JPH0343515A - Foundation improvement method - Google Patents
Foundation improvement methodInfo
- Publication number
- JPH0343515A JPH0343515A JP17781689A JP17781689A JPH0343515A JP H0343515 A JPH0343515 A JP H0343515A JP 17781689 A JP17781689 A JP 17781689A JP 17781689 A JP17781689 A JP 17781689A JP H0343515 A JPH0343515 A JP H0343515A
- Authority
- JP
- Japan
- Prior art keywords
- ground
- injection
- water
- air
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 38
- 230000006872 improvement Effects 0.000 title claims description 28
- 238000002347 injection Methods 0.000 claims abstract description 77
- 239000007924 injection Substances 0.000 claims abstract description 77
- 239000007788 liquid Substances 0.000 claims abstract description 12
- 239000003673 groundwater Substances 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 79
- 238000002156 mixing Methods 0.000 abstract description 11
- 239000011148 porous material Substances 0.000 description 13
- 239000004576 sand Substances 0.000 description 13
- 238000003756 stirring Methods 0.000 description 13
- 229920006395 saturated elastomer Polymers 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000002689 soil Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000009430 construction management Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は、微少気泡を地盤中に注入することで地盤改
良を行う方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method of improving ground by injecting microbubbles into the ground.
「従来の技術およびその課題」
一般に、飽和した砂質地盤は地震時に液状化する恐れが
あるため、このような砂質地盤上に建築物を構築する場
合には、各種の地盤改良方法で地盤を改良する必要があ
る。ところが、このような地盤改良を行なうためには極
めて高いコストがかかるため、低コストで液状化を防止
する方法の開発が望まれている。また、既に建築物が構
築されている砂質地盤に対して前記のような地盤改良を
行なった場合には周囲の建築物に悪影響を与える恐れが
あるため、既に建築物が構築されている砂質地盤におい
ては、前記のような地盤改良工法で液状化を防止するこ
とは不可能と考えられる。"Conventional technology and its issues" In general, saturated sandy ground may liquefy during an earthquake, so when building on such sandy ground, various ground improvement methods are used to improve the ground. needs to be improved. However, since such ground improvement requires extremely high costs, there is a desire to develop a low-cost method of preventing liquefaction. In addition, if the above-mentioned ground improvement is carried out on sandy ground on which buildings have already been constructed, it may have a negative impact on surrounding buildings, so it is important to avoid sandy ground on which buildings have already been constructed. It is considered impossible to prevent liquefaction with ground improvement methods such as those described above in rough ground.
そこで、本出願人は、完全飽和に近い砂質地盤に多数の
微少な透気孔を有するパイプを貫入し、このバイブの上
端から空気圧入装置を介してバイブ内部に空気を圧入す
ることで、前記透気孔を通して地盤中に微少な気泡を注
入し、これにより地震時における間隙水圧の上昇を抑制
して液状化を防止する方法につき提案した(特願昭63
−276999号明細書)。Therefore, the present applicant penetrated a pipe having a large number of minute air holes into the sandy ground that was almost completely saturated, and injected air from the upper end of the vibrator into the inside of the vibrator through an air injection device. We proposed a method of injecting minute air bubbles into the ground through permeable holes, thereby suppressing the rise in pore water pressure during earthquakes and preventing liquefaction (Japanese Patent Application No. 1983).
-276999 specification).
この際、地盤内に注入された気泡はパイプ周辺から徐々
に改良すべき地盤全体に拡散してゆくと考えられるが、
特定の領域の地盤内に確実に気泡を混入させたい、とい
った要求があり、更なる改善が待たれていた。At this time, it is thought that the air bubbles injected into the ground will gradually spread from around the pipe to the entire ground to be improved.
There was a demand for ensuring that air bubbles were mixed into the ground in a specific area, and further improvements were awaited.
この発明は前記事情に鑑みてなされたものであり、改良
すべき地盤の領域において確実に気泡の混入を行いうる
地盤改良工法の提供を目的としている。This invention has been made in view of the above circumstances, and aims to provide a soil improvement method that can reliably mix air bubbles in the area of the ground to be improved.
「課題を解決するための手段」
最近の弾性波探査に関する研究により、地下水位以下の
地盤においても、その地盤の間隙水中に微少な気泡が存
在する場合には、地盤のP波速度が1500ffi/s
ec (水のP波速度)以下に低下することが明らかに
された。``Means to solve the problem'' Recent research on elastic wave exploration has shown that even in the ground below the groundwater level, if there are minute bubbles in the pore water of the ground, the P wave velocity in the ground is 1500ffi/ s
It was revealed that the velocity decreases below ec (P-wave velocity of water).
一方、完全飽和状態に近い砂質地盤において、飽和度の
わずかな低下が強度の増加をもたらすことは既に研究さ
れており、上述したようなP波速度の低下した不飽和層
を砂質地盤中に人工的に作成することができれば、新た
な液状化防止方法として有望と考えられる。On the other hand, it has already been studied that in sandy ground that is close to a completely saturated state, a slight decrease in the degree of saturation causes an increase in strength. If it can be artificially created, it is considered to be a promising new method for preventing liquefaction.
そこで、この発明のうち第1の請求項に係る発明は、構
造物が構築された地盤中に、この構造物を囲繞するよう
に注入手段及び排水手段を配設し、気泡が混入された液
体を前記手段の上端からその内部に圧入することで、こ
の注入手段から前記地盤中に微少な気泡を注入すると共
に、前記排水手段により地下水を排水してこの地盤の改
良を行うような地盤改良工法により、前記課題を解決せ
んとしている。Therefore, the invention according to the first claim of the present invention is to dispose an injection means and a drainage means in the ground on which the structure is built so as to surround the structure, and to inject a liquid into which air bubbles are mixed. A ground improvement method in which microbubbles are injected into the ground from the injection means by pressing into the inside of the means from the upper end of the means, and the ground is improved by draining groundwater using the drainage means. This is an attempt to solve the above problem.
また、第2の請求項に係る発明は、前記第1の請求項に
係る地盤改良工法において、前記構造物を挾んで相対向
するように前記注入手段及び排水手段を組にして配設し
たような地盤改良工法により、前記課題を解決せんとし
ている。Further, the invention according to the second claim is such that in the ground improvement method according to the first claim, the injection means and the drainage means are arranged as a set so as to sandwich the structure and face each other. We are trying to solve the above problems by using ground improvement methods.
「作用」
この発明の地盤改良工法においては、既に構造物が構築
されている地盤を改良すべき場合に、この構造物を囲繞
するように注入手段及び排水手段を地盤中に配設してお
く。次に、気泡が混入された液体を前記注入手段の上端
からその内部に圧入することによって、その手段内の水
圧を周囲の地盤の地下水圧よりも高めて、この手段から
液体と共に前記地盤中に微少な気泡を注入する。また、
これに対応して、前記排水手段により地下水を排水し、
注入手段による気泡注入水の注入を容易となす。このよ
うにすると、地盤の飽和度を低下させることができ、地
震時における間隙水圧の上昇が抑制されることとなる。"Operation" In the ground improvement method of this invention, when the ground on which a structure has already been built is to be improved, injection means and drainage means are arranged in the ground so as to surround this structure. . Next, by injecting the liquid mixed with air bubbles into the injection means from the upper end thereof, the water pressure within the means is made higher than the groundwater pressure of the surrounding ground, and from this means the liquid is poured into the ground together with the liquid. Inject minute air bubbles. Also,
Correspondingly, draining groundwater by the drainage means,
To facilitate injection of bubble injection water using an injection means. In this way, the degree of saturation of the ground can be reduced, and an increase in pore water pressure during an earthquake can be suppressed.
r実施例」
以下、この発明の第1実施例について第1図ないし第4
図を参照して説明する。Embodiment 1 Hereinafter, the first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
This will be explained with reference to the figures.
この実施例は、本発明に係る地盤改良工法を、完全飽和
に近い砂質地盤1上に既に建築物2が構築されている場
合に実施される液状化防止方法に適用した実施例であっ
て、前記砂質地盤l中に多数の微少な透気孔を有する注
入バイブ(注入手段)3を垂直に貫入すると共に、同様
に砂質地盤l中にウェルポイント(排水手段)5を貫入
し、気泡混入装置4により気泡が混入された液体を作製
してこれを前記注入パイプ3の上端から内部に圧入する
と共に、前記ウェルポイント5から地下水を排水するこ
とで、前記砂質地盤lの液状化を防止するようにしてい
る。This example is an example in which the ground improvement method according to the present invention is applied to a liquefaction prevention method implemented when a building 2 has already been constructed on sandy ground 1 that is nearly completely saturated. , an injection vibe (injection means) 3 having a large number of minute air permeable holes is vertically penetrated into the sandy ground l, and a well point (drainage means) 5 is similarly penetrated into the sandy ground l to remove air bubbles. Liquefaction of the sandy ground 1 is prevented by producing a liquid mixed with air bubbles by the mixing device 4 and pressurizing it into the interior from the upper end of the injection pipe 3, and draining groundwater from the well point 5. I'm trying to prevent it.
前記注入パイプ3は、ステンレスまたは合成樹脂などか
らなる管の先端を閉止板で閉塞し、かつその側壁および
閉止板に無数の微少な透気孔(図示略)を形成したもの
であって、その先端を下方に向けた状態で前記砂質地盤
1中に貫入されるものである。但し、注入手段の構成は
これに限定されることなく、例えば単に下端部のみ開口
して側壁に透気孔が設けられていないような注入手段で
あってもよいことは勿論である。The injection pipe 3 is a tube made of stainless steel or synthetic resin, whose tip is closed with a closing plate, and countless minute air permeable holes (not shown) are formed in the side wall and the closing plate. The sandy ground 1 is penetrated into the sandy ground 1 with the shaft facing downward. However, the structure of the injection means is not limited to this, and it is of course possible to use an injection means in which only the lower end is opened and no air permeable holes are provided in the side wall.
前記気泡混入装置4は、注入パイプ3に対応して設けら
れ、第3図に示すように、大気圧以上の圧力に耐えうる
構造の密閉型圧力容器10と、圧力容器10内に空気を
圧入することでこの圧力容器IO内部の圧力を大気圧以
上とするコンプレッサー(圧縮機)11と、圧力容器I
O内へ水12を供給する図示されない供給手段と、圧力
容量IO内部を撹拌する撹拌装置13とから概略構成さ
れている。撹拌装置13は、圧力容2W I Oの上部
から突設された撹拌軸14と、この撹拌軸14の側面に
植設された撹拌翼15、・・・と、前記撹拌軸14を回
転駆動させるモータ16とから構成されている。The air bubble mixing device 4 is provided corresponding to the injection pipe 3, and as shown in FIG. By doing so, a compressor 11 that makes the pressure inside this pressure vessel IO equal to or higher than atmospheric pressure, and a pressure vessel I
It is generally composed of a supply means (not shown) that supplies water 12 into the inside of the pressure capacity IO, and a stirring device 13 that stirs the inside of the pressure capacity IO. The stirring device 13 includes a stirring shaft 14 protruding from the top of the pressure volume 2W I O, stirring blades 15 installed on the side surface of the stirring shaft 14, and rotationally driving the stirring shaft 14. It is composed of a motor 16.
また、圧力容器IOには耐圧ホース17を介して密閉型
減圧容器18が連結され、これら圧力容110及び減圧
容器18手前の耐圧ホース17にはそれぞれ切換弁19
.19が取り付けられている。この減圧容器18には大
気に連通ずる戚圧弁20が設けられている。Further, a closed pressure reducing vessel 18 is connected to the pressure vessel IO via a pressure hose 17, and a switching valve 19 is connected to each of the pressure vessels 110 and the pressure hose 17 in front of the pressure reducing vessel 18.
.. 19 is attached. This pressure reducing vessel 18 is provided with a pressure valve 20 communicating with the atmosphere.
減圧容器18と各注入バイブ3、・・・の上端はホース
2+、・・・により連結され、かつ、ホース21には吐
出圧調整可能なポンプ22が介在されている。The reduced pressure container 18 and the upper ends of each injection vibrator 3, . . . are connected by hoses 2+, .
一方、ウェルポイント5も前記注入バイブ3と同様に砂
質地盤1に垂直に貫入され、少なくともその先端が砂質
地盤1の地下水位以下に至るようにこの砂質地盤l内に
配設されている。このウェルポイント5は、通常の地盤
改良に用いられる周知の構造のものであり、第4図に示
すように、円筒状の本体の先端に地盤内貫入のためのノ
ズル部(図示略)が形成され、さらに地下水排水のため
の排水孔(図示略)が側面に多数穿設されて溝底されて
いる。また、ウェルポイント5の上端にはライザーパイ
プ30が接続され、このライザーパイプ30に排水ポン
プ31が接続されることで、ウェルポイント5周辺の地
下水が排水されるのである。On the other hand, the well point 5 also perpendicularly penetrates into the sandy ground 1 in the same way as the injection vibe 3, and is arranged in the sandy ground 1 so that at least its tip reaches below the groundwater level of the sandy ground 1. There is. This well point 5 has a well-known structure used for normal ground improvement, and as shown in Figure 4, a nozzle part (not shown) for penetrating into the ground is formed at the tip of the cylindrical body. In addition, many drainage holes (not shown) for draining underground water are drilled on the sides of the trench. Further, a riser pipe 30 is connected to the upper end of the well point 5, and a drain pump 31 is connected to the riser pipe 30, so that groundwater around the well point 5 is drained.
なお、このようにしてウェルポイント5で排水された地
下水は、−旦沈砂槽32内に貯留されることてこの地下
水内に混入した土砂が性徴され、さらに第3図に示すよ
うに、調整水槽33内に貯留されて、必要に応じてポン
プ33を介して適宜気泡混入装置4の圧力客語lO内に
戻される。このポンプ33により与えられる水圧は、前
記コンプレッサーにより与え与れる圧力よりも高い必要
がある。In addition, the groundwater drained at the well point 5 in this way is first stored in the sedimentation tank 32, whereupon the soil mixed in the groundwater is characterized, and as shown in FIG. 33, and is returned to the pressure chamber 10 of the bubble mixing device 4 via the pump 33 as needed. The water pressure provided by this pump 33 must be higher than the pressure provided by the compressor.
この際、前記沈砂槽32の内部に一定高さを有する仕切
板34を設け、地下水排水量の目安とすることが好まし
い。また、枕砂1’J32底部に貯留した土砂は、この
沈砂槽32側面下部に穿設した排砂孔35.35から排
出すればよい。当然、これら排砂孔35には、通常の状
態において栓36.36が被嵌されている。At this time, it is preferable that a partition plate 34 having a certain height is provided inside the sand settling tank 32 to serve as a guide for the amount of groundwater drainage. Further, the earth and sand stored at the bottom of the pillow sand 1'J32 may be discharged from the sand discharge hole 35.35 bored at the lower side of the sand settling tank 32. Naturally, these sand discharge holes 35 are fitted with plugs 36, 36 in a normal state.
そして、第2図に示すように、前記注入バイブ3及びウ
ェルポイント5は、これらが対となって、平面視した状
態で建築物2を囲繞するように、改良すべき地盤の領域
Aの境界線Bに沿って多数設けられている。但し、注入
バイブ3及びウェルポイント5の配設位置はこれに限ら
ず、改良すべき地盤の性状及び地下水位等により適宜決
定されればよい。As shown in FIG. 2, the injection vibrator 3 and the well point 5 are arranged in pairs to surround the building 2 in a plan view at the boundary of the area A of the ground to be improved. A large number of them are provided along line B. However, the placement positions of the injection vibrator 3 and the well point 5 are not limited to this, and may be determined as appropriate depending on the properties of the ground to be improved, the underground water level, etc.
このような地盤改良工法によって砂質地盤1の液状化を
防止する場合には、まず、建築物2が構築された砂質地
盤l中に、注入バイブ3及びウェルポイント5を対にし
て、所定位置に垂直に貫入して配設する。特に、ウェル
ポイント5は、前述の如くその先端にノズル部が設けら
れており、このウェルポイント5に高圧水を送出するこ
とて、ノズル部先端から水を噴射して地中に貫入してゆ
く。In order to prevent liquefaction of the sandy ground 1 using such a ground improvement method, first, the injection vibrator 3 and the well point 5 are paired and placed in the sandy ground 1 on which the building 2 is constructed. Placed by penetrating perpendicularly to the position. In particular, the well point 5 has a nozzle section at its tip as described above, and by sending high-pressure water to the well point 5, the water is jetted from the nozzle tip and penetrates into the ground. .
次に、気泡混入装置4を注入バイブ3の上端に接続し、
fn水ポンプ31をライザーパイプ30を介してウェル
ポイント5に接続した後、気泡、操入装置4の圧・力容
器10内に図示されない供給手段を介して水12を注入
する。そして、所定量の水を圧力容器10内に貯留した
後、圧縮機11により圧力容器10内に空気を圧入する
ことでこの圧力容器lO内部の圧力を大気圧以上の所定
圧にまで加圧しつつ、モータ16を駆動して撹拌翼15
、・・・ごと撹拌軸14を回転させることで、圧力容器
10内の水12を撹拌する。これにより、圧力容器10
内の水12には、大気圧における飽和徂以」この空気が
溶は込む。なお、圧力容器10内の圧力は必要とする気
泡の虫やその時の大気圧に(衣存して適宜決定すればよ
い。Next, connect the bubble mixing device 4 to the upper end of the injection vibe 3,
After connecting the fn water pump 31 to the well point 5 via the riser pipe 30, water 12 is injected into the pressure/force vessel 10 of the bubble handling device 4 via a supply means (not shown). After storing a predetermined amount of water in the pressure vessel 10, the compressor 11 pressurizes air into the pressure vessel 10, thereby increasing the pressure inside the pressure vessel IO to a predetermined pressure higher than atmospheric pressure. , drives the motor 16 and stirs the stirring blades 15.
, . . . by rotating the stirring shaft 14, the water 12 in the pressure vessel 10 is stirred. As a result, the pressure vessel 10
This air dissolves in the water 12 at a level exceeding its saturation level at atmospheric pressure. The pressure inside the pressure vessel 10 may be determined as appropriate depending on the required air bubbles and the atmospheric pressure at that time.
この状態で暫く撹拌を継続した後、圧縮磯11による加
圧及び撹拌115、・・等による撹拌を停止し、切換弁
19.19を開状態とすることで圧力容器lO内の水1
2を減圧容器18内に導入する。次に、切換弁19.1
9を開状態としてから、減圧容器18の減圧弁20を開
状態とすることでその内部を大気に連通させる。これに
より、減圧容2318内の水12に溶は込んでいた空気
のうち、大気圧下における飽fnffi以上の空気が溶
出して微少な気泡となり、気泡が混入された水12を得
ることができる。After continuing stirring in this state for a while, pressurization by the compressed rock 11 and stirring by the stirring 115, etc. are stopped, and the switching valve 19.19 is opened, so that the water in the pressure vessel IO is
2 is introduced into the vacuum container 18. Next, the switching valve 19.1
9 is opened, and then the pressure reducing valve 20 of the pressure reducing container 18 is opened, thereby communicating the inside thereof with the atmosphere. As a result, among the air dissolved in the water 12 in the reduced pressure volume 2318, the air at a saturation fnffi or higher under atmospheric pressure is eluted and becomes minute bubbles, and water 12 mixed with bubbles can be obtained. .
そして、この気泡混入水12をポンプ22により圧送し
て、注入バイブ3、・・・上端から内部に圧入すること
により、これら注入バイブ3、・・内の水圧を周囲の砂
質地盤lの地下水圧より高め、これによって、注入バイ
ブ3、・内の気泡混入水12をその注入バイブ3、・・
の無数の透気孔から放出して、砂質地盤1内に水12と
ともに微少な気泡を注入する。Then, by force-feeding this bubbly water 12 with the pump 22 and pressurizing it into the inside of the injection vibrator 3 from the upper end, the water pressure inside the injection vibrator 3,... The pressure is raised higher than the pressure, thereby causing the bubbly water 12 in the injection vibrator 3,...
The air is released from countless air permeable pores, and minute air bubbles are injected into the sandy ground 1 along with water 12.
一方、注入バイブ3への気泡混入水12圧送に対応して
、排水ポンプ31を作動させてウェルポイント5周囲の
地下水を排水する。この排水ポン131作動のタイミン
グも任意であり、注入バイブ3による気泡混入水12圧
入に先立って行ってもよく、あるいは気泡混入水12圧
入に若干遅れて行ってもよい。要は、注入バイブ3によ
る気泡混入水12圧入により余剰となる地下水をウェル
ポイント5を用いて排水できればよ<、施工工程等を考
慮して適宜決定すればよい。さらに、地盤1内への気泡
混入水12注入と共に地盤1の地下水位低下により更に
地盤改良効果を確実なものとする場合には、気泡混入水
12圧大量より地下水排水量を減らすようにして排水範
囲外へも注入範囲を広げて気泡混入水12を注入するこ
とも可能である。On the other hand, in response to the pressure feeding of the bubbled water 12 to the injection vibrator 3, the drain pump 31 is operated to drain the groundwater around the well point 5. The timing of the operation of the drain pump 131 is also arbitrary, and may be performed prior to the injection of the bubbly water 12 by the injection vibrator 3, or may be performed slightly after the bubbly water 12 is pressurized. In short, it is only necessary to drain the surplus underground water by using the well point 5 due to the injection of the aerated water 12 by the injection vibrator 3, and this may be determined as appropriate in consideration of the construction process and the like. Furthermore, if you want to further ensure the ground improvement effect by lowering the groundwater level of the ground 1 along with injecting the aerated water 12 into the ground 1, the amount of groundwater drained should be reduced from the large volume of the aerated water 12 to the drainage range. It is also possible to expand the injection range to the outside and inject the aerated water 12.
この場合、前記注入バイブ3による気泡混入水12圧入
を、砂質地盤l内に貫入された全てのバイブ3で同時に
行ってもよいが、前述の如く、注入バイブ3及びウェル
ポイント5が対となって配置されており、かつ、対とな
った注入バイブ3及びウェルポイント5が建築物2を囲
繞するように配設されていることから、より効率のよい
方法で気泡混入水12注入を行うことも可能である。In this case, the injection of bubble-mixed water 12 by the injection vibrator 3 may be performed at the same time by all the vibrators 3 penetrated into the sandy ground l, but as described above, the injection vibrator 3 and the well point 5 may be injected in pairs. Since the injection vibrator 3 and the well point 5 are arranged so as to surround the building 2, the aerated water 12 can be injected in a more efficient manner. It is also possible.
すなわち、第2図に示すように、砂質地盤中に多数配設
された注入バイブ3のうち、a点に位置する注入バイブ
3を選択してこれに気泡混入水12を圧入する。次に、
選択された注入バイブ3に対して、建築物2を挾んで相
対向する位置であるb点にあるウェルポイント5を選択
して、このウェルポイント5からのみ地下水を排水する
。そして、定時間の後、気泡混入水12圧入及び地下水
排水を終了してから、逆にb点に位置する注入バイブ3
から気泡混入水12を圧入すると共に、a点に位置する
ウェルポイント5から地下水を排水する。That is, as shown in FIG. 2, among the many injection vibrators 3 disposed in the sandy ground, the injection vibrator 3 located at point a is selected and the aerated water 12 is pressurized into it. next,
A well point 5 located at point b, which is a position facing the selected injection vibrator 3 across the building 2, is selected, and groundwater is drained only from this well point 5. Then, after a certain period of time, after the injection of bubble-mixed water 12 and the drainage of ground water are finished, the injection vibrator 3 is placed at point b.
Bubbly water 12 is injected from the well point 5, and groundwater is drained from the well point 5 located at point a.
すなわち、建築物2を挾んで相対向する注入バイブ3及
びウェルポイント5を結ぶ領域(第2図中点線で囲まれ
る領域)について、まずa点からb点に向かう気泡混入
水の流れを砂質地盤l中で発生させ、これを介して微少
な気泡を砂質地盤l中に注入し、次いでb点からa点に
向かう逆方向の気泡混入水の流れを地盤1中で発生させ
、点線で囲まれる領域内の気泡注入を確実なものとする
のである。In other words, in the area connecting the injection vibrator 3 and the well point 5 that face each other across the building 2 (the area surrounded by the dotted line in the middle of Fig. 2), first, the flow of air-containing water from point a to point b is controlled by a sandy layer. Microbubbles are generated in the ground 1, through which minute air bubbles are injected into the sandy ground 1, and then a flow of air-containing water in the opposite direction from point b to point a is generated in the ground 1, as indicated by the dotted line. This ensures bubble injection within the enclosed area.
そして、気泡混入水12が圧入される注入バイブ3及び
地下水を排水するウェルポイント5を順次移動させて、
改良すべき地盤の領域A全体に亙って気泡を注入すれば
よい。Then, the injection vibrator 3 into which the bubbly water 12 is press-injected and the well point 5 which drains the groundwater are sequentially moved,
Bubbles may be injected over the entire region A of the ground to be improved.
このようにして砂質地盤1中に無数の微少な気泡を注入
すると、その砂質地盤1の飽和度(液状化強度)が低下
することとなるが、その場合、砂質地盤1中にその砂質
地盤lの飽和度を検出するセンサを設けるか、または砂
質地盤1上に適当な測定機器等を設けるなどして、その
砂質地盤1の飽和度およびその時間的変化を把握してお
くようにする。この飽和度の検出は、前述の如く地盤の
P波速度の低下と飽和度との関係に基づき、弾性波探査
等によりP波速度を計測することで行えばよい。Injecting countless minute air bubbles into the sandy ground 1 in this way will reduce the saturation level (liquefaction strength) of the sandy ground 1. By installing a sensor to detect the saturation level of the sandy ground 1 or by installing an appropriate measuring device on the sandy ground 1, the saturation level of the sandy ground 1 and its temporal changes can be grasped. Leave it there. This degree of saturation may be detected by measuring the P-wave velocity through elastic wave exploration or the like, based on the relationship between the decrease in the P-wave velocity of the ground and the saturation degree, as described above.
そして、前記砂質地盤lの改良範囲および改良効果をモ
ニタリングしながらその砂質地盤1の飽用度を低下させ
ることによって、その砂質地盤lの液状化強度を所望の
強度まで高める。このようにすると、前記砂質地盤1中
における地震時の間隙水圧の上昇が低減して適正なレベ
ルに抑えられることとなり、これによって、完全飽和に
近い状態の砂質地盤1においても地震時の液状化が防止
されることになる。Then, by reducing the degree of saturation of the sandy ground 1 while monitoring the improvement range and improvement effect of the sandy ground 1, the liquefaction strength of the sandy ground 1 is increased to a desired strength. In this way, the increase in pore water pressure during an earthquake in the sandy ground 1 can be reduced and suppressed to an appropriate level, and as a result, even in the sandy ground 1 that is nearly completely saturated, the increase in pore water pressure during an earthquake can be reduced. Liquefaction will be prevented.
特に、この実施例の地盤改良工法においては、注入バイ
ブ3による気泡混入水12圧入に対応してウェルポイン
ト5を用いて地下水を排水しているので、いわば在来の
地下水を気泡が混入された水12で置換することとなり
、ウェルポイント5による地下水排水を行わない場合に
比較して地盤内への気泡混入水12の注入が迅速にかつ
低圧力で容易に行なわれ、建築物2直下の地盤へも気泡
注入水12の注入が確実に行なわれる。また、低圧力で
気泡混入水12を注入できるので、高圧注入に伴う水圧
による地盤の盛り上がりや構造物の浮き上がりといった
不都合な現象の発生も防止できる。In particular, in the ground improvement method of this embodiment, the well point 5 is used to drain the groundwater in response to the injection of 12 bubbles of water by the injection vibrator 3, so it is said that the conventional groundwater is not contaminated with bubbles. Compared to the case where groundwater is not drained using the well point 5, the aerated water 12 can be easily injected into the ground quickly and at low pressure, and the ground directly under the building 2 can be replaced with water 12. Injection of the bubble-injected water 12 is also carried out reliably. Furthermore, since the aerated water 12 can be injected at low pressure, it is possible to prevent the occurrence of inconvenient phenomena such as swelling of the ground and lifting of structures due to water pressure associated with high-pressure injection.
さらに、注入バイブ3及びウェルポイント5を対にして
、これらを建築物2を囲繞するように砂質地盤l内に配
設したから、建築物を挾んで相対向する注入バイブ3及
びウェルポイント5により気泡混入水12圧入及び地下
水排水を行えば、建築物2を貫く方向の水の流れを砂質
地盤】中で発生させることができ、建築物2直下の地盤
への気泡注入水1の注入が更に確実なものとなる。Furthermore, since the injection vibrator 3 and the well point 5 are arranged as a pair in the sandy ground l so as to surround the building 2, the injection vibrator 3 and the well point 5 face each other with the building in between. By injecting the aerated water 12 and draining the ground water, a flow of water can be generated in the sandy ground in the direction that penetrates the building 2, and the aerated water 1 is injected into the ground directly below the building 2. becomes even more certain.
しかも、このようにして排水された地下水の気泡混入量
を管理すれば、改良すべき地盤中の地下水の気泡混入量
が所定の数値に至っているかどうかも判断できるので、
地盤改良工法としての施工管理も容易であり、かつ信頼
性の高い施工が可能となる。Moreover, by managing the amount of air bubbles in the drained groundwater in this way, it is possible to determine whether the amount of air bubbles in the groundwater in the ground to be improved has reached a predetermined value.
As a ground improvement method, construction management is easy and highly reliable construction is possible.
また、この実施例では、砂質地盤lに微少な気泡を注入
する際に、気泡混入装置4により気泡が混入された水1
2を作製し、これを注入バイブ3を介して地盤l内に圧
入することで気泡を地盤内に注入しているので、砂質地
盤1への気泡混入水12の注入量及び注入圧を適宜制御
することで地盤l内への気泡注入量を容易に制御するこ
とかでき、しかも単に注入バイブ3内に圧縮空気を送出
することで注入バイブ3の透気孔から気泡を注入するよ
うな場合に比較して、砂質地盤lへの気泡圧入が確実か
つ容易に行える。In addition, in this embodiment, when injecting minute air bubbles into the sandy ground l, the air bubbles are mixed into the water 1 by the air bubble mixing device 4.
Since air bubbles are injected into the ground by making 2 and pressurizing it into the ground 1 through the injection vibrator 3, the amount and injection pressure of the bubbly water 12 to be injected into the sandy ground 1 can be adjusted appropriately. By controlling the amount of air bubbles injected into the ground l, it is possible to easily control the amount of air bubbles injected into the ground l, and moreover, in cases where air bubbles are injected from the air permeable hole of the injection vibe 3 by simply sending compressed air into the injection vibe 3. In comparison, bubble injection into sandy ground can be performed reliably and easily.
すなわち、従来の研究に依れば、砂の透気係数は飽和度
の増加に伴い減少し、飽和度50%程度で閉塞すること
が報告されている。これは、単純に気泡のみを砂に注入
する場合には、砂の飽和度は50%以下に至らないこと
を意味する。従って、土の骨格構造を乱さずに、飽和地
盤中に空気を送り込むのは困難とされていた。しかし、
本実絶間の如く水12中に微少な気泡を混入し、この水
12とともに微少な気泡を地盤中に注入すれば、閉塞を
生じずに砂の中に空気を送り込むことができ、砂質地盤
を所望の飽和度となすことができる。That is, according to conventional research, it has been reported that the air permeability of sand decreases as the degree of saturation increases, and that sand becomes clogged at a degree of saturation of about 50%. This means that if only air bubbles are injected into the sand, the saturation of the sand will not reach 50% or less. Therefore, it has been considered difficult to pump air into saturated ground without disturbing the soil's skeletal structure. but,
By mixing minute air bubbles into the water 12 and injecting the minute air bubbles into the ground together with the water 12, air can be pumped into the sand without causing blockages, which can improve sandy ground. can be set to a desired saturation level.
また、圧力容器10及び減圧容器18を備えた気泡混入
装置4を用いれば、これら容1sI0,18間における
圧力差によって、粒子径か均一かつ微少で水12内にお
ける分布ら均一な気泡を容易にしかも迅速に作製するこ
とができる。Furthermore, if the bubble mixing device 4 equipped with the pressure vessel 10 and the vacuum vessel 18 is used, the pressure difference between these volumes 1sI0 and 18 makes it possible to easily form bubbles with a uniform particle size and minute distribution in the water 12. Moreover, it can be produced quickly.
次に、この発明の第2実絶例について第5図ないし第6
図を参照して説明する。Next, regarding the second actual example of this invention, FIGS.
This will be explained with reference to the figures.
この実施例は、本発明に係る地盤改良工法を、前記第1
実施例と同様に完全飽和に近い砂質地盤1−1:に既に
建築物2が構築されている場合に実施されるR1状化防
止方法に適用した実施例である。In this example, the ground improvement method according to the present invention is applied to the first method described above.
Similar to the embodiment, this embodiment is applied to a method for preventing R1 formation, which is carried out when a building 2 has already been constructed on the sandy ground 1-1, which is nearly completely saturated.
なお、以下の説明において、前記第1実施例と同一の構
成要素については同一の符号を付し、その説明を省略す
る。In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
この実施例と前記第1実施例との相違点は、バ三人手段
及び排水手段の配設位置にある。すなわち、第5図ない
し第6図に示すように、建築物2が構築された砂質地盤
lには、この建築物2の四隅に隣接してディープウェル
(深井戸)40.40、・・が掘削されており、これら
ディープウェル40゜内に前記注入バイブ3及び水中ポ
ンプ41が適宜挿入されることでそれぞれ注入手段及び
排水手段とされている。The difference between this embodiment and the first embodiment is the location of the three-person means and the drainage means. That is, as shown in Figures 5 and 6, in the sandy ground l on which the building 2 is constructed, there are deep wells 40, 40, 40, 40, 40, 40, 40, 40, 40, adjacent to the four corners of the building 2. have been excavated, and the injection vibrator 3 and submersible pump 41 are appropriately inserted into these deep wells 40° to serve as injection means and drainage means, respectively.
従って、この方法によっても、前記第1実施例と同様の
作用効果を得ることができる。なお、注入バイブ3及び
水中ポンプ41の配置手順であるが、例えば1つのディ
ープウェル40を選んでこれに注入バイブ3を挿入する
と共に、これ以外のディープウェル40、・・・に水中
ポンプ41、・・を挿入して気泡混入水12の注入及び
地下水の排水を行い、注入バイブ3を挿入するディープ
ウェル40の箇所を順次移動させることで建築物2直下
の砂質地盤1内に気泡混入水12を注入するような手順
が挙げられる。Therefore, with this method as well, the same effects as in the first embodiment can be obtained. The procedure for arranging the infusion vibrator 3 and the submersible pump 41 is, for example, selecting one deep well 40 and inserting the injecting vibrator 3 into it, and placing the submersible pump 41 in the other deep wells 40, . . . ... is inserted to inject the bubbly water 12 and drain the groundwater, and by sequentially moving the locations of the deep well 40 into which the injection vibrator 3 is inserted, the bubbly water is injected into the sandy ground 1 directly under the building 2. Examples include procedures such as injecting 12.
一方、第7図(イ)、(ロ)に示すように、建築物2を
囲繞するようにディープウェル40、・・・を掘削して
もよいことは勿論である。On the other hand, as shown in FIGS. 7(a) and 7(b), it is of course possible to excavate deep wells 40, . . . so as to surround the building 2.
なお、この発明の地盤改良工法は、その細部が前記実施
例に限定されず、種々の変形例が可能である。Note that the details of the ground improvement method of the present invention are not limited to the embodiments described above, and various modifications are possible.
一例として、前記実施例では地下水の排水手段としてウ
ェルポイントを用いていたが、これに限らず、例えば地
下水位が特に低い場合にはディープウェル(深井戸)を
設置して、水中ポンプ等により地下水を排水するなどの
排水手段を採用すればよい。As an example, in the embodiment described above, a well point was used as a means for draining groundwater, but the invention is not limited to this. For example, if the groundwater level is particularly low, a deep well may be installed and the underground water drained using a submersible pump or the like. Drainage methods such as draining water may be adopted.
さらに、水中に気泡を混入させる方l去も任意であり、
例えば窒素ガス、炭酸ガス等を水中に吹き込んで気泡が
混入された水を作製してもよく、あるいは、固形の発泡
剤を水中に投入して作製してもよく、可算手段に限定は
ない。Furthermore, mixing air bubbles into the water is optional.
For example, water mixed with air bubbles may be prepared by blowing nitrogen gas, carbon dioxide gas, etc. into the water, or may be prepared by introducing a solid foaming agent into the water, and there are no limitations on the countable means.
一方、この発明の地盤改良工法は、砂質地盤の液状化防
止に適用されるのみならず、例えば埋立地において嫌気
性バクテリアが異常繁殖した際に、この埋立地盤に気泡
を注入することでバクテリアの繁殖を抑制するような地
盤改良工注としても好適に適用可能である。On the other hand, the ground improvement method of this invention is not only applicable to preventing liquefaction of sandy ground, but also, for example, when anaerobic bacteria breed abnormally in a landfill, it can be used to prevent bacteria by injecting air bubbles into the reclaimed ground. It can also be suitably applied as a soil improvement injection to suppress the proliferation of.
「実験例」
この実験例は、微気泡を飽和砂地盤中に注入して地盤の
飽和度を下げ、地震時に発生する間隙水圧を低itさせ
る液状化対策ついて進められた研究の中で、特に、飽和
過程による供試体の弾性波速度の測定結果により、飽和
度、すなわちB値と弾性波速度との関係について考察を
加え、対策効果のモニタリングを目的とした、弾性波速
度による地盤飽和状態の推定法の可能性を検討したもの
である。``Experiment Example'' This example experiment is based on a study carried out on liquefaction countermeasures, which involves injecting microbubbles into saturated sand ground to lower the saturation level of the ground and reduce the pore water pressure that occurs during earthquakes. Based on the measurement results of the elastic wave velocity of the specimen during the saturation process, we considered the relationship between the degree of saturation, that is, the B value, and the elastic wave velocity, and investigated the soil saturation state by elastic wave velocity for the purpose of monitoring the effectiveness of countermeasures. This study examines the possibility of estimation methods.
■ 試料および試験方法 用いた試料は豊浦砂および砂礫の2種類である。■ Samples and test methods Two types of samples were used: Toyoura sand and gravel.
試11の物理的性質を表1に示す。The physical properties of Trial 11 are shown in Table 1.
表1
*: a径150++x、高さ 150xxのモール
ドでの測定結果。Table 1 *: Measurement results for a mold with a diameter of 150++x and height of 150xx.
試験は大型三軸試験装置(gI−試体、直径300Rx
。The test was conducted using a large triaxial testing device (gI-specimen, diameter 300Rx).
.
高さ6QOzz )を用いて行ない、弾性波の測定は、
有効拘束圧を49 k P aに保ち、供試体を飽和さ
せる過程で実施した。飽和度は、バノクブレノンヤー戟
荷に伴う間隙水の体積変化を耐圧ビユレット(容量10
00c+y’)で測定し、ボイルの法則から求めた。The measurement of elastic waves was carried out using a height of 6QOzz).
The test was carried out while maintaining the effective confining pressure at 49 kPa and saturating the specimen. The degree of saturation is determined by measuring the change in the volume of pore water caused by the loading of a pressure-resistant billet (capacity 10
00c+y') and calculated from Boyle's law.
■ 飽和度、B値と弾性波速度について多孔質弾性体理
論を用い、さらに気泡を含んだ間隙水の体積弾性定数を
考慮すると、飽和度(Sr)とP波速度(Yp)との関
係は次式て与えられる。■ Using poroelastic body theory for saturation, B value, and elastic wave velocity, and considering the bulk elastic constant of pore water containing bubbles, the relationship between saturation (Sr) and P wave velocity (Yp) is It is given by the following formula.
o ・Vp2−o ・vpd’=
(] )n(Sr/Kw+ (1−3r)/K
a’1ここに、ρ ・密度(温潤密度)
ρd:土骨洛の密度(乾燥密度)
Vpd :主骨格のP波速度
Kw:気泡を全く含まない水の体積
弾性定数(2,2X 1okPa)
Ka:空気の体積弾性定数(絶対圧
で表した間隙水圧)
n :間隙率
第8図は、式(1)を用いて推定した飽和度によるVp
の変化を示している。間隙水中に占める気泡の割合(1
−3r)が、10” 〜1O−3(飽和度にして、99
、999〜999%)に変化する領域のVpの変化は極
めて大きい。o ・Vp2−o ・vpd'=
(] )n(Sr/Kw+ (1-3r)/K
a'1 where, ρ ・Density (warm density) ρd: Density of Dokuriku (dry density) Vpd: P-wave velocity of main skeleton Kw: Bulk elastic constant of water that does not contain any air bubbles (2,2X 1okPa ) Ka: Bulk elastic constant of air (pore water pressure expressed in absolute pressure) n: Porosity Figure 8 shows Vp due to the degree of saturation estimated using equation (1).
It shows the change in Proportion of air bubbles in pore water (1
-3r) is 10'' to 1O-3 (99 in terms of saturation)
, 999 to 999%) is extremely large.
一方、土粒子の圧縮性を無視すれば、B値は次式で表さ
れる。On the other hand, if the compressibility of soil particles is ignored, the B value is expressed by the following equation.
第9図は、式(2)から求めた飽和度によるB値の変化
を示している。B値の場合も飽和度の影響を顕著に受け
、特に(1−Sr)が10−’〜10−1に変化する領
域での変化が大きいことがわかる。FIG. 9 shows changes in the B value depending on the degree of saturation determined from equation (2). It can be seen that the B value is also significantly affected by the degree of saturation, particularly in the region where (1-Sr) changes from 10-' to 10-1.
■ 測定結果と考察
第10図は、飽和過程で測定した弾性速度と飽和度との
関係を示している。Vpは飽和度の影響を顕著に受け、
第8図に示した推定値と良く対応した変化を示すのに対
し、せん防波速度(Vs)の変化は極めて小さい。計算
によれば、飽和度増加に伴う密度の増加を考慮しても、
せん防弾性定数は飽和過程でほとんど一定値を示した。■ Measurement results and discussion Figure 10 shows the relationship between the elastic velocity measured during the saturation process and the degree of saturation. Vp is significantly affected by saturation,
While the change corresponds well to the estimated value shown in FIG. 8, the change in shear breakwater velocity (Vs) is extremely small. According to calculations, even considering the increase in density due to increase in saturation,
The shear ballistic constant showed almost constant value during the saturation process.
実測したVpd(乾燥供試体で測定したVp )および
Vpを用い、式(1)から求めた(1−Sr)cal、
と間隙水の体積変化測定から求めた( 1−5r)
5eas、の比較結果を第11図に示す。(1−Sr
)の小さな領域において、測定精度に起因すると思われ
るばらつきはあるが、全体的には良い相関があると判断
できる。Using the actually measured Vpd (Vp measured on a dry specimen) and Vp, (1-Sr)cal calculated from formula (1),
(1-5r) was determined from the measurement of the volume change of pore water.
5eas, the comparison results are shown in FIG. (1-Sr
Although there are variations in the small area of ) that are thought to be due to measurement accuracy, it can be judged that there is a good correlation overall.
第12図に、各飽和段階において、弾性波速度から求め
た体積弾性定数(K)と実測したB値との関係を示した
。第12図中の曲線は、式(2)に多孔質弾性体理論を
適用して得られる次式を表している。FIG. 12 shows the relationship between the bulk elastic constant (K) determined from the elastic wave velocity and the actually measured B value at each saturation stage. The curve in FIG. 12 represents the following equation obtained by applying poroelastic body theory to equation (2).
B=1−Kd/K
(3)
計算曲線は測定データを良く近似していることがわかる
。第13図は、乾燥供試体で測定した弾性波速度からK
dを求め、式(3)を用いて計算したB値(Bcal、
)と実測したB値(Bmeas、 )の比較結果であ
る。両者の間には広い範囲にわたって良い相関関係が認
められる。B=1-Kd/K (3) It can be seen that the calculated curve closely approximates the measured data. Figure 13 shows K from the elastic wave velocity measured on the dry specimen.
d and calculated the B value (Bcal,
) and the actually measured B value (Bmeas, ). A good correlation is observed over a wide range between the two.
■ 結論
砂および砂礫供試体の飽和過程における弾性波速度の変
化を測定し、完全飽和の状態かられずかに飽和度が低下
するだけでP波速度は著しく低減することを示した。ま
た、これは、気泡を多く含んだ間隙水の体積弾性定数を
考慮すれば、多孔質弾性体の理論で説明することができ
、弾性波速度から飽和度、すなわちB値を推定すること
ができることを明らかにした。■ Conclusion We measured changes in elastic wave velocity during the saturation process of sand and gravel specimens, and showed that the P-wave velocity significantly decreases when the degree of saturation decreases even slightly from a completely saturated state. In addition, this can be explained by the theory of poroelastic bodies by considering the bulk elastic constant of pore water containing many bubbles, and the degree of saturation, that is, the B value, can be estimated from the elastic wave velocity. revealed.
以上の結果より、気泡注入による液状化対策において、
地盤の弾性波速度を測定し対策効果をモニタリングする
手法の有効性が示唆された。From the above results, in liquefaction countermeasures by bubble injection,
The effectiveness of the method of measuring the elastic wave velocity in the ground and monitoring the effectiveness of countermeasures was suggested.
′発明の効果」
以上詳細に説明したように、この発明によれば、構造物
が構築された地盤中に注入手段及び排水手段を配設し、
気泡が混入された液体を前記手段の上端からその内部に
圧入することで、この注入手段から前記地盤中に微少な
気泡を注入すると共に、前記排水手段により地下水を排
水してこの地盤の改良を行っているので、いわば在来の
地下水を気泡が混入された液体で置換することとなり、
排水手段による地下水排水を行わない場合に比較して、
地盤内への気泡の注入が迅速にかつ容易に行なわれる。``Effects of the Invention'' As explained in detail above, according to the present invention, the injection means and the drainage means are disposed in the ground on which the structure is constructed,
By injecting a liquid mixed with air bubbles into the inside of the means from the upper end of the means, fine air bubbles are injected from the injection means into the ground, and at the same time, underground water is drained by the drainage means to improve the ground. In other words, the existing groundwater is replaced with a liquid containing air bubbles.
Compared to the case where groundwater is not drained by drainage means,
Injection of air bubbles into the ground is performed quickly and easily.
また、地下水場加に伴う地盤の盛り上がりといった現象
の発生も抑制できる。It is also possible to suppress the occurrence of phenomena such as swelling of the ground due to addition of groundwater.
また、この発明では、前記構造物を囲繞するように前記
注入手段及び排水手段を配設したので、これら注入手段
及び排水手段により液体圧入及び地下水排水を行えば、
構造物を貫く方向の水の流れを地盤中で発生させること
ができ、構造物直下の地盤への気泡注入が確実なしのと
なる。Further, in this invention, since the injection means and the drainage means are arranged so as to surround the structure, if liquid injection and groundwater drainage are performed by these injection means and drainage means,
It is possible to generate a flow of water in the ground in the direction that penetrates the structure, ensuring that air bubbles are injected into the ground directly below the structure.
第1図ないし第4図は、この発明の第1実施例である地
盤改良工法を示す図であって、第1図は地盤に注入手段
及びウェルポイントが貫入された状態を示す斜視図、第
2図(イ)、(ロ)はそれぞれ注入手段およびウェルポ
イントを概略的に示す平面図および同側面図、第3図は
気泡注入装置の例を示す概略図、第4図はウェルポイン
トの例を示す概略図、第5図ないし第6図は、この発明
の第2実施例である地盤改良工法を示す図であって、第
5図は地盤に注入手段及びウェルポイントか貫入された
状態を示す断面図、第6図は同平面図、第7図はこの発
明の第3実施例である地盤改良工法を示すもので同図(
イ)は平面図、同図(ロ)はその側面図、第8図は飽和
度とP波速度との関係を表すグラフ、第9図は飽和度と
B値との関係を表すグラフ、第10図は飽和度による弾
性波速度の変化を表すグラフ、第11図は飽和度の実測
値と推定値との関係を表すグラフ、第12図は体積弾性
定数とB@との関係を表すグラフ、第13図はB値の計
算値と実測値との関係を表すグラフである。
l・・・・・砂質地盤、2・・・・・・建築物(+ll
!造物)、3・・・・・注入パイプ(注入手段)、4・
・・・・・気泡混入装置、5・・・ウェルポイント(排
水手段)、12・・・水(液体)。1 to 4 are diagrams showing a ground improvement method according to a first embodiment of the present invention, in which FIG. 1 is a perspective view showing a state in which an injection means and a well point are penetrated into the ground, and FIG. Figures 2 (a) and (b) are a plan view and side view schematically showing the injection means and well point, respectively, Figure 3 is a schematic diagram showing an example of a bubble injection device, and Figure 4 is an example of a well point. 5 and 6 are diagrams showing a ground improvement method according to a second embodiment of the present invention, and FIG. 5 shows a state in which the injection means and well point have been penetrated into the ground. 6 is a plan view of the same, and FIG. 7 is a sectional view showing the ground improvement method according to the third embodiment of the present invention.
A) is a plan view, FIG. 8 is a graph showing the relationship between saturation and P wave velocity, FIG. 9 is a graph showing the relationship between saturation and B value, Figure 10 is a graph showing the change in elastic wave velocity due to saturation, Figure 11 is a graph showing the relationship between the measured value and estimated value of saturation, and Figure 12 is a graph showing the relationship between bulk elastic constant and B@. , FIG. 13 is a graph showing the relationship between the calculated value and the measured value of the B value. l...Sandy ground, 2...Buildings (+ll
! structure), 3... Injection pipe (injection means), 4.
... Air bubble mixing device, 5... Well point (drainage means), 12... Water (liquid).
Claims (2)
するように注入手段及び排水手段を配設し、気泡が混入
された液体を前記手段の上端からその内部に圧入するこ
とで、この注入手段から前記地盤中に微少な気泡を注入
すると共に、前記排水手段により地下水を排水してこの
地盤の改良を行う地盤改良工法。(1) By arranging an injection means and a drainage means in the ground on which the structure is built so as to surround the structure, and pressurizing the liquid mixed with air bubbles into the inside of the said means from the upper end. A ground improvement method that improves the ground by injecting minute air bubbles into the ground from the injection means and draining groundwater by the drainage means.
物を挾んで相対向するように前記注入手段及び排水手段
を組にして配設したことを特徴とする地盤改良工法。(2) The ground improvement method according to claim 1, wherein the injection means and the drainage means are arranged as a set so as to sandwich the structure and face each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17781689A JP2733540B2 (en) | 1989-07-10 | 1989-07-10 | Ground improvement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17781689A JP2733540B2 (en) | 1989-07-10 | 1989-07-10 | Ground improvement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0343515A true JPH0343515A (en) | 1991-02-25 |
JP2733540B2 JP2733540B2 (en) | 1998-03-30 |
Family
ID=16037598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17781689A Expired - Fee Related JP2733540B2 (en) | 1989-07-10 | 1989-07-10 | Ground improvement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2733540B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0533329A (en) * | 1991-07-31 | 1993-02-09 | Okumura Corp | Improvement of soft ground |
JP2007046408A (en) * | 2005-08-12 | 2007-02-22 | Takenaka Komuten Co Ltd | Ground improvement evaluation device, ground improvement evaluation method and ground improvement evaluation program |
JP2007297838A (en) * | 2006-04-28 | 2007-11-15 | Fudo Tetra Corp | Method for preventing deformation caused by liquefaction at earthquake |
JP2009263934A (en) * | 2008-04-23 | 2009-11-12 | Taisei Corp | Soil improving method using microorganism |
JP2012107502A (en) * | 2012-02-03 | 2012-06-07 | Taisei Corp | Soil improvement method using microorganism |
WO2012108369A1 (en) * | 2011-02-09 | 2012-08-16 | 有限会社アサヒテクノ | Soil improvement method |
JP2014074283A (en) * | 2012-10-04 | 2014-04-24 | Maeda Corp | Liquefaction prevention method through ground unsaturation |
JP2015048689A (en) * | 2013-09-04 | 2015-03-16 | 大成建設株式会社 | Microbubble propagation system and propagation method |
-
1989
- 1989-07-10 JP JP17781689A patent/JP2733540B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0533329A (en) * | 1991-07-31 | 1993-02-09 | Okumura Corp | Improvement of soft ground |
JP2007046408A (en) * | 2005-08-12 | 2007-02-22 | Takenaka Komuten Co Ltd | Ground improvement evaluation device, ground improvement evaluation method and ground improvement evaluation program |
JP4704848B2 (en) * | 2005-08-12 | 2011-06-22 | 株式会社竹中工務店 | Ground improvement evaluation device and ground improvement evaluation program |
JP2007297838A (en) * | 2006-04-28 | 2007-11-15 | Fudo Tetra Corp | Method for preventing deformation caused by liquefaction at earthquake |
JP2009263934A (en) * | 2008-04-23 | 2009-11-12 | Taisei Corp | Soil improving method using microorganism |
WO2012108369A1 (en) * | 2011-02-09 | 2012-08-16 | 有限会社アサヒテクノ | Soil improvement method |
JP2012225143A (en) * | 2011-02-09 | 2012-11-15 | Asahi Techno:Kk | Ground improvement method |
JP2012107502A (en) * | 2012-02-03 | 2012-06-07 | Taisei Corp | Soil improvement method using microorganism |
JP2014074283A (en) * | 2012-10-04 | 2014-04-24 | Maeda Corp | Liquefaction prevention method through ground unsaturation |
JP2015048689A (en) * | 2013-09-04 | 2015-03-16 | 大成建設株式会社 | Microbubble propagation system and propagation method |
Also Published As
Publication number | Publication date |
---|---|
JP2733540B2 (en) | 1998-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rollins et al. | Mitigation measures for small structures on collapsible alluvial soils | |
CN106677156B (en) | A method of disturbance treatment being carried out to soft soil foundation using aerosol | |
US3863717A (en) | Methods for forcing a liquid into a low pressure formation | |
CN107796929A (en) | Elastic wave aids in cement ejection for water plugging model test apparatus | |
JPH0343515A (en) | Foundation improvement method | |
CN102296588B (en) | Construction process of underwater sand compaction pile | |
JPH10338939A (en) | Method of making construction for liquefaction prevention at time of earthquake of ground and air-supply and exhaust pipe structure using the same | |
RU2004119433A (en) | METHOD FOR SEALING SOILS OR LIFTING OF CONSTRUCTIONS AT PRESSURES MORE THAN 500 KPA | |
JP2601706B2 (en) | Liquefaction prevention method for sandy ground | |
JP4026739B2 (en) | Ground improvement method by gas dissolved water injection | |
JP2733539B2 (en) | Ground improvement method | |
CN112160313A (en) | Undisturbed Q4Loess or remolded Q4Loess reinforcing method | |
US5145284A (en) | Method for increasing the end-bearing capacity of open-ended piles | |
JPH035514A (en) | Liquefaction prevention of sandy ground and bubble injection device | |
JPH04347206A (en) | Land improvement method | |
EP2305894A1 (en) | A method for consolidating soils by injection | |
JP2858749B2 (en) | Closed pressure shield method | |
JP3256492B2 (en) | Construction method for preventing liquefaction of ground during earthquakes and structure of water pipes used for this method | |
Keba et al. | Ultimate bearing capacity of a shallow foundation on unsaturated sandy soil with cavity | |
JP3709505B2 (en) | Ground liquefaction prevention method | |
JP2536638B2 (en) | Ground improvement method | |
US4685835A (en) | Method of increasing the compressibility of liquid-saturated material | |
Richards et al. | Investigation of Retaining Wall Installation and Performance Using Centrifuge Modelling Techniques. | |
CN221501996U (en) | Guiding type directional grouting system suitable for leakage reinforcement of existing building site | |
CA2944709C (en) | Structural support |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |