JPH0737106A - Edge recognition method - Google Patents

Edge recognition method

Info

Publication number
JPH0737106A
JPH0737106A JP5182579A JP18257993A JPH0737106A JP H0737106 A JPH0737106 A JP H0737106A JP 5182579 A JP5182579 A JP 5182579A JP 18257993 A JP18257993 A JP 18257993A JP H0737106 A JPH0737106 A JP H0737106A
Authority
JP
Japan
Prior art keywords
edge
contour
point
triangulation
result
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5182579A
Other languages
Japanese (ja)
Inventor
Takeshi Nomura
剛 野村
Takashi Ichiyanagi
高畤 一柳
Kohei Hamamura
公平 浜村
Seiji Hamano
誠司 濱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5182579A priority Critical patent/JPH0737106A/en
Priority to KR1019940017614A priority patent/KR950004047A/en
Priority to CN94108211A priority patent/CN1109189A/en
Publication of JPH0737106A publication Critical patent/JPH0737106A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To precisely recognize an edge shape by jointly using a rectangle measuring method and a density picture method, producing the height of an edge with a result by the rectangle surveying method and producing the outline of the edge with a result by the density picture method. CONSTITUTION:When a surface shape is obtained by the rectangle surveying method for an object 1 having a vertical surface 1c between a higher surface 1a and a lower surface 1b, an edge 1d that higher surface 1a and the vertical surface 1c makes, really ought to have the outline in a broken line position in the drawing (b), in the rectangle surveying method, however, since a system skips when point data of one survey point p1 is obtained and point data of a next survey point p2 is obtained, the outline becomes a vague one having width W, but the height position is precise. On the other hand, since a clear density change appears in the broken line position of the drawing (b) in the density picture method, the part can be judged to be the outline of the edge 1d. Therefore, the rectangle surveying method and the density picture method are jointly used and the height position is produced in the former and an outline position in the latter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、三次元的に変化する
面形状に含まれているエッジの認識方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recognizing an edge included in a surface shape which changes three-dimensionally.

【0002】[0002]

【従来の技術】このようなエッジは、一般に、三角測量
方法や濃淡画像方法を使用して認識される。
2. Description of the Related Art Such edges are generally recognized using triangulation or gray-scale image methods.

【0003】[0003]

【発明が解決しようとする課題】しかし、三角測量方法
も濃淡画像方法もそれぞれ一長一短があり、エッジの形
状を正確に認識できてはいない。
However, both the triangulation method and the grayscale image method have merits and demerits, and the shape of the edge cannot be accurately recognized.

【0004】この発明は、このような問題点に鑑みて、
エッジ形状を正確に認識できるエッジ認識方法を提供す
ることを課題とする。
The present invention has been made in view of the above problems.
An object of the present invention is to provide an edge recognition method capable of accurately recognizing an edge shape.

【0005】[0005]

【課題を解決するための手段】この発明にかかるエッジ
認識方法は、第1に、三角測量方法と濃淡画像方法を併
用してエッジを含む面形状を求め、三角測量方法による
結果でエッジの高さを出すとともに濃淡画像方法による
結果でエッジの輪郭を出すようにするものであり、第2
に、三角測量方法を用いてエッジの輪郭を求め、この輪
郭を構成する点データのうちの一部をCADの起点、中
点、終点に用いてCADによりエッジを描くようにする
ものであり、第3に、一つの面Aを表す式aを求めると
ともに、この面と交差する面Bを表す式bを求めて、両
式a、bに基づき二つの面A、Bが交差する線を求めて
この線をエッジと判断し、第4に、三角測量方法を用い
てエッジの輪郭を求め、この測定結果を接触方法で正確
に求めた結果で補正し、三角測量方法を用いたエッジ輪
郭の実際測定を行うに当たり、前記補正を加味するよう
にするものである。
In the edge recognition method according to the present invention, firstly, a surface shape including edges is obtained by using a triangulation method and a grayscale image method together, and the edge height is determined by the result of the triangulation method. And the contour of the edge is displayed as a result of the grayscale image method.
In addition, the contour of the edge is obtained by using the triangulation method, and part of the point data forming the contour is used as the CAD starting point, middle point, and ending point to draw the edge by CAD. Thirdly, the expression a representing one surface A is found, and the expression b representing the surface B intersecting with this surface is found, and the line where the two surfaces A and B intersect is found based on both expressions a and b. The lever line is judged as an edge, and fourth, the contour of the edge is obtained by using the triangulation method, and the measurement result is corrected by the result obtained accurately by the contact method, and the edge contour is obtained by using the triangulation method. The above correction is taken into consideration when actually performing the measurement.

