JPH035514A - Liquefaction prevention of sandy ground and bubble injection device - Google Patents
Liquefaction prevention of sandy ground and bubble injection deviceInfo
- Publication number
- JPH035514A JPH035514A JP13969989A JP13969989A JPH035514A JP H035514 A JPH035514 A JP H035514A JP 13969989 A JP13969989 A JP 13969989A JP 13969989 A JP13969989 A JP 13969989A JP H035514 A JPH035514 A JP H035514A
- Authority
- JP
- Japan
- Prior art keywords
- ground
- pressure
- sandy ground
- injection pipe
- pressure vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002347 injection Methods 0.000 title claims abstract description 45
- 239000007924 injection Substances 0.000 title claims abstract description 45
- 230000002265 prevention Effects 0.000 title description 8
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 18
- 239000007788 liquid Substances 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims description 21
- 238000003756 stirring Methods 0.000 claims description 16
- 238000002156 mixing Methods 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 238000010348 incorporation Methods 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- 239000011148 porous material Substances 0.000 description 11
- 239000004576 sand Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- 239000003673 groundwater Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 238000013019 agitation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は、完全飽和状態またはそれに近い状態の砂質
地盤の液状化防止方法及びこれに用いられる気泡注入装
置に関するものである。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for preventing liquefaction of sandy ground that is fully saturated or nearly so, and a bubble injection device used therein.
「従来の技術およびその課題」
一般に、飽和した砂質地盤は地震時に液状化する恐れが
あるため、このような砂質地盤上に建築物を構築する場
合には、各種の地盤改良方法で地盤を改良する必要があ
る。ところが、このような地盤改良を行なうためには極
めて高いコストがかかるため、低コストで液状化を防止
する方法の開発が望まれている。また、既に建築物が構
築されている砂質地盤に対して前記のような地盤改良を
行なった場合1こは周囲の建築物に悪影響を与える恐れ
があるため、既に建築物が構築されている砂質地盤にお
いては、前記のような地盤改良工法で液状化を防止する
ことは不可能と考えられる。"Conventional technology and its issues" In general, saturated sandy ground may liquefy during an earthquake, so when building on such sandy ground, various ground improvement methods are used to improve the ground. needs to be improved. However, since such ground improvement requires extremely high costs, there is a desire to develop a low-cost method of preventing liquefaction. In addition, if the above-mentioned ground improvement is carried out on sandy ground on which a building has already been constructed, it may have a negative impact on surrounding buildings, so if a building has already been constructed, In sandy ground, it is considered impossible to prevent liquefaction using the ground improvement methods described above.
この発明は前記事情に鑑みてなされたもので、完全飽和
に近い砂質地盤内に液体と共に微少な気泡を圧入して地
盤改良を行うことで、低コストで地盤改良を行え、かつ
、既に建築物が構築されている砂質地盤への適用も可能
な砂質地盤の液状化防止方法及び空気注入装置の提供を
目的としている。This invention was made in view of the above circumstances, and by injecting liquid and minute air bubbles into sandy ground that is nearly completely saturated to improve the ground, it is possible to improve the ground at a low cost, and it is The object of the present invention is to provide a method for preventing liquefaction of sandy ground and an air injection device that can be applied to sandy ground on which objects are built.
「課題を解決するための手段」
最近の弾性波探査に関する研究により、地下水位以下の
地盤においても、その地盤の間隙水中に微少な気泡が存
在する場合には、地盤のP波速度が1500i+/se
c (水のP波速度)以下に低下することが明らかにさ
れた。``Means to solve the problem'' Recent research on elastic wave exploration has shown that even in the ground below the groundwater level, if there are minute air bubbles in the pore water of the ground, the P wave velocity in the ground is 1500i+/ se
c (P wave velocity of water) or less.
一方、完全飽和状態に近い砂質地盤において、飽和度の
わずかな低下が強度の増加をもたらすことは既に研究さ
れており、上述したようなP波速度の低下した不飽和層
を砂質地盤中に人工的に作成することができれば、新た
な液状化防止方法として有望と考えられる。On the other hand, it has already been studied that in sandy ground that is close to a completely saturated state, a slight decrease in the degree of saturation causes an increase in strength. If it can be artificially created, it is considered to be a promising new method for preventing liquefaction.
そこで、この発明のうち第1の請求項に係る発明は、完
全飽和状態に近い砂質地盤中に注入パイプを貫入し、気
泡混入装置により気泡が混入された液体を作製してこれ
を前記注入パイプの上端からその内部に圧入することで
、この注入パイプから前記砂質地盤中に微少な気泡を注
入するような砂質地盤の液状化防止方法を構成すること
で、前記課題を解決せんとしている。Therefore, the invention according to the first claim of the present invention involves penetrating an injection pipe into sandy ground that is close to a completely saturated state, producing a liquid with air bubbles mixed therein using a bubble mixing device, and injecting the liquid into the sandy ground. We have attempted to solve the above problem by configuring a method for preventing liquefaction of sandy ground in which minute air bubbles are injected into the sandy ground from this injection pipe by press-fitting it into the pipe from the upper end. There is.
また、第2の請求項に係る発明は、前記第1の請求項に
係る砂質地盤の液状化防止装置に用いられる気泡注入装
置を、圧力容器−と、該圧力容器内に空気を圧入してこ
の圧入容器内部の圧力を大気圧以上となす圧縮機と、圧
力容器内に液体を供給する供給手段と、圧力容器内部を
撹拌する撹拌手段と、切換手段を介して圧力容器内部に
連通して設けられ、圧力容器内部より低圧に保持された
減圧容器と、この減圧容器に連結され、地盤中に貫入さ
れた注入パイプからなるものとしたことを特徴としてい
る。In addition, the invention according to the second claim includes the air bubble injection device used in the liquefaction prevention device for sandy ground according to the first claim, which includes a pressure vessel and a pressure vessel in which air is injected into the pressure vessel. A compressor for levering the pressure inside the pressure container to above atmospheric pressure, a supply means for supplying liquid into the pressure container, an agitation means for stirring the inside of the pressure container, and communication with the inside of the pressure container via a switching means. The system is characterized in that it consists of a reduced pressure vessel that is installed at a pressure vessel and maintained at a lower pressure than the inside of the pressure vessel, and an injection pipe that is connected to this reduced pressure vessel and penetrates into the ground.
「作用」
この発明の砂質地盤の液状化防止方法においては、完全
飽和状態に近い砂質地盤上に建築物を構築する際、ある
いは既に建築物が構築されている砂質地盤が完全飽和に
近い場合に、その砂質地盤中に注入パイプを貫入すると
共に、気泡混入装置により気泡が混入された液体を予め
作製しておく。"Operation" In the method for preventing liquefaction of sandy ground according to the present invention, when a building is constructed on sandy ground that is close to a completely saturated state, or when the sandy ground on which a building has already been constructed is completely saturated. If the soil is close to the sandy ground, an injection pipe is penetrated into the sandy ground, and a liquid containing air bubbles is prepared in advance using a bubble mixing device.
そして、このようにした後、気泡が混入された液体を前
記注入パイプの上端からその内部に圧入することによっ
て、そのパイプ内の水圧を周囲の砂質地盤の地下水圧よ
りも高めて、このパイプから液体と共に前記砂質地盤中
に微少な気泡を注入する。このようにすると、砂質地盤
の飽和度を低下させることができ、地震時における間隙
水圧の上昇が抑制されることとなる。After doing this, by injecting the liquid mixed with air bubbles into the injection pipe from the upper end of the pipe, the water pressure inside the pipe is made higher than the groundwater pressure of the surrounding sandy ground, and this pipe Microscopic air bubbles are injected into the sandy ground along with the liquid. In this way, the degree of saturation of the sandy ground can be reduced, and an increase in pore water pressure during an earthquake can be suppressed.
「実施例」
以下、この発明の実施例について第1図を参照して説明
する。"Example" Hereinafter, an example of the present invention will be described with reference to FIG.
この実施例は、完全飽和に近い砂質地盤1において、そ
の砂質地盤1上に建築物2を構築する際に実施される液
状化防止方法であって、前記砂質地盤1中に多数の微少
な透気孔を有する注入パイプ3を垂直に貫入し、気泡混
入装置4により気泡が混入された液体を作製してこれを
前記注入パイプ3の上端から内部に圧入することで、前
記砂質地盤1の液状化を防止するようにしている。This example is a liquefaction prevention method that is carried out when constructing a building 2 on sandy ground 1 that is nearly completely saturated. The sandy ground is penetrated vertically through an injection pipe 3 having minute air permeable holes, and a bubble-mixing device 4 prepares a liquid with air bubbles mixed therein, and this is press-fitted into the inside of the injection pipe 3 from the upper end of the injection pipe 3. This is to prevent liquefaction of 1.
前記注入パイプ3は、ステンレスまたは合成樹脂などか
らなる管の先端を閉止板で閉塞し、かつその側壁および
閉止板に無数の微少な透気孔(図示路)を形成したもの
であって、その先端を下方に向けた状態で前記砂質地盤
1中に貫入されるものである。但し、注入パイプの構成
はこれに限定されることな(、例えば単に下端部のみ開
口して側壁に透気孔が設けられていないような注入パイ
プであってもよいことは勿論である。The injection pipe 3 is a tube made of stainless steel or synthetic resin whose tip is closed with a closing plate, and countless minute air permeable holes (as shown in the figure) are formed in the side wall and the closing plate. The sandy ground 1 is penetrated into the sandy ground 1 with the shaft facing downward. However, the configuration of the injection pipe is not limited to this (for example, it is of course possible to use an injection pipe in which only the lower end is open and no air permeable holes are provided in the side wall).
