipe tempering process using a diagram, in FIG. Vertical feed)
After that, the steel pipe is passed through a shaping machine 4 whose main purpose is to finish the roundness and outer diameter of the steel pipe, and then a straightening machine 5 whose main purpose is to straighten the bends of the steel pipe. It is corrected while being rotated and conveyed, and then delivered to the cooling bed 6. The steel pipe that is tempered through the above steps is heated to a temperature of approximately 500 to 700°C in the heating furnace 1, so various conditions such as the outer diameter, wall thickness, and transportation time of the steel pipe to be processed are determined. Although there are some temperature fluctuations depending on the temperature, the temperature of the steel pipe at the entrance of the cooling bed 6 is approximately
The temperature is approximately 500° C., and the material is cooled to room temperature on the cooling bed 6 in order to be transported to the next step of finishing or inspection. The water cooling zone 7 is determined based on the size such as the outer diameter and wall thickness of the steel pipe to be processed on the cooling bed 6 and the line capacity.
Temperature range in which no material change occurs in treated steel pipes (approximately 200℃
It is installed at an appropriate position on the cooling bed 6 so that it can be water-cooled from a temperature of about 300°C. However, the general methods that have been practiced so far have had the following problems. The problem will be explained with reference to FIGS. 4 and 5. Figures 4 and 5 are diagrams showing the water cooling zone structure in detail, and are views taken in the vertical direction at an arbitrary point on the longitudinal axis of the steel pipe, and are identical in the longitudinal direction. It is a structure. In addition, Figure 4 shows an example of a chain conveyor system, which is designed to convey continuous flow, as the method of transporting the steel pipes to be processed, and Figure 5 shows an example in which a walking beam system is similarly adopted as the transport method. . First, the procedure of transport and processing in this water cooling zone will be explained with reference to the drawings. First, in Figure 4, the first stage radiation cooling (in the atmosphere) zone 20
The steel pipe 2, which has been cooled to a temperature where there is no problem in terms of quality even if it is cooled with water, is transferred to the reversing conveyor 12 and the dog 14.
While being rotatably supported by the conveyor 13, it is continuously conveyed laterally into the water cooling zone 7. In the water cooling zone 7, the upper water cooling header 8
A predetermined amount of cooling water is injected in advance by the lower water cooling header 9, and the steel pipe 2 flows through this water cooling zone 7.
It is cooled down to the required temperature and continuously discharged to the downstream process. On the other hand, in Fig. 5, steel pipe 2
is held by the fixed beam 17 and conveyed by the moving beam 18 at one pitch or an arbitrary number of pitches in the saddle of the fixed beam 17, and is cooled to a predetermined temperature in the same manner as shown in FIG. 4 above. The biggest problem with these conventional methods is as shown in FIG. 6, which shows the bending behavior of the steel pipe at the time the steel pipe enters the water cooling zone 7. It is. That is, in the prior art, when the steel pipe 2 enters the water cooling zone, cooling water is continuously injected by the upper water cooling header 8 and the lower water cooling header 9. The resulting temperature difference in the circumferential direction of the steel pipe induces bending in the steel pipe 2, causing transportation troubles, and also causes residual bending after cooling. There were serious problems with the quality of the steel pipes, such as the need to re-straighten the steel pipes and, depending on the material, reheat treatment. As a countermeasure against this problem, in order to reduce the temperature difference in the circumferential direction at the start of the water cooling of the steel pipe, for example, a method of increasing the rotation speed during cooling of the steel pipe and a method of increasing the rotation speed of the conveyor 13 as disclosed in Japanese Patent Application Laid-Open No. 140330/1983 are available. There are ways to increase the speed, but this will significantly increase the power required for conveyance, and if the rotational speed or conveyance speed of the steel pipe is too high, the steel tube will fluttering and the conveyance state will become unstable. It has the disadvantage of becoming. [Problems to be Solved by the Invention] The present invention solves various problems that occur when cooling steel pipes, and provides a method for cooling steel pipes that is particularly advantageous in preventing bending during cooling. [Means for Solving the Problems] The present invention has been made in view of the problems caused by conventionally commonly used cooling methods. However, when cooling the steel pipe by injecting cooling water from the upper and lower parts of the steel pipe, when the steel pipe enters the water cooling zone, the water in the upper water cooling header and the lower water cooling header is temporarily stopped, and the steel pipe cools. After completely entering the water cooling zone, cooling water is injected toward the steel pipe from the upper water cooling header and lower water cooling header in conjunction with the transport of the steel pipe, and cooling water is intermittently injected to cool the entire circumference of the steel pipe. A method for cooling steel pipes is characterized in that: In other words, in the present invention, if cooling water is continued to be spouted while the steel pipe is being transported, a temperature difference will inevitably occur in the circumferential direction of the steel pipe at the entrance of the water cooling zone, as shown in FIG. 6, and this will cause the steel pipe to bend. To avoid this, when the steel pipe enters the water cooling zone, temporarily stop the water in the upper water cooling header and the lower water cooling header, and after the steel pipe completely enters the water cooling zone,
Intermittent injection of cooling water is performed to start water cooling, and in this way, generation of temperature differences in the circumferential direction of the steel pipe is avoided. As shown in FIG. 1, even if the conveyor 13 is not in pitch conveyance, that is, in continuous conveyance, the upper water cooling header and If intermittent injection is performed by repeating the operation of starting and stopping the cooling water jet from the lower water-cooled header, the same functional effect as that of the present invention can be obtained. Furthermore, it is desirable to rotatably cool the steel pipe during cooling in the same way as when it is left to cool. If the steel pipe is cooled without rotating, the cooling water in the upper water-cooled header 8 and lower water-cooled header 9 shown in Fig. 1 may not reach the side of the steel pipe depending on the size of the steel pipe, resulting in insufficient cooling. Generates a temperature difference in the circumferential direction. The number of revolutions required to be applied to the steel pipe in order to avoid the occurrence of this temperature difference varies depending on the size of the steel pipe, but is about 1 to 10 revolutions per minute, as in the case of cooling. [Example] Hereinafter, the present invention will be explained in detail with reference to the drawings. FIG. 1 is a cross-sectional view of a cooling zone when cooling a steel pipe according to the present invention, taken in a direction perpendicular to the longitudinal axis of the steel pipe, and the structure is the same in the longitudinal direction of the steel pipe. First, the process will be explained using an example in which steel pipes to be treated are transported intermittently. The steel pipe 2 is heated to a predetermined temperature in a heating furnace, passed through a straightening machine, etc., and conveyed from the previous process (conveyed in a direction perpendicular to the plane of the drawing). It is temporarily stopped on the conveyance roll 21, and then the dispensing unit 22
The material is delivered onto a cooling bed, and is held by the conveyor 13 and dog 14, which are stopped and waiting at this time. The reversing conveyor 12, which circulates in the opposite direction to the conveyor 13, is constantly operated to continuously rotate the steel pipes 2 on the conveyor 13 in the cooling bed. If the steel pipe 2 on the conveyor 13 is not rotated, a temperature difference in the circumferential direction (mostly a temperature difference between the upper and lower surfaces in the circumferential direction) will occur in the steel pipe while it is being cooled, and it may also cause the end of the steel pipe to bend. Therefore, steel pipe 2
need to be rotated. The rotational speed given to the steel pipe 2 varies depending on the size of the steel pipe, but it gives a rotation of about 1 to 10 revolutions per minute. Of course, the number of rotations of the steel pipe may be increased as long as the steel pipe can be conveyed in a stable state without causing eaves in the steel pipe even if the steel pipe is rotated more than this. Next, the conveyor 13 equipped with a large number of dogs 14 arranged at regular intervals is started and operated for a single pitch or an arbitrary number of dog pitches, and the steel pipes 2 from the previous process are sequentially received onto the cooling bed. The steel pipe 2 is rotatably cooled on a cooling zone 20 to a temperature where there is no problem with the material even if it is cooled with water. On the other hand, the steel pipe 2A, which has been left to cool to the temperature immediately before water cooling, is conveyed by a single pitch or an arbitrary number of pitches of the dog 14 in synchronization with the steel pipe 2 sent from the previous process, and is transported to the position 2B in the water cooling zone 7. transported. At this time, the cooling water injection from the nozzle 15 of the upper water-cooled header 8 and the nozzle 15 of the lower water-cooled header 9 in the water cooling zone 7 is stopped while the steel pipe 2A is being conveyed, and the
Immediately after A is completely fed into the water cooling zone 7, that is, when the steel pipe reaches the position 2B where cooling water can be injected over the entire circumferential direction of the steel pipe 2A, the injection of cooling water is started and water cooling is started. Begins. In this way, continuous operation is performed intermittently in synchronization with the reception of the steel pipe 2 from the previous process into the cooling bed. Note that the start/stop control of the transport motor 25 and the cooling water on/off valve 27 is performed via the controller 26. The steel pipe cooled in the water cooling zone 7 is discharged onto a conveyor roll 23 by a discharge kicker 24.
In FIG. 1, 19 is a curtain for preventing water scattering. Next, a specific example of cooling a steel pipe by implementing the present invention will be described. In the rotary cross-feed type water cooling bed shown in Fig. 1, when the steel pipe to be cooled enters the water cooling zone based on the specifications shown in Table 1, the water from the upper water cooling header and the lower water cooling header is After the cooling water injection is stopped and the steel pipe completely enters the water cooling zone, the conveyance of the steel pipe and the start of the cooling water injection are matched so that the cooling water is spouted from the upper water cooling header and the lower water cooling header. A series of tempering operations were carried out. As a result, no bending of the steel pipes occurred during transportation, and stable operations could be carried out.
【表】【table】
本発明によれば、鋼管2の円周方向の水冷開始
タイミングが全周にわたつてほぼ同時に行なわれ
るので、鋼管全周の均一な冷却が可能になり、そ
のため鋼管の曲りや品質不良を発生させることな
く、安定した冷却操業を行なうことができる効果
が得られる。
According to the present invention, the water cooling start timing in the circumferential direction of the steel pipe 2 is performed almost simultaneously over the entire circumference, so uniform cooling of the entire circumference of the steel pipe is possible, which prevents bending of the steel pipe and quality defects. The effect is that stable cooling operation can be performed without any problems.
第1図は本発明を実施して鋼管を冷却する場合
の冷却帯の状態を示す縦断正面図、第2図は本発
明の方法における冷却水の間欠噴射状態を示す説
明図である。第3図は鋼管の焼戻処理工程を示す
概略側面図、第4図および第5図は従来の鋼管の
冷却方法を説明するための縦断正面図、第6図は
鋼管の冷却時の曲り挙動を示す説明図である。
図において、1は鋼管、7は水冷却帯、8は上
部水冷ヘツダー、9は下部水冷ヘツダー、12は
逆転コンベア、13は搬送コンベア、14はドツ
グ、20は放冷却帯、21は搬送ロール、22は
払出キツカ、25は搬送モータ、26はコントロ
ーラ、27は開閉バルブである。
FIG. 1 is a longitudinal sectional front view showing the state of a cooling zone when a steel pipe is cooled by implementing the present invention, and FIG. 2 is an explanatory diagram showing an intermittent injection state of cooling water in the method of the present invention. Figure 3 is a schematic side view showing the steel pipe tempering process, Figures 4 and 5 are longitudinal sectional front views to explain the conventional steel pipe cooling method, and Figure 6 is the bending behavior of the steel pipe during cooling. FIG. In the figure, 1 is a steel pipe, 7 is a water cooling zone, 8 is an upper water cooling header, 9 is a lower water cooling header, 12 is a reversing conveyor, 13 is a transport conveyor, 14 is a dog, 20 is a radiation cooling zone, 21 is a transport roll, Reference numeral 22 is a dispensing screw, 25 is a conveyance motor, 26 is a controller, and 27 is an opening/closing valve.
Claims (1)
下部より冷却水を噴射して鋼管を冷却するに際
し、鋼管が水冷却帯内に侵入する時、一時的に上
部水冷ヘツダーおよび下部水冷ヘツダーの水を停
止し、鋼管が完全に水冷却帯内に侵入した後、鋼
管の搬送に連動して上部水冷ヘツダーおよび下部
水冷ヘツダーから冷却水を鋼管に向かつて噴射
し、鋼管の全周を冷却するように冷却水を間欠噴
射することを特徴とする鋼管の冷却方法。1 When a steel pipe is conveyed horizontally and cooled by injecting cooling water from the upper and lower parts of the steel pipe, when the steel pipe enters the water cooling zone, the upper water cooling header and the lower water cooling header are temporarily blocked. After the water has been stopped and the steel pipe has completely entered the water cooling zone, cooling water is injected toward the steel pipe from the upper water-cooled header and the lower water-cooled header in conjunction with the transport of the steel pipe, cooling the entire circumference of the steel pipe. A steel pipe cooling method characterized by intermittent injection of cooling water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1851287A JPS63186830A (en) | 1987-01-30 | 1987-01-30 | Method for cooling steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1851287A JPS63186830A (en) | 1987-01-30 | 1987-01-30 | Method for cooling steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63186830A JPS63186830A (en) | 1988-08-02 |
JPH0344128B2 true JPH0344128B2 (en) | 1991-07-05 |
Family
ID=11973681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1851287A Granted JPS63186830A (en) | 1987-01-30 | 1987-01-30 | Method for cooling steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63186830A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4851768B2 (en) * | 2005-10-18 | 2012-01-11 | 田島ルーフィング株式会社 | Asphalt roofing stretcher. |
JP4887020B2 (en) * | 2005-10-18 | 2012-02-29 | 田島ルーフィング株式会社 | Asphalt roofing stretcher. |
-
1987
- 1987-01-30 JP JP1851287A patent/JPS63186830A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS63186830A (en) | 1988-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3490500A (en) | Plant for the treatment of rolled wire from the roll heat | |
EP1187686B1 (en) | Integrated plant for the production of rolled stock | |
US3958796A (en) | Quench-hardening of pipes | |
JPH0344128B2 (en) | ||
US9938602B2 (en) | Production method and production facility of metal pipe | |
JPS5887226A (en) | Method and device for cooling steel pipe | |
JPH0754048A (en) | Equipment for manufacturing high strength quenched steel tube for reinforcing member of automotive door | |
JP2000309826A (en) | Continuous annealing of steel wire for welding | |
US4373703A (en) | Device for rapidly cooling metal tubes | |
JP3624680B2 (en) | Method for cooling inner and outer surfaces of steel pipe and inner and outer surface cooling device | |
EP0089019B1 (en) | Method and apparatus for sequentially quenching steel pipes | |
JP3552089B2 (en) | Hot automatic forging line equipment and its operation method | |
JPS62161918A (en) | Heat treatment line for steel pipe | |
KR101988284B1 (en) | Materials treatment apparatus | |
JPS6115932B2 (en) | ||
JPS63183127A (en) | Method for hardening outside surface of steel pipe | |
JPS6115931B2 (en) | ||
JPS5923819A (en) | Cooling method of pipe material | |
SU1135783A1 (en) | Flow line for machining cold-formed pipes | |
JP2005248302A (en) | Method for producing long, large diameter, and thin-walled seamless steel pipe having little bending | |
JP2663830B2 (en) | Descaling method | |
JPH06158164A (en) | Manufacture of butt welded tube | |
JPH03207817A (en) | Spray cooler for steel pipe | |
JPS6233009Y2 (en) | ||
JPS58107245A (en) | Heating device for end of steel tube |