JPH034376A - Shape recognizing method - Google Patents

Shape recognizing method

Info

Publication number
JPH034376A
JPH034376A JP13885489A JP13885489A JPH034376A JP H034376 A JPH034376 A JP H034376A JP 13885489 A JP13885489 A JP 13885489A JP 13885489 A JP13885489 A JP 13885489A JP H034376 A JPH034376 A JP H034376A
Authority
JP
Japan
Prior art keywords
shape
light
roundness
recognized
seedling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13885489A
Other languages
Japanese (ja)
Inventor
Taizo Tateishi
建石 泰三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13885489A priority Critical patent/JPH034376A/en
Publication of JPH034376A publication Critical patent/JPH034376A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To recognize the specific part of an object to be recognized from roundness by forming light cutting plane shape on the object to be recognized by irradiating an almost cylindrical shape object to be recognized with light in a direction intersecting orthogonally to the longitudinal direction of the object, and finding the roundness by finding a circular arc approximated to the light cutting plane shape. CONSTITUTION:When a seedling 3 as the object to be recognized is illuminated with slit light 5 from a slit light source 4 arranged on a placing board 2, the light 5 is formed in the light cutting plane shape along the shape of the seedling 3. When the cutting plane shape is image-picked up with an image pickup device 6, an image signal from the device 6 is sent to an image processing device 10, and is A/D-converted 11, then, it is stored in an image memory 12. Next, a pre-processing part 14 performs the smoothing and thinning processings of image data, etc., with the command of a main control part 13. And the circular arc approximated to each of the light cutting plane shape S1, S2,... Sn of obtained cutting plane shape is found with a circular arc matching part 15, and the roundness of the circular arc is found with a roundness calculating part 16, then, the shape of the specific part of the seedling 3 can be obtained from the roundness.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、円柱状の被認ぷ物、例えば植物の市の断面を
認識する形状認識方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a shape recognition method for recognizing a cross section of a cylindrical object, such as a plant market.

(従来の技術) かかる形状認識には、被認識物として例えばアスパラガ
スのサイズの選別に適用されている。
(Prior Art) Such shape recognition is applied to, for example, selecting the size of asparagus as an object to be recognized.

このアスパラガスのサイズの選別は、アスパラガスを搬
送するコンベアの上方に1台のITV(工業用テレレビ
ジョン)カメラを配置して搬送されるアスパラガスを撮
像し、この撮像により得られた画像データからアスパラ
ガスの穂先と幹とにおける各最大直径を求めてこれら最
大直径の比を求めるとともにアスパラガスの長さ求める
。そして、これら最大直径の比及び長さと基準値とを比
較することによってアスパラガスのサイズが決められる
The size of the asparagus is sorted by placing an ITV (industrial television) camera above the conveyor conveying the asparagus to image the asparagus being conveyed, and using the image data obtained by this imaging. From this, the maximum diameters of the asparagus tip and trunk are determined, the ratio of these maximum diameters is determined, and the length of the asparagus is determined. Then, the size of asparagus is determined by comparing the ratio and length of these maximum diameters with a reference value.

この方法を苗の形状認識などに用いた場合、上記方法で
はそれぞれ1台のカメラによって画像データを得ている
ので、この画像データは苗の2次元情報となっている。
When this method is used for shape recognition of seedlings, etc., each of the above methods obtains image data using one camera, so this image data becomes two-dimensional information about the seedlings.

このため、苗の茎の2次元的な幅や長さ情報を得ること
はできるが、画表面の3次元的な形状変化情報を得るこ
とはできない。
Therefore, although it is possible to obtain two-dimensional width and length information of the stem of a seedling, it is not possible to obtain three-dimensional shape change information on the image surface.

従って、画表面の3次元的形状変化の情報から苗におけ
る技分かれする部分や葉に覆われた部分を認識すること
は困難である。
Therefore, it is difficult to recognize the parts of the seedling where the techniques are divided or the parts covered with leaves from information about three-dimensional shape changes on the image surface.

(発明が解決しようとする課題) 以上のように被認識物の断面や技分かれする部分、さら
に葉に覆われた部分などの特定形状部分を認識すること
が困難である。
(Problems to be Solved by the Invention) As described above, it is difficult to recognize specific shaped parts such as cross sections of objects to be recognized, parts where techniques are divided, and parts covered with leaves.

そこで本発明は、被認識物の特定形状部分を認識できる
形状認識方法を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a shape recognition method that can recognize a specific shape portion of an object to be recognized.

[発明の構成〕 (課題を解決するための手段及び作用)本発明は、略円
柱状の被認識物の長手方向に対して交差する方向に1次
元的な光を照射して被認1物上に光切断面形状を形成し
、この光切断面形状に対して近似する円弧を求めて光切
断面形状の円弧に対する真円度を求め、この真円度から
被認識物の特定形状部分を認識するようにした形状認識
方法である。
[Structure of the Invention] (Means and Effects for Solving the Problems) The present invention provides a method for detecting one object by irradiating one-dimensional light in a direction intersecting the longitudinal direction of a substantially cylindrical object. A light section shape is formed on the top, an arc that approximates this light section shape is found, the circularity of the light section shape with respect to the arc is determined, and a specific shaped part of the object to be recognized is determined from this roundness. This is a shape recognition method that recognizes shapes.

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の形状認識方法を適用した形状認識装置
の構成図である。XY子テーブル上には載置台2が設け
られ、この載置台2上には被認識物とし植物の苗3が載
置されている。なお、この苗3はその延びている方向が
X方向と一致するように配置されている。一方、載置台
2の上方にはスリット光源4が配置されており、このス
リット光源4はX方向つまり苗3の延びている方向に対
して略直交する方向のスリット光5を載置台2の面に対
してψ度の角度で照射するものである。又、市3におけ
るスリット光5の照射された真上には撮像装置6が配置
されて苗3を撮像するものとなっている。ところで、X
Y子テーブルは移動制御部7からの駆動制御信号を受け
てXテーブルがX方向に所定の間隔ごとに移動するもの
となっている。
FIG. 1 is a block diagram of a shape recognition device to which the shape recognition method of the present invention is applied. A mounting table 2 is provided on the XY child table, and a plant seedling 3 as an object to be recognized is placed on this mounting table 2. Note that the seedlings 3 are arranged so that the direction in which they extend coincides with the X direction. On the other hand, a slit light source 4 is arranged above the mounting table 2, and this slit light source 4 emits slit light 5 in the X direction, that is, a direction substantially perpendicular to the direction in which the seedlings 3 extend, onto the surface of the mounting table 2. The beam is irradiated at an angle of ψ degrees. Further, an imaging device 6 is placed directly above the city 3 where the slit light 5 is irradiated to take an image of the seedling 3. By the way, X
The Y child table receives a drive control signal from the movement control section 7, and the X table moves in the X direction at predetermined intervals.

前記撮像装置6から出力される画像信号は認識処理装置
10に送られている。この認識処理装置10にはA/D
 (アナログ/ディジタル)変換器11及び画像メモリ
12が備えられ、撮像装置6からの画像信号がA/D変
換器11でディジタル画像信号に変換されて画像メモリ
12に画像データとして記憶されるようになっている。
The image signal output from the imaging device 6 is sent to a recognition processing device 10. This recognition processing device 10 has an A/D
An (analog/digital) converter 11 and an image memory 12 are provided, and the image signal from the imaging device 6 is converted into a digital image signal by the A/D converter 11 and stored in the image memory 12 as image data. It has become.

又、この認識処理装置10には主制御部13が備えられ
、この主制御部13に画像メモリ12、前処理部14、
円弧マツチング部15、真円度算出部16、幹部判定部
17及び出力部18が接続されている。
Further, this recognition processing device 10 is equipped with a main control section 13, and this main control section 13 includes an image memory 12, a preprocessing section 14,
An arc matching section 15, a roundness calculating section 16, a trunk determining section 17, and an output section 18 are connected.