【0006】ここに、三角測量方法とは、例えば、以下
に述べるように、物体表面の3次元形状に応じて光反射
にズレが生じることを利用して測定点の高さ(点デー
タ)を求める方法を言う。
Here, the triangulation method is used to determine the height (point data) of the measurement point by utilizing the fact that the light reflection is displaced depending on the three-dimensional shape of the object surface as described below. Say how to ask.

【0007】図5に示すように、物体1の3次元形状を
有する表面に投光部2から投光レンズ3を介してレーザ
ビーム10が当てられる。レーザビーム10は物体1の
表面で反射して受光レンズ6を介してCCDカメラ検出
部5に入る。この光学系では、基準点11の高さでレー
ザビーム10が反射した場合、反射したレーザビーム1
0は、CCDカメラ検出部5の基準位置17で検出され
るようになっている。一方、物体1表面における、基準
点11と異なる高さを持つ点12で反射したレーザビー
ム10は、CCDカメラ検出部5の基準位置17から距
離L1だけ外れた位置18で検出される。このとき、反
射レーザビームの受光位置は測定点12の高さ位置と基
準点11の高さ位置の差に比例して変化する。その結
果、測定点12の高さ位置(Z軸上の位置)が分かる。
As shown in FIG. 5, a laser beam 10 is applied from a light projecting portion 2 to a surface of an object 1 having a three-dimensional shape through a light projecting lens 3. The laser beam 10 is reflected by the surface of the object 1 and enters the CCD camera detection unit 5 via the light receiving lens 6. In this optical system, when the laser beam 10 is reflected at the height of the reference point 11, the reflected laser beam 1
0 is detected at the reference position 17 of the CCD camera detection unit 5. On the other hand, the laser beam 10 reflected at a point 12 having a height different from the reference point 11 on the surface of the object 1 is detected at a position 18 deviated from the reference position 17 of the CCD camera detection unit 5 by a distance L1. At this time, the light receiving position of the reflected laser beam changes in proportion to the difference between the height position of the measurement point 12 and the height position of the reference point 11. As a result, the height position of the measurement point 12 (position on the Z axis) is known.

【0008】この三角測量方法を用いて実際に面形状を
求める場合は、レーザビーム10で物体1の表面を走査
する。この走査範囲は、反射レーザビーム10の受光位
置が基準位置17に収まる範囲である。反射レーザビー
ム10の受光位置が基準位置17に収まる範囲内の面を
基準面と言う。基準面の形状は、例えば、特開昭64−
26816号公報にみるように、レンズの形状等の調整
により、曲面や平面など様々な形で設定できる。測定点
12は、この基準面内での走査で測定対象となる各点で
あり、基準面内で基準点11と同じ高さ位置や異なる高
さ位置を持つ。受光レンズ6と基準点11の距離L2、
受光レンズ6と基準位置17の距離L3、および受光レ
ンズ6と基準点11を結ぶ線と投光レンズ3と基準点1
1を結ぶ線とのなす角度θが予め分かっているため、物
体1表面上の測定点12と基準点11の間の距離Zは直
ちに求まる。このようにして、基準点11からの距離Z
が二次元的に異なる測定点の高さ位置がレーザビーム1
0の走査により順次得られ、これらの点データが蓄積さ
れて、三次元形状を認識することかできる。各測定点1
2のXY軸上の位置(二次元的位置)は、通常、前記距
離Zに基準点11と載置テーブル14の間の距離を足し
た距離Lzとして表現される。なお、図のZHは測定可
能範囲を示す。
When the surface shape is actually obtained using this triangulation method, the surface of the object 1 is scanned with the laser beam 10. This scanning range is a range in which the light receiving position of the reflected laser beam 10 falls within the reference position 17. The surface within the range where the light receiving position of the reflected laser beam 10 falls within the reference position 17 is called the reference surface. The shape of the reference plane is, for example, JP-A-64-
As disclosed in Japanese Patent No. 26816, it can be set in various shapes such as a curved surface and a flat surface by adjusting the shape of the lens. The measurement point 12 is each point to be measured by scanning in the reference plane, and has the same height position as the reference point 11 or a different height position in the reference plane. The distance L2 between the light receiving lens 6 and the reference point 11,
The distance L3 between the light receiving lens 6 and the reference position 17, the line connecting the light receiving lens 6 and the reference point 11, the light projecting lens 3 and the reference point 1
Since the angle θ formed by the line connecting 1 is known in advance, the distance Z between the measurement point 12 and the reference point 11 on the surface of the object 1 can be immediately obtained. In this way, the distance Z from the reference point 11
The laser beam 1 is the height position of the measurement point that is two-dimensionally different.
It is possible to recognize the three-dimensional shape by sequentially acquiring the point data by scanning 0 and accumulating these point data. Each measurement point 1
The position (two-dimensional position) of 2 on the XY axes is usually expressed as a distance Lz obtained by adding the distance Z to the distance between the reference point 11 and the mounting table 14. In addition, ZH in the figure indicates a measurable range.

【0009】このようにして、測定点12のZ軸上の位
置と、XY軸上の位置が求まる。すなわち、三次元上の
位置が求まる。なお、三角測量方法による各測定点の点
データは、その全てを蓄積する必要は必ずしもなく、た
とえば高さ位置がほぼ一様に変化する面、または高さ位
置が変化しない面の点データは除去し蓄積しないことに
より、コンピュータの記憶容量を節約するようにしても
良い。
In this way, the position of the measuring point 12 on the Z axis and the position on the XY axis are obtained. That is, the three-dimensional position is obtained. Note that the point data of each measurement point by the triangulation method does not necessarily need to be accumulated, and for example, the point data of the surface where the height position changes almost uniformly or the surface where the height position does not change is removed. However, the storage capacity of the computer may be saved by not accumulating.

【0010】一方、濃淡画像方法は、例えば、CCD等
を用いた撮像手段によりを物体の3次元形状を有する表
面の2次元的な映像信号を得て、物体表面の各画素ごと
の映像信号の信号強度が3次元形状との対応しているこ
とを利用するものである。濃淡画像方法による結果でエ
ッジの輪郭を出す場合、例えば、得られた映像信号に基
づいて隣接する画素との間で顕著な信号強度差のある画
素を抽出して繋げエッジの輪郭としたり、同一の信号強
度を有する画素を抽出して繋げエッジの輪郭としたりす
ることができる。例えば、物体表面のエッジの輪郭が丸
ければ、抽出画素を順に辿って繋げた軌跡は丸いものと
なるのである。
On the other hand, the gray-scale image method obtains a two-dimensional video signal of a surface having a three-dimensional shape of an object by an image pickup means using a CCD or the like, and outputs the video signal of each pixel on the surface of the object. The fact that the signal strength corresponds to the three-dimensional shape is used. When an edge contour is obtained as a result of the grayscale image method, for example, a pixel having a significant signal strength difference with an adjacent pixel is extracted based on the obtained video signal to form a connected edge contour, or the same edge contour is obtained. It is possible to extract the pixels having the signal strength of 1 to form the contour of the connected edge. For example, if the contour of the edge of the object surface is round, the locus obtained by sequentially connecting the extracted pixels will be round.

【0011】上記の三角測量方法によれば、三次元形状
を有する物体の表面を例えばレーザビームで走査し、一
定間隔で点在する各測定点の高さ位置をこの三角測量方
法で求めて、これらを点データとして蓄積し、この蓄積
データから当該三次元形状の表面形状を認識することが
できる。
According to the above-described triangulation method, the surface of an object having a three-dimensional shape is scanned with, for example, a laser beam, and the height positions of measurement points scattered at regular intervals are obtained by this triangulation method. These can be accumulated as point data, and the surface shape of the three-dimensional shape can be recognized from the accumulated data.

【0012】なお、三角測量方法で点データを求める際
には、前述のように、測定可能範囲ZH内でしか高さ変
化が分からないので、まず、濃淡画像方法で走査して濃
淡変化のあるところに着目し、この変化領域の近辺のみ
について直ちに、三角測量方法による走査を行えば、時
間や記憶容量の節約になり、後処理も容易になる。つぎ
に、三角測量方法で点データを求めるにしても、高さ位
置の変化を読み取れる測定可能深度があるので、この場
合も、測定点が測定可能範囲に直ちに入るようにするた
め、または、測定点が測定可能範囲内に絶えず入るよう
にするために、濃淡画像方法等を応用した追随機構を設
けておくと良い。三角測量方法における走査は、通常、
一走査を終えると、前進して次の位置に移り、次の走査
を行うと言う要領でなされるが、このような走査方法で
は、次の走査位置に移る間、データ取りを停止する必要
があり、しかも、次の走査位置に移ったときでも直ちに
走査を開始することは出来ず、測定装置の停止に伴う振
動が止むまでデータ取りを停止する必要があり、時間の
無駄がある。そこで、このような直線的走査ではなく、
蛇行状に走査して、この蛇行状走査線を数学的処理で直
線的走査線に変換するようにすることが好ましい。この
数学的処理は、例えば、蛇行状走査線の軌跡を関数化し
ておき、この関数を利用してコンピュータで直線的走査
線へ変換する演算を行うのである。
When the point data is obtained by the triangulation method, the height change is known only within the measurable range ZH, as described above, and therefore, the light and shade image method is used for scanning to find the light and shade changes. Focusing on this point, if the scanning is performed immediately by the triangulation method only in the vicinity of this change area, time and storage capacity are saved, and post-processing is facilitated. Next, even if the point data is obtained by the triangulation method, there is a measurable depth that can read the change in the height position. Therefore, in this case as well, in order to make the measurement point immediately enter the measurable range, or In order to keep the points within the measurable range, it is advisable to provide a tracking mechanism that applies a gray-scale image method or the like. Scanning in the triangulation method is usually
When one scan is completed, the robot moves forward and moves to the next position, and the next scan is performed.However, in such a scanning method, it is necessary to stop the data acquisition while moving to the next scan position. Moreover, even when the scanning position is moved to the next scanning position, the scanning cannot be immediately started, and it is necessary to stop the data acquisition until the vibration accompanying the stop of the measuring device is stopped, which wastes time. So, instead of such a linear scan,
It is preferable to scan in a meandering manner and convert the meandering scan line into a linear scan line by mathematical processing. In this mathematical process, for example, the locus of the meandering scanning line is made into a function, and the computer is converted into a linear scanning line by using this function.

【0013】この発明の第1の方法では、三角測量方法
と濃淡画像方法を併用し、エッジを含む面形状を求め
る。三角測量方法では、上述のようにして測定点の高さ
位置を出すため、高さ位置は正確にでる。しかし、レー
ザビーム等による走査で、一定間隔ごとに測定点の高さ
位置を求めるようにするため、一つの測定点と次の測定
点の間でエッジに原因する高さ位置の変化があったとき
でも、エッジの二次元的位置を正確に出すことはでき
ず、二つの測定点の間にエッジがあるとしか判断できな
い。他方、濃淡画像方法は、受光素子に生じた明暗の変
化で形状変化の輪郭を得るため、輪郭は正確にでるが、
輪郭の前後における面の高さ位置は全く出ない。そこ
で、第1の方法では、三角測量方法による結果でエッジ
の高さを出すとともに濃淡画像方法による結果でエッジ
の輪郭を出すようにして、エッジの輪郭と高さ位置の変
化をともに正確に求めることができる。
In the first method of the present invention, the triangulation method and the grayscale image method are used together to obtain the surface shape including the edge. In the triangulation method, since the height position of the measurement point is obtained as described above, the height position can be accurately determined. However, there was a change in the height position caused by the edge between one measurement point and the next measurement point in order to obtain the height position of the measurement point at regular intervals by scanning with a laser beam or the like. Even at this time, the two-dimensional position of the edge cannot be accurately determined, and it can be determined only that the edge is between the two measurement points. On the other hand, in the grayscale image method, since the contour of the shape change is obtained by the change of the lightness and darkness generated in the light receiving element, the contour is accurate,
The height position of the surface before and after the contour does not appear at all. Therefore, in the first method, the edge height is obtained as a result of the triangulation method and the edge contour is obtained as a result of the grayscale image method, so that both the edge contour and the change in height position are accurately obtained. be able to.

【0014】この発明の第2の方法では、三角測量方法
を用いてエッジの輪郭を求めるが、この輪郭は厳密には
明瞭でなくぼんやりしている。そこで、この輪郭を構成
する点データのうちの一部を、人の経験や機械的、電気
的方法で抽出して、CAD(Computer Aid
ed Design)の起点、中点、終点に用い、CA
Dによりエッジを正確に描くようにする。
In the second method of the present invention, the contour of the edge is obtained by using the triangulation method, but the contour is not clear in a strict sense and is vague. Therefore, a part of the point data forming the contour is extracted by a human experience, mechanical or electrical method, and CAD (Computer Aid) is used.
ed Design) start point, middle point, end point, CA
Use D to draw the edge accurately.