前記気泡混入装置4は、各注入パイプ3、・・・毎ある
いは一箇所に集中して設けられ、第2図に示すように、
大気圧以上の圧力に耐えうる構造の密閉型圧力容器lO
と、圧力容器10内に空気を圧入することでこの圧力容
器10内部の圧力を大気圧以上とするコンプレッサー(
圧縮機)11と、圧力容器10内へ水12を供給する図
示されない供給手段と、圧力容器10内部を撹拌する撹
拌装置13とから概略構成されている。撹拌装置13は
、圧力容器10の上部から突設された撹拌軸14と、こ
の撹拌軸14の側面に植設された撹拌翼15、・・・と
、前記撹拌軸14を回転駆動させるモータ16とから構
成されている。The bubble mixing device 4 is provided for each injection pipe 3, . . . or concentrated at one location, as shown in FIG.
Closed pressure vessel with a structure that can withstand pressures above atmospheric pressure
and a compressor (which makes the pressure inside the pressure vessel 10 equal to or higher than atmospheric pressure by pressurizing air into the pressure vessel 10).
The system is generally composed of a compressor) 11, a supply means (not shown) that supplies water 12 into the pressure vessel 10, and a stirring device 13 that stirs the inside of the pressure vessel 10. The stirring device 13 includes a stirring shaft 14 protruding from the top of the pressure vessel 10, stirring blades 15 installed on the side surface of the stirring shaft 14, and a motor 16 that rotationally drives the stirring shaft 14. It is composed of.
また、圧力容器10には耐圧ホース17を介して密閉型
減圧容器18が連結され、これら圧力容器10及び減圧
容器18手前の耐圧ホース17にはそれぞれ切換弁19
.19が取り付けられている。この減圧容器18には大
気に連通する減圧弁20が設けられている。Further, a closed pressure reducing vessel 18 is connected to the pressure vessel 10 via a pressure hose 17, and a switching valve 19 is connected to the pressure vessel 10 and the pressure hose 17 in front of the pressure reducing vessel 18, respectively.
.. 19 is attached. This pressure reducing container 18 is provided with a pressure reducing valve 20 communicating with the atmosphere.
減圧容器18と各注入パイプ3、・・・の上端はホース
2L・・・により連結され、かつ、ホース21には吐出
圧調整可能なポンプ22が介在されている。The upper ends of the reduced pressure container 18 and each injection pipe 3, . . . are connected by a hose 2L, and a pump 22 whose discharge pressure can be adjusted is interposed in the hose 21.
このような液状化防止方法によって砂質地盤1の液状化
を防止する場合には、まず、建築物2を構築する予定の
砂質地盤1中に、多数の注入ノ(イブ3.3、・・・を
それぞれ所定位置に垂直に貫入する。In order to prevent liquefaction of the sandy ground 1 using such a liquefaction prevention method, first, a large number of injection nozzles (e.g. Penetrate vertically into each predetermined position.
次に、気泡混入装置4を注入パイプ3の上端に接続した
後、気泡混入装置4の圧力容器10内に図示されない供
給手段を介して水12を注入する。Next, after connecting the bubble mixing device 4 to the upper end of the injection pipe 3, water 12 is injected into the pressure vessel 10 of the bubble mixing device 4 via a supply means (not shown).
そして、所定量の水を圧力容器10内に貯留した後、圧
縮機11により圧力容器10内に空気を圧入することで
この圧力容器IO内部の圧力を大気圧以上の所定圧にま
で加圧しつつ、モータ16を駆動して撹拌翼15、・・
・ごと撹拌軸14を回転させることで、圧力容器IO内
の水12を撹拌する。After storing a predetermined amount of water in the pressure vessel 10, the compressor 11 pressurizes air into the pressure vessel 10, thereby increasing the pressure inside the pressure vessel IO to a predetermined pressure higher than atmospheric pressure. , drives the motor 16 to drive the stirring blades 15,...
- By rotating the stirring shaft 14, the water 12 in the pressure vessel IO is stirred.
これにより、圧力容器10内の水12には、大気圧にお
ける飽和量以上の空気が溶は込む。なお、圧力容器10
内の圧力は必要とする気泡の量やその時の大気圧に依存
して適宜決定すればよい。As a result, the water 12 in the pressure vessel 10 contains more air than the saturation amount at atmospheric pressure. In addition, the pressure vessel 10
The internal pressure may be appropriately determined depending on the amount of bubbles required and the atmospheric pressure at that time.
この状態で暫(撹拌を継続した後、圧縮機11による加
圧及び撹拌翼15、・・・等による撹拌を停止し、切換
弁19.19を開状態とすることで圧力容器10内の水
12を減圧容器18内に導入する。次に、切換弁19.
19を閉状態としてから、減圧容器18の減圧弁20を
開状態とすることでその内部を大気に連通させる。これ
により、減圧容器18内の水12に溶は込んでいた空気
のうち、大気圧下における飽和量以上の空気が溶出して
微少な気泡となり、気泡が混入された水12を得ること
ができる。After continuing stirring for a while in this state, the pressurization by the compressor 11 and the stirring by the stirring blades 15, etc. are stopped, and the switching valves 19 and 19 are opened, so that the water in the pressure vessel 10 is 12 is introduced into the pressure reducing container 18. Next, the switching valve 19.