前処理部14は画像メモリ12に記憶された画像データ
に対して平滑化処理、−次微分処理、2値化処理及び細
線化処理を行う機能を有するものである。円弧マツチン
グ部15は画像メモリ12に記憶された画像データの光
切断面形状に対して最も近似する円弧を最小二乗法によ
って求める機能を持ったものであり、真円度算出部16
は光切断面形状の円弧に対する真円度を評価関数として
求める機能を持ったものである。又、幹部判定部17は
真円度から苗3の特定形状部分つまり苗3における茎、
枝分かれ部分や葉に覆われた部分をそれぞれ判別する機
能をqするものである。
The preprocessing unit 14 has a function of performing smoothing processing, -th order differential processing, binarization processing, and thinning processing on the image data stored in the image memory 12. The arc matching section 15 has a function of finding the arc that most closely approximates the shape of the optical cross section of the image data stored in the image memory 12 by the method of least squares, and the circularity calculating section 16
has the function of determining the circularity of the optical section shape with respect to the arc as an evaluation function. In addition, the trunk determining unit 17 determines the specific shaped portion of the seedling 3, that is, the stem of the seedling 3, based on the roundness.
It has the function of identifying branched parts and parts covered with leaves.

次に上記の如く構成された装置の作用について説明する
。苗3が裁置台2上に配置されてスリット光源4からス
リット光5が苗3に照射されると、このスリット光5が
苗3の形状に沿った光切断面形状に形成される。そして
、この光切断面形状が撮像装置6により撮像されると、
この撮像装置6から出力される画像信号は画像処理装置
10に送られる。この画像処理装置10は画像信号をA
/D変換器11でディジタル画像信号に変換して画像メ
モリ12に画像データとして記憶する。
Next, the operation of the apparatus configured as described above will be explained. When the seedling 3 is placed on the table 2 and the slit light 5 is irradiated onto the seedling 3 from the slit light source 4, the slit light 5 is formed into a light section shape that follows the shape of the seedling 3. Then, when this light section shape is imaged by the imaging device 6,
The image signal output from this imaging device 6 is sent to an image processing device 10. This image processing device 10 converts the image signal into A
The /D converter 11 converts the signal into a digital image signal and stores it in the image memory 12 as image data.

このようにして画像データが画像メモリ12に記憶され
ると、主制御部13は前処理部14に対して動作指令を
発する。この前処理部14は画像データに対し平滑化処
理、−次微分処理、2値化処理及び細線化処理を行って
第2図に示す画像データを得る。
When the image data is thus stored in the image memory 12, the main control section 13 issues an operation command to the preprocessing section 14. The preprocessing section 14 performs smoothing processing, -th order differential processing, binarization processing, and thinning processing on the image data to obtain the image data shown in FIG. 2.

次に主制御部13は苗3の全体に対して画像の取込みが
終了したかを判断し、終了しなければ移動制御部7にX
テーブル移動の指令を発する。これにより、XY子テー
ブルのXテーブルが所定の距離だけ移動する。以下、以
上説明した作用と同様に第3図に示すように苗3におけ
る別の各位置での光切断面形状Sl、S2・・・S、の
3次元情報が求められ、最終的に苗3の全体における各
位置での光切断面形状が得られる。
Next, the main control unit 13 determines whether image capture has been completed for the entire seedling 3, and if it has not been completed, the main control unit 13 sends an
Issues a command to move the table. As a result, the X table of the XY child table moves by a predetermined distance. Hereinafter, as shown in FIG. 3, three-dimensional information of the light section shapes Sl, S2...S, at different positions in the seedling 3 is obtained in the same way as the action explained above, and finally the seedling 3 The shape of the optical cross section at each position in the entire area is obtained.

このように苗3の全体における光切断面形状が得られる
と、主制御部13は円弧マツチング部15に対して動作
指令を与える。この指令を受けて円弧マツチング部15
は各光切断面形状Sl。
When the optical section shape of the entire seedling 3 is obtained in this way, the main control section 13 gives an operation command to the arc matching section 15. In response to this command, the arc matching section 15
is each light section shape Sl.

S2・・・S、に対してそれぞれ最も近似する円弧を最
小二乗法によって求める。ここで、円弧の求め方につい
て光切断面形状Slを例にとって第4図を参照して説明
する。ここで、円弧Qの中心位置を(x、y)とし半径
をrとする。又、円弧Qの中心位置(X、Y)から光切
断面形状S、における最端位置(Xi、Yi)までの距
離をRとする。
The most approximate circular arc for each of S2...S is determined by the least squares method. Here, how to obtain the circular arc will be explained with reference to FIG. 4, taking the optical section shape Sl as an example. Here, the center position of the arc Q is (x, y) and the radius is r. Further, let R be the distance from the center position (X, Y) of the circular arc Q to the end position (Xi, Yi) in the optical section shape S.

しかるに、距離Rは R−(Xi−x)’ +(Yi−y) 2で表される。However, the distance R is It is represented by R-(Xi-x)'+(Yi-y)2.

そして、 E−Σ(r−R)2 とし、 となるようにΔr1Δx1Δyを解く。すなわち、非線
形方程式の解を求める数学的手法によってに納まった時
の「、XsYを解とする。この結果、円弧Qの半径r及
び゛その中心位置(x、y)が求められる。
Then, E-Σ(r-R)2 is set, and Δr1Δx1Δy is solved as follows. That is, by using a mathematical method to find a solution to a nonlinear equation, let XsY be the solution. As a result, the radius r of the arc Q and its center position (x, y) can be found.

次に主制御部13は真円度算出部16に対して動作指令
を与える。この真円度算出部16は円弧Qと光切断面形
状S、とから光切断面形状S1の真円度を表す評価関数
Hを求める。すなわち、この評価関数Hは H−(r−R) 2/ r2 で表される。この評価関数Hは、その値が小さければ光
切断面形状SIの輪郭が真円に近いことを示しすととも
に値が大きければ光切断面形状S1の輪郭が真円から遠
いことを示している。
Next, the main control section 13 gives an operation command to the roundness calculation section 16. The circularity calculation unit 16 calculates an evaluation function H representing the circularity of the optical section shape S1 from the arc Q and the optical section shape S. That is, this evaluation function H is expressed as H-(r-R)2/r2. If the evaluation function H has a small value, it indicates that the outline of the light section shape SI is close to a perfect circle, and if the value has a large value, it indicates that the outline of the light section shape S1 is far from a perfect circle.

このように評価関数Hが求められると、主制御部13は
幹部判定部17に動作指令を与える。この幹部判定部1
7は評価関数Hと苗3の茎を判別するための基準値とを
比較して苗3における茎、技分かれ部分や葉に覆われた
部分をそれぞれ判別する。すなわち、幹部判定部17は
真円度が大きい場合に光切断形状S、は1本の茎上に形
成されたものであると判定し、又真円度が小さい場合に
光切断形状S、は枝分かれ部分、葉に覆われた部分に形
成されたものであると判定する。
Once the evaluation function H is determined in this way, the main control section 13 gives an operation command to the executive determination section 17. This executive judgment part 1
7 compares the evaluation function H with a reference value for determining the stem of the seedling 3 to determine the stem, divided portion, and portion covered by leaves in the seedling 3, respectively. That is, the trunk determining unit 17 determines that the light-cut shape S is formed on one stem when the roundness is large, and determines that the light-cut shape S is formed on a single stem when the roundness is small. It is determined that it is formed on a branched part or a part covered by leaves.

しかるに、以上のような動作が各光切断形状S2.S、
・・・S7ごとに行われてそれぞれ評価関数Hが求めら
れる。第5図は苗3の全体における評価関数Hを求めた
結果を示しており、この結果から評価関数Hの値が大き
い各節1mA、B、CがW3における技分かれ部分や葉
に覆われた部分となる。
However, the above operation is performed for each light cutting shape S2. S,
. . . It is performed every S7 to obtain the evaluation function H. Figure 5 shows the results of determining the evaluation function H for the entire seedling 3. From this result, each node 1mA, B, and C with a large value of the evaluation function H is found to be covered by the dividing part of W3 or leaves. become a part.

このように上記一実施例においては、百3にスリット光
を照射して苗3上に光切断面形状を形成し、この光切断
面形状に対して近似する円弧Qを求めて光切断面形状の
円弧Qに対する真円度を求め、この真円度から苗3の茎
、枝分かれ部分、葉に覆われた部分を認忠するようにし
たので、苗3の3次元の断面形状情報から苗3における
枝分がれ部分や葉に覆われた部分を判定しこれらの位置
を抽出できる。又、苗3の各位置における直径を求める
ことができる。
In this way, in the above embodiment, a slit light is irradiated onto the seedling 3 to form a light section shape, and an arc Q that approximates this light section shape is determined to determine the light section shape. The roundness of the seedling 3 with respect to the arc Q is calculated, and the stem, branching parts, and parts covered by leaves of the seedling 3 are recognized from this roundness. It is possible to determine the branching parts and parts covered by leaves and extract their positions. Furthermore, the diameter at each position of the seedling 3 can be determined.

なお、本発明は上記一実施例に限定されるものでなくそ
の主旨を逸脱しない範囲で変形しても良い。上記一実施
例では市3の茎の認識に適用した場合について説明した
が、被認識物をアスパラガスとして穂先及び茎の直径を
認識する場合に適用しても良い。又、被認識物としては
半田付は不良の検出や溶接不良の検出にも適用しても良
い。さらに、真円度の判定は別の手段を用いてもよい。
Note that the present invention is not limited to the above-mentioned embodiment, and may be modified without departing from the spirit thereof. In the above-mentioned embodiment, a case has been described in which the present invention is applied to the recognition of the stem of Ichi 3, but the present invention may also be applied to the case where the object to be recognized is asparagus and the diameter of the tip and stem is recognized. Moreover, soldering may be applied to detection of defects and welding defects as objects to be recognized. Furthermore, other means may be used to determine the roundness.

[発明の効果] 以上詳記したように本発明によれば、被認識物の特定形
状部分を認識できる形状認識方法を提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to provide a shape recognition method that can recognize a specific shape portion of an object to be recognized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は本発明に係イっる形状認識方法を説
明するための図であって、第1図は本方法を適用した形
状認識装置の構成図、第2図は前処理後の画像データの
模式図、第3図は光切断面形状の模式図、第4図は評価
関数の算出を説明するための模式図、第う図は評価関数
を示す図である。 1・・・XY子テーブル2・・・載置台、3・・・苗、
4・・・スリット光源、6・・・撮像装置、7・・・移
動制御部、10・・・認識処理部、11・・・A/D変
換器、12・・・画像メモリ、13・・・主制御部、1
4・・・前処理部、15・・・円弧マツチング部、16
・・・真円度算出部、17・・・幹部判定部。
1 to 5 are diagrams for explaining the shape recognition method according to the present invention, in which FIG. 1 is a block diagram of a shape recognition device to which this method is applied, and FIG. 2 is a preprocessing diagram. FIG. 3 is a schematic diagram of the later image data, FIG. 3 is a schematic diagram of the shape of a light section, FIG. 4 is a schematic diagram for explaining calculation of an evaluation function, and FIG. 1...XY child table 2...Placement stand, 3...Seedling,
4... Slit light source, 6... Imaging device, 7... Movement control unit, 10... Recognition processing unit, 11... A/D converter, 12... Image memory, 13...・Main control unit, 1
4... Pre-processing section, 15... Arc matching section, 16
... Roundness calculation section, 17... Executive judgment section.