【0015】この発明の第3の方法では、一つの面Aを
表す式aを演算で求めるとともに、この面と交差する面
Bを表す式bをも演算で求めて、両式a、bに基づき、
演算処理により、二つの面A、Bが交差する線を求めて
この線をエッジと判断するものであり、数学的処理によ
りエッジの輪郭を求めるので、得られた輪郭は明瞭であ
る。
In the third method of the present invention, the expression a representing one surface A is calculated, and the expression b representing the surface B intersecting with this surface is also calculated to obtain both expressions a and b. Based on
A line that intersects the two surfaces A and B is obtained by arithmetic processing, and this line is determined as an edge. Since the contour of the edge is obtained by mathematical processing, the obtained contour is clear.

【0016】この発明の第4の方法では、三角測量方法
を用いて求めたエッジの輪郭を接触方法で正確に求めた
結果で補正し、三角測量方法を用いたエッジ輪郭の実際
測定を行うに当たり、前記補正を加味するようにするも
のであるから、三角測量方法で得られたエッジ輪郭は、
明瞭かつ正確なものとなる。
In the fourth method of the present invention, the edge contour obtained by the triangulation method is corrected by the result obtained by the contact method, and the edge contour is actually measured by the triangulation method. Since the above correction is added, the edge contour obtained by the triangulation method is
Be clear and accurate.

【0017】[0017]

【作用】この発明の第1の方法では、三角測量方法と濃
淡画像方法を併用し、三角測量方法による結果でエッジ
の高さを正確に出し、濃淡画像方法による結果でエッジ
の輪郭を正確に出す。エッジが角ばったものであるか、
R(丸み)のついたものであるかなどが分かったりす
る。
In the first method of the present invention, the triangulation method and the grayscale image method are used together, the edge height is accurately obtained by the result of the triangulation method, and the edge contour is accurately obtained by the result of the grayscale image method. put out. Whether the edges are angular,
You can see if it has R (roundness).

【0018】この発明の第2の方法では、三角測量方法
で得たエッジ輪郭を構成する点データをCADの起点、
中点、終点に用いるようにしており、エッジ輪郭はCA
Dにより正確に描くようにする。CADの利用でシステ
ムの構築が簡単で操作も容易である。
In the second method of the present invention, the point data constituting the edge contour obtained by the triangulation method is used as the CAD starting point,
It is used for the middle point and the end point, and the edge contour is CA.
Try to draw more accurately in D. The use of CAD makes it easy to construct a system and operate it easily.

【0019】この発明の第3の方法では、数学的処理に
よりエッジの輪郭を求めるので、明瞭な輪郭が得られ
る。この第3の方法において、面の形状と面の交差する
線は、例えば、以下のようにして求められる。
In the third method of the present invention, since the contour of the edge is obtained by mathematical processing, a clear contour can be obtained. In the third method, the shape of the surface and the line at which the surface intersects are obtained as follows, for example.

【0020】図6の(a)にみるように、計測データ点
群Aから最小2乗系平面SsatAを、計測データ点群Bか
ら最小2乗系平面SsatBをそれぞれ求める。
As shown in FIG. 6A, a least squares system plane SsatA is obtained from the measurement data point group A, and a least squares system plane SsatB is obtained from the measurement data point group B.

【0021】[0021]

【数1】 [Equation 1]

【0022】但し、面の方程式S:任意の点P(xi,y
i,zi):Sの法線方向のpとの距離dxiyiziとする。
However, surface equation S: arbitrary point P (xi, y
i, zi): The distance dxiyizi from p in the normal direction of S.

【0023】続いて、図6の(b)にみるように、Ssa
tAとSsatBの交線F=ax+by+cz+dを求めれ
ば、この交線Fがエッジの輪郭となる。
Then, as shown in FIG. 6B, Ssa
If the intersection line F = ax + by + cz + d of tA and SsatB is obtained, this intersection line F becomes the contour of the edge.

【0024】この発明の第4の方法では、三角測量方法
を用いて求めたエッジの輪郭を実際の輪郭測定結果で補
正するため、得られたエッジ輪郭は明瞭かつ正確であ
る。この第4の方法において、接触方法でエッジ輪郭を
求める方法とは、例えば、極微細な短針を走査しつつ接
触の有無を各走査位置毎に記憶してゆくなどの方法が採
られる。
In the fourth method of the present invention, the contour of the edge obtained by using the triangulation method is corrected by the actual contour measurement result, so that the obtained contour of the edge is clear and accurate. In the fourth method, the method of obtaining the edge contour by the contact method includes, for example, a method of storing the presence or absence of contact for each scanning position while scanning the minute needle.

【0025】[0025]

【実施例】以下にこの発明を、その実施例を示す図面に
基づき説明するが、この発明の範囲はこれらの実施例に
限定されない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing the embodiments, but the scope of the present invention is not limited to these embodiments.

【0026】まず、第1の方法の実施例を説明する。図
1の(a) にみるような、高所面1aと低所面1bとの間
に垂直面1cを持つような物体1に対し、三角測量方法
で面形状を求めたとき、例えば、その高所面1aと垂直
面1cとのなすエッジ1dは、実際には図1の(b) の破
線で表す位置に輪郭を持つ筈であるが、三角測量方法で
は、一つの測定点P1 の点データを得るとスキップして
次の測定点P2 の点データを得るようにするため、この
ような点データで表される輪郭は、図(b) の二重線円内
の幅wを持つぼんやりとしたものになる。しかし、点デ
ータで表される高さ位置は極めて正確である。他方、濃
淡画像方法では、図(b) の破線で表す位置に明瞭な濃淡
変化が現れるので、ここが得られるエッジ1dの輪郭で
あると正確に判断することができる。そこで、第1の方
法では、三角測量方法と濃淡画像方法を併用して、前者
で高さ位置を山し、後者で輪郭位置を出すようにするの
である。
First, an embodiment of the first method will be described. When the surface shape is obtained by the triangulation method for an object 1 having a vertical surface 1c between a high surface 1a and a low surface 1b as shown in (a) of FIG. The edge 1d formed by the high-altitude surface 1a and the vertical surface 1c should actually have a contour at the position indicated by the broken line in FIG. 1 (b), but in the triangulation method, one edge of the measurement point P 1 In order to obtain the point data of the next measurement point P 2 by skipping when the point data is obtained, the contour represented by such point data has the width w within the double-line circle in FIG. It becomes vague. However, the height position represented by the point data is extremely accurate. On the other hand, in the grayscale image method, since a clear grayscale change appears at the position indicated by the broken line in FIG. 6B, it can be accurately determined that this is the contour of the obtained edge 1d. Therefore, in the first method, the triangulation method and the grayscale image method are used together so that the height position is peaked by the former and the contour position is output by the latter.

【0027】つぎに、この発明の第2の方法の実施例を
説明する。図2にみるようなエッジ1dの輪郭を出すに
あたり、まず三角測量方法でエッジ部分の点データを取
る。この点データ群は、ほぼ図の輪郭1cが不明瞭なデ
ータとなる。そこで、これらの点データ群の中から、図
の半円弧部分については、点P1 、P2 、P3 を抽出し
て、円の起点、中点、終点としてCADに入力し、円弧
を描かせる。また、図のカギ形の部分については、点P
3 、P4 、P5 を四角形の起点、中点、終点としてCA
Dに入力し、カギ形を描かせるのである。
Next, an embodiment of the second method of the present invention will be described. To obtain the contour of the edge 1d as shown in FIG. 2, first, the point data of the edge portion is obtained by the triangulation method. In this point data group, the contour 1c of the figure is almost unclear. Therefore, points P 1 , P 2 and P 3 are extracted from these point data groups for the semi-circular arc portion of the figure and are input to the CAD as the starting point, the middle point and the ending point of the circle to draw the circular arc. Let Also, regarding the key-shaped part of the figure, point P
CA as 3 , P 4 and P 5 as the starting point, middle point and ending point of the quadrangle
Type in D to draw a key.

【0028】つぎに、この発明の第3の方法の実施例を
説明する。図3にみるような、水平面Aと円筒状の垂直
面Bとがなすエッジ1dを認識するとして、先ず、面A
を表す式aを求めるとともに面Bを表す式bをも求め
る。そして、両式a、bに基づいて数学的処理により、
これら二つの面A、Bの交差する線を求める。そうする
と、この線は、認識しようとするエッジ1dに一致す
る。
Next, an embodiment of the third method of the present invention will be described. Assuming that the edge 1d formed by the horizontal plane A and the cylindrical vertical plane B as shown in FIG.
Is calculated, and the expression b representing the surface B is also calculated. Then, by mathematical processing based on both equations a and b,
The line where these two planes A and B intersect is determined. Then, this line coincides with the edge 1d to be recognized.

【0029】つぎに、この発明の第4の方法の実施例を
説明する。この場合、測定対象となる物体は、図4にみ
るように、水平面Aに対し、円筒状の垂直面Cは高さが
微小なものである。そうすると、この場合は第3の方法
と異なり、垂直面Cにおける高さ方向の点データの数が
不足して、面形状が認識できない。このように、一方の
面が認識できない場合に対応する方法が第4の方法であ
る。この方法では面Aについて点データを求めたとき、
エッジ1dの輪郭はぼんやりとではあるが認識できる。
そこで、接触方法により、このエッジ1dの正確な輪郭
を求める。そして、この正確な輪郭を用いて、点データ
群による不明瞭な輪郭を補正する。次に、実際測定に当
たっては、この補正係数を点データ群による実測値に与
えて修正すれば、この修正値は、正確で明瞭なエッジ輪
郭を与える。
Next, an embodiment of the fourth method of the present invention will be described. In this case, as shown in FIG. 4, the object to be measured has a cylindrical vertical surface C whose height is minute with respect to the horizontal surface A. Then, in this case, unlike the third method, the number of point data in the height direction on the vertical surface C is insufficient, and the surface shape cannot be recognized. As described above, the fourth method is a method corresponding to the case where one surface cannot be recognized. With this method, when point data is obtained for surface A,
The outline of the edge 1d can be recognized although it is vague.
Therefore, an accurate contour of the edge 1d is obtained by the contact method. Then, using this accurate contour, the ambiguous contour due to the point data group is corrected. Next, in actual measurement, if the correction coefficient is given to the measured value by the point data group to correct it, the corrected value gives an accurate and clear edge contour.

【0030】[0030]

【発明の効果】この発明にかかるエッジ認識方法は、以
上のように構成されており、エッジの認識が正確とな
り、また明瞭なエッジ輪郭を得ることができる。
The edge recognition method according to the present invention is configured as described above, the edge can be recognized accurately, and a clear edge contour can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の方法の実施例を表す説明図で
ある。
FIG. 1 is an explanatory diagram showing an embodiment of a first method of the present invention.

【図2】この発明の第2の方法の実施例を表す説明図で
ある。
FIG. 2 is an explanatory diagram showing an embodiment of a second method of the present invention.

【図3】この発明の第3の方法の実施例を表す説明図で
ある。
FIG. 3 is an explanatory diagram showing an embodiment of a third method of the present invention.

【図4】この発明の第4の方法の実施例を表す説明図で
ある。
FIG. 4 is an explanatory diagram showing an embodiment of a fourth method of the present invention.

【図5】三角測量方法を説明する説明図である。FIG. 5 is an explanatory diagram illustrating a triangulation method.

【図6】面および面の交線の求め方を説明する説明図で
ある。
FIG. 6 is an explanatory diagram illustrating a method of obtaining a surface and a line of intersection of the surfaces.

【符号の説明】[Explanation of symbols]

1 物体 1a 高所面 1c 垂直面 1d エッジ A,B,C 面 P1 ,P2 ,P3 ,P4 ,P5 点データ1 Object 1a High-altitude surface 1c Vertical surface 1d Edge A, B, C surface P 1 , P 2 , P 3 , P 4 , P 5 point data

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱野 誠司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiji Hamano 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 三角測量方法と濃淡画像方法を併用して
エッジを含む面形状を求め、三角測量方法による結果で
エッジの高さを出すとともに濃淡画像方法による結果で
エッジの輪郭を出すようにするエッジ認識方法。
1. A surface shape including an edge is obtained by using a triangulation method and a grayscale image method together, and the height of the edge is obtained by the result of the triangulation method and the contour of the edge is obtained by the result of the grayscale image method. Edge recognition method.
【請求項2】 三角測量方法を用いてエッジの輪郭を求
め、この輪郭を構成する点データのうちの一部をCAD
の起点、中点、終点に用いてCADによりエッジを描く
ようにするエッジ認識方法。
2. A contour of an edge is obtained using a triangulation method, and a part of point data constituting the contour is CAD.
An edge recognition method in which an edge is drawn by CAD using the starting point, the middle point, and the end point of.
【請求項3】 一つの面Aを表す式aを求めるととも
に、この面と交差する面Bを表す式bを求めて、両式
a、bに基づき二つの面A、Bが交差する線を求めてこ
の線をエッジと判断するエッジ認識方法。
3. An expression a representing one surface A is obtained, and an expression b representing a surface B intersecting this surface is obtained, and a line at which the two surfaces A and B intersect is determined based on both expressions a and b. An edge recognition method that finds and determines this line as an edge.
【請求項4】 三角測量方法を用いてエッジの輪郭を求
め、この測定結果を接触方法で正確に求めた結果で補正
し、三角測量方法を用いたエッジ輪郭の実際測定を行う
に当たり、前記補正を加味するようにするエッジ認識方
法。
4. An edge contour is obtained by using a triangulation method, and the measurement result is corrected by a result obtained accurately by a contact method. When the edge contour is actually measured by the triangulation method, the correction is performed. An edge recognition method that takes into account.
JP5182579A 1993-07-23 1993-07-23 Edge recognition method Pending JPH0737106A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5182579A JPH0737106A (en) 1993-07-23 1993-07-23 Edge recognition method
KR1019940017614A KR950004047A (en) 1993-07-23 1994-07-21 Edge recognition method
CN94108211A CN1109189A (en) 1993-07-23 1994-07-22 Method for identification of edge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5182579A JPH0737106A (en) 1993-07-23 1993-07-23 Edge recognition method

Publications (1)

Publication Number Publication Date
JPH0737106A true JPH0737106A (en) 1995-02-07

Family

ID=16120757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5182579A Pending JPH0737106A (en) 1993-07-23 1993-07-23 Edge recognition method

Country Status (3)

Country Link
JP (1) JPH0737106A (en)
KR (1) KR950004047A (en)
CN (1) CN1109189A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095000A (en) * 2013-11-08 2015-05-18 キヤノン株式会社 Image processor and image processing method
CN117745718A (en) * 2024-02-19 2024-03-22 工业云制造(四川)创新中心有限公司 Information interaction method based on cloud manufacturing

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450089B1 (en) * 1997-12-29 2004-11-16 삼성테크윈 주식회사 Method for calculating airfoil measurement coordinate values by using a cad system, specially enabling an exact measurement value with little measurement time, exact compensation for an inclined angle at each measurement point when evaluating a spatial free curve, and a minimum measurement error
EP1710720B1 (en) * 2005-04-08 2009-07-08 Dassault Systèmes Method of computer-aided design of a modeled object having several faces
CN101398899B (en) * 2007-09-26 2011-03-30 鸿富锦精密工业(深圳)有限公司 System and method for auto- recognizing metal plate part edge type
CN104616326B (en) * 2015-02-02 2017-04-26 西北工业大学 Composite material laying unit expanded outline correction method in numerical control blanking procedure
CN105057899B (en) * 2015-08-18 2016-08-24 河海大学常州校区 A kind of scanogram recognition methods being applied to Intelligent Laser cutting
TWI627380B (en) * 2016-11-23 2018-06-21 綠點高新科技股份有限公司 Method And System For Estimating Contour Of A Surface Of A 3D Object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095000A (en) * 2013-11-08 2015-05-18 キヤノン株式会社 Image processor and image processing method
CN117745718A (en) * 2024-02-19 2024-03-22 工业云制造(四川)创新中心有限公司 Information interaction method based on cloud manufacturing

Also Published As

Publication number Publication date
CN1109189A (en) 1995-09-27
KR950004047A (en) 1995-02-17

Similar Documents

Publication Publication Date Title
JP2919284B2 (en) Object recognition method
US4760269A (en) Method and apparatus for measuring distance to an object
JP2007508557A (en) Device for scanning three-dimensional objects
JPH0737106A (en) Edge recognition method
JP2923199B2 (en) Bending angle detecting device, straight line extracting device used therefor, and bending angle detecting position setting device
JPH1079029A (en) Stereoscopic information detecting method and device therefor
JPH1068607A (en) Three dimensional shape measuring method
Lee et al. Machine vision system for curved surface inspection
JP3800842B2 (en) Method and apparatus for measuring three-dimensional shape, and storage medium storing three-dimensional shape measuring program
JP3501841B2 (en) Three-dimensional object region detection device, distance measuring device to three-dimensional object region, and their detection and measurement method
JPH0875454A (en) Range finding device
JP2961140B2 (en) Image processing method
JP2809348B2 (en) 3D position measuring device
JP2566395B2 (en) Three-dimensional coordinate measuring device
JP2887656B2 (en) Laser processing equipment
JPS63217214A (en) Three-dimensional position measuring instrument
JP2501150B2 (en) Laser welding method
JPH11223516A (en) Three dimensional image pickup device
JPH05223524A (en) Method of determining space coordinate of work
JPH0534117A (en) Image processing method
JPH09229648A (en) Input/output method and device for image information
JPH0820251B2 (en) Coordinate measuring device
JP2002031511A (en) Three-dimensional digitizer
JPS59135511A (en) Optical detector for obstacle
JPH11183142A (en) Method and apparatus for picking up three-dimensional image