19 is closed, and then the pressure reducing valve 20 of the pressure reducing container 18 is opened, thereby communicating the inside of the container with the atmosphere. As a result, of the air dissolved in the water 12 in the reduced pressure container 18, more than the saturation amount under atmospheric pressure is eluted and becomes minute bubbles, and water 12 mixed with bubbles can be obtained. .
そして、この水12をポンプ22により圧送して、注入
パイプ3、・・・上端から内部に圧入することにより、
これら注入パイプ3、・・・内の水圧を周囲の砂質地盤
1の地下水圧より高め、これによって、注入パイプ3、
・・・内の水12をその注入パイプ3、・・・の無数の
透気孔から放出して、砂質地盤1内に水12とともに微
少な気泡を注入する。Then, this water 12 is pumped by the pump 22 and press-fitted into the injection pipe 3 from the upper end.
The water pressure in these injection pipes 3, . . . is made higher than the groundwater pressure in the surrounding sandy ground 1, thereby increasing the
The water 12 in the sandy ground 1 is discharged from the numerous air permeable holes of the injection pipe 3, and minute air bubbles are injected into the sandy ground 1 together with the water 12.
このようにして砂質地盤1中に無数の微少な気泡を注入
すると、その砂質地盤1の飽和度が低下することとなる
が、その場合、砂質地盤1中にその砂質地盤1の飽和度
を検出するセンサを設けるか、または砂質地盤1上に適
当な測定機器等を設けるなどして、その砂質地盤1の飽
和度(液状化強度)およびその時間的変化を把握してお
くようにする。この飽和度の検出は、前述の如く地盤の
P波速度の低下と飽和度との関係に基づき、弾性波探査
等によりP波速度を計測することで行えばよい。Injecting countless minute air bubbles into the sandy ground 1 in this way will reduce the degree of saturation of the sandy ground 1; The saturation level (liquefaction intensity) of the sandy ground 1 and its temporal changes can be ascertained by installing a sensor to detect the saturation level or by installing an appropriate measuring device on the sandy ground 1. Leave it there. This degree of saturation may be detected by measuring the P-wave velocity through elastic wave exploration or the like, based on the relationship between the decrease in the P-wave velocity of the ground and the saturation degree, as described above.
そして、前記砂質地盤1の改良範囲および改良効果をモ
ニタリングしながらその砂質地盤1の飽和度を低下させ
ることによって、ぞの砂質地盤1の液状化強度を所望の
強度まで高める。このようにすると、前記砂質地盤1中
における地震時の間隙水圧の上昇が低減して適正なレベ
ルに抑えられることとなり、これによって、完全飽和に
近い状態の砂質地盤1においても地震時の液状化が防止
されることになる。Then, by lowering the degree of saturation of the sandy ground 1 while monitoring the improvement range and improvement effect of the sandy ground 1, the liquefaction strength of the sandy ground 1 is increased to a desired strength. In this way, the increase in pore water pressure during an earthquake in the sandy ground 1 can be reduced and suppressed to an appropriate level, and as a result, even in the sandy ground 1 that is nearly completely saturated, the increase in pore water pressure during an earthquake can be reduced. Liquefaction will be prevented.
特に、この実施例の液状化防止方法においては、砂質地
盤1に微少な気泡を注入する際に、気泡混入装置4によ
り気泡が混入された水12を作製し、これを注入パイプ
3を介して地盤1内に圧入することで気泡を地盤1内に
注入しているので、砂質地盤lへの水12の注入量及び
注入圧を適宜制御することで地盤1内への気泡注入量を
容易に制御することができ、しかも単に注入パイプ3内
に圧縮空気を送出することで注入パイプ3の透気孔から
気泡を注入するような場合に比較して、砂質地盤1への
気泡注入が確実かつ容易に行える。In particular, in the liquefaction prevention method of this embodiment, when injecting minute air bubbles into the sandy ground 1, water 12 mixed with air bubbles is prepared by the air bubble mixing device 4, and this is poured through the injection pipe 3. Since the air bubbles are injected into the ground 1 by injecting them into the ground 1, the amount of air bubbles injected into the ground 1 can be controlled by appropriately controlling the amount of water 12 injected into the sandy ground l and the injection pressure. It can be easily controlled, and compared to the case where air bubbles are injected from the air hole of the injection pipe 3 by simply sending compressed air into the injection pipe 3, it is possible to inject air bubbles into the sandy ground 1. Can be done reliably and easily.
すなわち、従来の研究に依れば、砂の透気係数は飽和度
の増加に伴い減少し、飽和度50%程度で閉塞すること
が報告されている。これは、単純に気泡のみを砂に注入
する場合には、砂の飽和度は50%以下に至らないこと
を意味する。従って、土の骨格構造を乱さずに、飽和地
盤中に空気を送り込むのは困難とされていた。しかし、
本実施例の如く水12中に微少な気泡を混入し、この水
12とともに微少な気泡を地盤中に注入すれば、閉塞を
生じずに砂の中に空気を送り込むことができ、砂質地盤
を所望の飽和度となすことができる。That is, according to conventional research, it has been reported that the air permeability of sand decreases as the degree of saturation increases, and that sand becomes clogged at a degree of saturation of about 50%. This means that if only air bubbles are injected into the sand, the saturation of the sand will not reach 50% or less. Therefore, it has been considered difficult to pump air into saturated ground without disturbing the soil's skeletal structure. but,
By mixing minute air bubbles into the water 12 as in this embodiment and injecting the minute air bubbles into the ground together with the water 12, it is possible to send air into the sand without causing blockage, and it is possible to improve the sandy ground. can be set to a desired saturation level.
また、圧力容器10及び減圧容器18を備えた気泡混入
装置4を用いれば、これら容器l0118間における圧
力差によって、粒子径が均一かつ微少で水12内におけ
る分布も均一な気泡を容易にしかも迅速に作製すること
ができる。Furthermore, if the bubble mixing device 4 equipped with the pressure vessel 10 and the vacuum vessel 18 is used, the pressure difference between these vessels 10118 makes it possible to easily and quickly form bubbles with uniform and minute particle diameters and uniform distribution in the water 12. It can be made into
なお、この発明では、完全飽和状態に近い砂質地盤上に
建築物を構築する際に実施する液状化防止方法について
説明したが、この発明の液状化防止方法は、既に建築物
が構築されている砂質地盤に対しても適用することがで
きる。その場合、第1図に示すように、砂質地盤1上の
各建築物2の周囲に前記注入パイプ3を打ち込み、その
注入パイプ3の上端、例えば各建築物2の四隅にそれぞ
れ気泡混入装置4等を設置すればよい。これにより、液
状化防止のための地盤改良がなされていない砂質地盤1
上に構築された既設の建築物2に対しても、各建築物2
周辺の砂質地盤1の飽和度を低下させることによって、
地震時の液状化を有効に防止することができる。In addition, in this invention, the liquefaction prevention method that is implemented when constructing a building on sandy ground that is close to a completely saturated state has been explained, but the liquefaction prevention method of this invention is applicable even if a building has already been constructed. It can also be applied to sandy ground. In that case, as shown in FIG. 1, the injection pipe 3 is driven around each building 2 on the sandy ground 1, and an air bubble mixing device is placed at the upper end of the injection pipe 3, for example, at the four corners of each building 2. 4 etc. should be installed. As a result, sandy ground that has not been improved to prevent liquefaction1
For the existing building 2 built on top of each building 2,
By reducing the saturation level of the surrounding sandy ground 1,
Liquefaction during earthquakes can be effectively prevented.
「実験例」
この実験例は、微気泡を飽和砂地盤中に注入して地盤の
飽和度を下げ、地震時に発生する間隙水圧を低減させる
液状化対策ついて進められた研究の中で、特に、飽和過
程による供試体の弾性波速度の測定結果により、飽和度
、すなわちB値と弾性波速度との関係について考察を加
え、対策効果のモニタリングを目的とした、弾性波速度
による地盤飽和状態の推定法の可能性を検討したもので
ある。``Experiment example'' This experiment example is based on research conducted on liquefaction countermeasures that involve injecting microbubbles into saturated sand ground to lower the saturation level of the ground and reduce pore water pressure that occurs during earthquakes. Based on the measurement results of the elastic wave velocity of the specimen during the saturation process, we considered the relationship between the degree of saturation, that is, the B value, and the elastic wave velocity, and estimated the state of ground saturation using elastic wave velocity for the purpose of monitoring the effectiveness of countermeasures. It examines the possibilities of law.
■ 試料および試験方法 用いた試料は豊浦砂および砂礫の2種類である。■ Samples and test methods Two types of samples were used: Toyoura sand and gravel.
試料の物理的性質を表1に示す。The physical properties of the samples are shown in Table 1.
表1
■ 飽和度、B値と弾性波速度について多孔質弾性体理
論を用い、さらに気泡を含んだ間隙水の体積弾性定数を
考慮すると、飽和度(Sr)とP波速度(Vp)との関
係は次式で与えられる。Table 1 ■ Using poroelastic body theory for saturation, B value, and elastic wave velocity, and considering the bulk elastic constant of pore water containing bubbles, the relationship between saturation (Sr) and P wave velocity (Vp) is calculated. The relationship is given by the following equation.
* : 直径150xx、高さ 150ixのモールド
での測定結果。*: Measurement results using a mold with a diameter of 150xx and a height of 150ix.
試験は大型三軸試験装置(供試体、直径300■、高さ
600*z)を用いて行ない、弾性波の測定は、有効拘
束圧を49kPaに保ち、供試体を飽和させる過程で実
施した。飽和度は、バックプレッシャー載荷に伴う間隙
水の体積変化を耐圧ビユレット(容!11000cm’
)で測定し、ボイルの法則から求めた。The test was conducted using a large triaxial testing device (specimen, diameter 300 cm, height 600*z), and the elastic wave measurements were carried out while the effective confining pressure was maintained at 49 kPa and the specimen was saturated. The degree of saturation is the change in volume of pore water caused by back pressure loading.
) and calculated from Boyle's law.
ここに、ρ :密度(湿潤密度)
ρd:土骨格の密度(乾燥密度)
Vpd :土骨格のP波速度
Kw:気泡を全く含まない水の体積
弾性定数(2,2X 1okPa)
Ka:空気の体積弾性定数(絶対圧
で表した間隙水圧)
n :間隙率
第3図は、式(1)を用いて推定した飽和度によるVp
の変化を示している。間隙水中に占める気泡の割合(1
−Sr)が、10−5〜1O−3(飽和度にして、99
.999〜99.9%)に変化する領域のVpの変化は
極めて大きい。Here, ρ: Density (wet density) ρd: Density of soil skeleton (dry density) Vpd: P-wave velocity of soil skeleton Kw: Bulk elastic constant of water that does not contain any air bubbles (2,2X 1okPa) Ka: of air Bulk elastic constant (pore water pressure expressed in absolute pressure) n: Porosity Figure 3 shows Vp due to the degree of saturation estimated using equation (1).
It shows the change in Proportion of air bubbles in pore water (1
-Sr) is 10-5 to 1O-3 (99 in terms of saturation)
.. 999% to 99.9%) is extremely large.
一方、土粒子の圧縮性を無視すれば、B値は次式で表さ
れる。On the other hand, if the compressibility of soil particles is ignored, the B value is expressed by the following equation.
第4図は、式(2)から求めた飽和度によるB値の変化
を示している。B値の場合も飽和度の影響を顕著に受け
、特に(1−Sr)が10−’ 〜10−’に変化する
領域での変化が大きいことがわかる。FIG. 4 shows the change in the B value depending on the degree of saturation determined from equation (2). It can be seen that the B value is also significantly affected by the degree of saturation, particularly in the region where (1-Sr) changes from 10-' to 10-'.
■ 測定結果と考察
第5図は、飽和過程で測定した弾性速度と飽和度との関
係を示している。Vpは飽和度の影響を顕著に受け、第
3図に示した推定値と良く対応した変化を示すのに対し
、せん析液速度(Vs)の変化は極めて小さい。計算に
よれば、飽和度増加に伴う密度の増加を考慮しても、せ
ん断弾性定数は飽和過程でほとんど一定値を示した。実
測したVpd(乾燥供試体で測定したVp)およびVp
を用い、式(1)から求めた(1−Sr)cal、
と間隙水の体積変化測定から求めた( 1−5r) m
eas、の比較結果を第6図に示す。(isr)の小さ
な領域において、測定精度に起因すると思われるばらつ
きはあるが、全体的には良い相関があると判断できる。■ Measurement results and discussion Figure 5 shows the relationship between the elastic velocity measured during the saturation process and the degree of saturation. Vp is significantly affected by the degree of saturation and exhibits a change that corresponds well to the estimated value shown in FIG. 3, whereas the change in the precipitation velocity (Vs) is extremely small. According to calculations, the shear elastic constant remained almost constant during the saturation process, even when the increase in density with increasing saturation was taken into account. Actually measured Vpd (Vp measured on dry specimen) and Vp
(1-Sr)cal obtained from formula (1) using
(1-5r) m
Fig. 6 shows the comparison results of eas. Although there are variations in the small region of (isr) that are thought to be due to measurement accuracy, it can be determined that there is a good correlation overall.
第7図に、各飽和段階において、弾性波速度から求めた
体積弾性定数(K)と実測したB値との関係を示した。FIG. 7 shows the relationship between the bulk elastic constant (K) determined from the elastic wave velocity and the actually measured B value at each saturation stage.
第7図中の曲線は、式(2)に多孔質弾性体理論を適用
して得られる次式を表している。The curve in FIG. 7 represents the following equation obtained by applying poroelastic body theory to equation (2).
B=l−Kd/K
(3)
計算曲線は測定データを良く近似していることがわかる
。第8図は、乾燥供試体で測定した弾性波速度からKd
を求め、式(3)を用いて計算したB値(Bcal’、
)と実測したB値(Bmeas、 )の比較結果である
。両者の間には広い範囲にわたって良い相関関係が認め
られる。B=l−Kd/K (3) It can be seen that the calculated curve closely approximates the measured data. Figure 8 shows Kd from the elastic wave velocity measured on the dry specimen.
The B value (Bcal',
) and the actually measured B value (Bmeas, ). A good correlation is observed over a wide range between the two.
■ 結論
砂および砂礫供試体の飽和過程における弾性波速度の変
化を測定し、完全飽和の状態かられずかに飽和度が低下
するだけでP波速度は著しく低減することを示した。ま
た、これは、気泡を多く含んだ間隙水の体積弾性定数を
考慮すれば、多孔質弾性体の理論で説明することができ
、弾性波速度から飽和度、すなわちB値を推定すること
ができることを明らかにした。■ Conclusion We measured changes in elastic wave velocity during the saturation process of sand and gravel specimens, and showed that the P-wave velocity significantly decreases when the degree of saturation decreases even slightly from a completely saturated state. In addition, this can be explained by the theory of poroelastic bodies by considering the bulk elastic constant of pore water containing many bubbles, and the degree of saturation, that is, the B value, can be estimated from the elastic wave velocity. revealed.
以上の結果より、気泡注入による液状化対策において、
地盤の弾性波速度を測定し対策効果をモニタリングする
手法の有効性が示唆された。From the above results, in liquefaction countermeasures by bubble injection,
The effectiveness of the method of measuring the elastic wave velocity in the ground and monitoring the effectiveness of countermeasures was suggested.
[発明の効果]
以上詳細に説明したように、この発明によれば、完全飽
和状態に近い砂質地盤中に注入パイプを貫入し、気泡混
入装置により気泡が混入された液体を作製してこれを前
記注入パイプの上端からその内部に圧入することで、こ
の注入パイプから前記砂質地盤中に微少な気泡を注入し
、それによって地震時における間隙水圧の上昇を抑制す
ることができる。このため、完全飽和に近い状態の砂質
地盤においても地震時の液状化を防止することがで。[Effects of the Invention] As explained in detail above, according to the present invention, an injection pipe is penetrated into sandy ground that is nearly completely saturated, and a liquid containing air bubbles is produced by an air bubble mixing device. By press-fitting into the inside of the injection pipe from the upper end, minute air bubbles can be injected from the injection pipe into the sandy ground, thereby suppressing an increase in pore water pressure during an earthquake. For this reason, it is possible to prevent liquefaction during an earthquake even in sandy ground that is nearly fully saturated.
きる。しかも、この発明の液状化防止方法においては、
気泡が混入された液体を地盤内に圧入することで気泡を
地盤内に注入しているので、砂質地盤への液体の注入量
及び注入圧を適宜制御することで地盤内への気泡注入量
を容易に制御することができ、しかも単にパイプ内に圧
縮空気を送出することでパイプの透気孔から気泡を注入
するような場合に比較して、砂質地盤への注入が確実か
つ容易に行える。Wear. Moreover, in the liquefaction prevention method of this invention,
Since air bubbles are injected into the ground by injecting a liquid containing air bubbles into the ground, the amount of air bubbles injected into the ground can be controlled by appropriately controlling the amount of liquid injected into sandy ground and the injection pressure. In addition, injection into sandy ground can be performed more reliably and easily than when air bubbles are injected through the pipe's permeable holes by simply sending compressed air into the pipe. .
また、圧力容器及び減圧容器を備えた気泡注入装置を用
いれば、これら容器間における圧力差によって、粒子径
が均一かつ微少で液体内における分布も均一な気泡を容
易にしかも迅速に作製することができる。Furthermore, if a bubble injection device equipped with a pressure vessel and a vacuum vessel is used, the pressure difference between these vessels makes it possible to easily and quickly create bubbles with uniform and minute particle diameters and uniform distribution within the liquid. can.
第1図ないし第2図は、この発明の一実施例を示す図で
あって、第1図は砂質地盤の液状化防止方法を説明する
ための図、第2図は気泡注入装置の例を示す概略図、第
3図は飽和度とP波速度との関係を表すグラフ、第4図
は飽和度とB値との関係を表すグラフ、第5図は飽和度
による弾性波速度の変化を表すグラフ、第6図は飽和度
の実測値と推定値との関係を表すグラフ、第7図は体積
弾性定数とB値との関係を表すグラフ、第8図はB値の
計算値と実測値との関係を表すグラフである。
1・・・・・・砂質地盤、2・・・・・・建築物、3・
・・・・・パイプ、4・・・・・・気泡混入装置、12
・・・水(液体)。Figures 1 and 2 are diagrams showing one embodiment of the present invention, in which Figure 1 is a diagram for explaining a method for preventing liquefaction of sandy ground, and Figure 2 is an example of a bubble injection device. Figure 3 is a graph showing the relationship between saturation and P wave velocity, Figure 4 is a graph showing the relationship between saturation and B value, and Figure 5 is a graph showing the change in elastic wave velocity due to saturation. Figure 6 is a graph representing the relationship between the measured value and estimated value of saturation, Figure 7 is a graph representing the relationship between the bulk elastic constant and B value, and Figure 8 is a graph representing the calculated value of B value. It is a graph showing the relationship with actual measured values. 1...Sandy ground, 2...Buildings, 3.
...Pipe, 4...Bubble mixing device, 12
...Water (liquid).
Claims (2)
入し、気泡混入装置により気泡が混入された液体を作製
してこれを前記注入パイプの上端からその内部に圧入す
ることで、この注入パイプから前記砂質地盤中に微少な
気泡を注入することを特徴とする砂質地盤の液状化防止
方法。(1) By penetrating an injection pipe into sandy ground that is close to a completely saturated state, and creating a liquid with air bubbles mixed in using a bubble mixing device, this is injected into the inside of the injection pipe from the upper end of the injection pipe. A method for preventing liquefaction of sandy ground, comprising injecting minute air bubbles into the sandy ground from an injection pipe.