Claims (1)

【特許請求の範囲】[Claims] 略円柱状の被認識物の長手方向に対して交差する方向に
1次元的な光を照射して前記被認識物上に光切断面形状
を形成し、この光切断面形状に対して近似する円弧を求
めて前記光切断面形状の前記円弧に対する真円度を求め
、この真円度から前記被認識物の特定形状部分を認識す
ることを特徴とする形状認識方法。
A one-dimensional light is irradiated in a direction intersecting the longitudinal direction of a substantially cylindrical object to be recognized to form a light section shape on the object to be recognized, and an approximation is made to this light section shape. A shape recognition method characterized by determining a circular arc, determining the circularity of the optical section shape with respect to the circular arc, and recognizing a specific shaped portion of the object to be recognized from this circularity.
JP13885489A 1989-05-31 1989-05-31 Shape recognizing method Pending JPH034376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13885489A JPH034376A (en) 1989-05-31 1989-05-31 Shape recognizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13885489A JPH034376A (en) 1989-05-31 1989-05-31 Shape recognizing method

Publications (1)

Publication Number Publication Date
JPH034376A true JPH034376A (en) 1991-01-10

Family

ID=15231706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13885489A Pending JPH034376A (en) 1989-05-31 1989-05-31 Shape recognizing method

Country Status (1)

Country Link
JP (1) JPH034376A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9647555B2 (en) 2005-04-08 2017-05-09 Lincoln Global, Inc. Chopper output stage for arc welder power source
US9855620B2 (en) 2005-02-07 2018-01-02 Lincoln Global, Inc. Welding system and method of welding
US9956639B2 (en) 2005-02-07 2018-05-01 Lincoln Global, Inc Modular power source for electric ARC welding and output chopper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9855620B2 (en) 2005-02-07 2018-01-02 Lincoln Global, Inc. Welding system and method of welding
US9956639B2 (en) 2005-02-07 2018-05-01 Lincoln Global, Inc Modular power source for electric ARC welding and output chopper
US9647555B2 (en) 2005-04-08 2017-05-09 Lincoln Global, Inc. Chopper output stage for arc welder power source

Similar Documents

Publication Publication Date Title
KR920004956B1 (en) Drawing figure recognition apparatus
US6751361B1 (en) Method and apparatus for performing fixturing in a machine vision system
US5369430A (en) Patter correlation type focus detecting method and focus detecting apparatus
CN107388991A (en) A kind of more fillet axial workpiece radius of corner measuring methods in end face
JP6621351B2 (en) Image processing apparatus and image processing method for laser processing
JPH034376A (en) Shape recognizing method
JP2003136465A (en) Three-dimensional position and posture decision method of detection target object and visual sensor of robot
JPH07250538A (en) Apparatus for carrying out measuring treatment of target material to be harvested and method therefor
JPH0228503A (en) Method for recognizing circular body and detecting center position
JP3437141B2 (en) Pattern recognition method and apparatus
JP3180091B2 (en) Non-contact dimension measurement method by laser autofocus
JP3506161B2 (en) Agricultural and fishery product appearance inspection device
JPH0737106A (en) Edge recognition method
JPH0933227A (en) Discrimination method for three-dimensional shape
JP2932418B2 (en) Work position measurement method
JP2708621B2 (en) Substrate position detection method and component mounting device on substrate
JPH0534602B2 (en)
JPH0314078A (en) Shape recognizing device
JPH11344321A (en) Noncontact measuring method for three dimensional object shape and device
JPH034378A (en) Shape recognizing device
JPH0560559A (en) Height measuring apparatus
JPH0370086A (en) Shape recognizing device
JPH03118975A (en) Welding equipment
JPH0755440A (en) Shape recognition system
JPH01142404A (en) Welding robot system