圧入容器内部の圧力を大気圧以上となす圧縮機と、圧力
容器内に液体を供給する供給手段と、圧力容器内部を撹
拌する撹拌手段と、切換手段を介して圧力容器内部に連
通して設けられ、圧力容器内部より低圧に保持された減
圧容器と、この減圧容器に連結され、地盤中に貫入され
た注入パイプとからなる気泡注入装置。(2) A pressure vessel, a compressor that pressurizes air into the pressure vessel to make the pressure inside the pressure vessel equal to or higher than atmospheric pressure, a supply means for supplying liquid into the pressure vessel, and stirring the inside of the pressure vessel. a stirring means for stirring, a reduced pressure container provided in communication with the inside of the pressure vessel via a switching means and maintained at a lower pressure than the inside of the pressure vessel, and an injection pipe connected to this reduced pressure container and penetrated into the ground. Air bubble injection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13969989A JPH0721179B2 (en) | 1989-06-01 | 1989-06-01 | Method for preventing liquefaction of sandy ground and bubble injecting device used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13969989A JPH0721179B2 (en) | 1989-06-01 | 1989-06-01 | Method for preventing liquefaction of sandy ground and bubble injecting device used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH035514A true JPH035514A (en) | 1991-01-11 |
JPH0721179B2 JPH0721179B2 (en) | 1995-03-08 |
Family
ID=15251362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13969989A Expired - Lifetime JPH0721179B2 (en) | 1989-06-01 | 1989-06-01 | Method for preventing liquefaction of sandy ground and bubble injecting device used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0721179B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03156022A (en) * | 1989-11-10 | 1991-07-04 | Kajima Corp | Ground improvement method |
JP2007297838A (en) * | 2006-04-28 | 2007-11-15 | Fudo Tetra Corp | Method for preventing deformation caused by liquefaction at earthquake |
US20130333451A1 (en) * | 2011-02-18 | 2013-12-19 | Northeastern University | Gas delivery system to provide induced partial saturation through solute transport and reactivity for liquefaction mitigation |
-
1989
- 1989-06-01 JP JP13969989A patent/JPH0721179B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03156022A (en) * | 1989-11-10 | 1991-07-04 | Kajima Corp | Ground improvement method |
JP2007297838A (en) * | 2006-04-28 | 2007-11-15 | Fudo Tetra Corp | Method for preventing deformation caused by liquefaction at earthquake |
US20130333451A1 (en) * | 2011-02-18 | 2013-12-19 | Northeastern University | Gas delivery system to provide induced partial saturation through solute transport and reactivity for liquefaction mitigation |
Also Published As
Publication number | Publication date |
---|---|
JPH0721179B2 (en) | 1995-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6453727B1 (en) | Method of evaluating physical parameters of an underground reservoir from rock cuttings taken therefrom | |
US20090250221A1 (en) | Method of supplying a powdered chemical composition to a wellsite | |
US20060272735A1 (en) | Method of supplying a powdered chemical composition to a wellsite | |
Westrich | Erosion of a uniform sand bed by continuous and pulsating jets | |
CN211274254U (en) | Foaming device | |
JP2733540B2 (en) | Ground improvement method | |
CN108982321A (en) | A kind of experimental rig seeping erosion process using the soluble crystal material simulation soil body | |
JPH02125013A (en) | Fluidization preventing method for sandy ground | |
JPH035514A (en) | Liquefaction prevention of sandy ground and bubble injection device | |
CN114791393A (en) | Saturation device and method for large-particle-size cohesionless soil hollow cylinder torsional shear test | |
OA10280A (en) | Apparatus for testing a shear thickening plugging fluid | |
JP2733539B2 (en) | Ground improvement method | |
CN211627210U (en) | Experimental testing device for reinforcing fractured rock sample by high-pressure permeation grouting | |
JPH02197615A (en) | Large-diameter ground improving work | |
CN115901303B (en) | Soil pressure balance shield blowout prevention test device capable of simulating modifier injection | |
CN108508186A (en) | Ultrasonic activation vacuum preloading test method | |
CN208399236U (en) | A kind of oscillatory type experimental provision for preparing target moisture content earth material | |
CN208140704U (en) | Ultrasonic activation vacuum preloading pilot system | |
JP2000170152A (en) | Liquefaction prevention method for sand ground and equipment therefor | |
JP2858749B2 (en) | Closed pressure shield method | |
CN112962577A (en) | Water-carrying grouting plugging structure and plugging method for large-flow leakage stratum | |
CN208443624U (en) | A kind of saturation coarse-grained soil unit sample producing device | |
JP3709505B2 (en) | Ground liquefaction prevention method | |
JP3243516B2 (en) | Method and apparatus for solidifying treatment in an ooze mud discharging system | |
JPH0660558B2 (en) | Sediment pumping method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |